Modelowanie Wieloskalowe. Automaty Komórkowe w Inżynierii Materiałowej
|
|
- Ludwika Alina Zawadzka
- 6 lat temu
- Przeglądów:
Transkrypt
1 Modelowanie Wieloskalowe Automaty Komórkowe w Inżynierii Materiałowej Dr inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 603 lmadej@agh.edu.pl
2 Zastosowania w metalurgii modelowanie zjawiska rekrystalizacji statycznej modelowanie zjawiska rekrystalizacji dynamicznej modelowanie zjawiska rozbudowy granicy ziarna modelowanie zjawiska inicjalizacji pęknięć modelowanie zjawisk termomechanicznych modelowanie zjawiska lokalizacji odkształcenia modelowanie przemian fazowych
3 Naiwny rozrost ziaren mikrostruktury materiału
4 Naiwny rozrost ziaren mikrostruktury materiału Wymiar przestrzeni: 2D lub 3D Sąsiedztwo: Moore, von Neuman, random hexagonal, random pentagonal Ilości stanów komórki: 2 - pusta lub ziarno Zmienne wewnętrzne CA
5 Naiwny rozrost ziaren mikrostruktury materiału Zmienne wewnętrzne CA stan pusta Y ziarno Zmienne wewnętrzne - do którego ziarna należy O orientacji krystalograficznej φ, ϕ, θ φ 2, ϕ 2, θ 2 φ 3, ϕ 3, θ 3
6 Zarodkowanie Naiwny rozrost ziaren mikrostruktury materiału Losowy wybór komórek i zmiana stanu na komórka, przypisanie wartości zmiennym wewnętrznym: numer ziarna, orientacja krystalograficzna Ziarno nr 1 Ziarno nr 2 Ziarno nr 3
7 Naiwny rozrost ziaren mikrostruktury materiału Rozrost eżeli sąsiad danej komórki w poprzednim kroku był w stanie ziarno to komórka również mienia stan na ziarno. Zmienne wewnętrzne przejmuje takie jakie posiada większość ej sąsiadów w stanie ziarno. przypadku takiej samej liczby sąsiadów o różnych własnościach, wprowadza się osowość wyboru.
8
9
10 Naiwny rozrost ziaren mikrostruktury materiału Problem doboru sąsiedztwa Von Neumanna Moore pentagonalne heksagonalne
11 Naiwny rozrost ziaren mikrostruktury materiału Problem doboru sąsiedztwa Von Neumanna Moore pentagonalne heksagonalne
12 Naiwny rozrost ziaren mikrostruktury materiału Periodyczny warunek brzegowy
13
14 Naiwny rozrost ziaren mikrostruktury materiału
15 Modelowaniem zjawiska rekrystalizacji dynamicznej oraz rozwoju mikrostruktury w trakcie przeróbki plastycznej na gorąco Gawad J., Madej Ł., Szeliga D., Pietrzyk M., Microstructure evolution modeling based on the rheological parameters using the cellular automaton technique, Mat. Konf. Forming 2004, Vysoke Tatry, Strebske Pleso 2004,
16 Zastosowania w metalurgii W literaturze funkcjonuje kilka możliwości rozwiązania problemu modelowania rozwoju mikrostruktury w trakcie procesów przeróbki termomechanicznej. Każda z tych metod charakteryzuje się innym stopniem zaawansowania: różne otoczenia, różnorakie sformułowanie reguł przejścia różne modele matematyczne wspomagająca metodę automatów komórkowych. Co za tym idzie dokładność otrzymywanych rezultatów również jest różna.
17 dynamicznej Generacja pierwotnej mikrostruktury Działo Dyslokacji Automat Komórkowy
18 dynamicznej - pierwotna mikrostruktura Pierwotną mikrostrukturę uzyskano na kilka sposobów: bazując na rzeczywistym zdjęciu zgładu fragmentu próbki przed deformacją:
19 bazując na mikrostrukturze, uzyskanej przy wykorzystaniu metody wieloboków Voronoi:
20 Automaty komórkowe
21 Rozrost Kul (źródło: T. Wejrzanowski)
22 szczypta teorii Kryształ składa się z płaszczyzn atomowych, a defekt polegający na tym, że jedna z nich kończy się wewnątrz kryształu krawędzią nazywamy dyslokacją krawędziową Dyslokacje w materiale mają możliwość przemieszczania się. Ruch ten zachodzi najczęściej w pewnych płaszczyznach i w pewnych kierunkach krystalograficznych, a najczęściej są to płaszczyzny i kierunki najgęstszego upakowania. W materiale poddanym obciążeniu występuje wiele konkurujących ze sobą procesów. Najczęściej rozpatrywanymi są proces umocnienia, zdrowienia dynamicznego i statycznego, rekrystalizacji dynamicznej, metadynamicznej oraz statycznej. Wszystkie związane są z dyslokacjami. Pojęcie gęstości dyslokacji
23 szczypta teorii Symulacja procesu umocnienia oraz zdrowienia. W każdym kroku czasowym wraz z postępującym procesem odkształcenia w materiale generowane są dodatkowe dyslokacje, w wyniku czego gęstość dyslokacji wzrasta od wartości około 10 6 do wartości Wzrost gęstości dyslokacji jest kontrolowany zgodnie z modelem zmiennych wewnętrznych, równaniem opisującym zmiany średniej wartości gęstości dyslokacji w czasie.
24 dynamicznej - działo dyslokacji Działo dyslokacji bazuje na analitycznym rozwiązaniu równania konstytutywnego modelu zmiennych wewnętrznych opisującego procesy umocnienia (A) i zdrowienia (B): d ρ A = A Bρ ρ 1 dt B ε A = & ( 1 m) Qs B k20ε Gdzie: = & exp bl RT = + A e B Bt Parametry materiałowe występujące w równaniach zostały uprzednio zidentyfikowane przy wykorzystaniu metody optymalizacji Simplex.
25
26 dynamicznej - działo dyslokacji W każdym kroku czasowym obliczona pula dyslokacji jest wprowadzana do przestrzeni automatów komórkowych. Parametrem kontrolującym ten pseudolosowy proces jest ściśle ustalony rozmiar paczki która może trafić do danej komórki. A ρ = + 1 B A e B Bt paczka pseudolosowa
27 dynamicznej - automat komórkowy W modelu założono dwu wymiarowe alternatywne sąsiedztwo heksagonalne a każda komórka opisana jest zestawem zmiennych określających jej stan:. aktualna wartość gęstości dyslokacji ρ c. zmienna określająca czy dana komórka zrekrystalizowała Przestrzeń CA. zmienna określająca do którego ziarna dana komórka przynależy
28 dynamicznej - automat komórkowy W każdym kroku czasowym odbywa się proces migracji dyslokacji pomiędzy sąsiadami należącymi do tego samego ziarna. Ponieważ granice ziaren są to defekty struktury krystalicznej na których następuje gwałtowny wzrost gęstości dyslokacji w trakcie odkształcenia. Każda komórka ściśle kontroluje ile dyslokacji jest w stanie oddać do sąsiada jak również ile dyslokacji jest w stanie przyjąć.
29 dynamicznej - automat komórkowy Ułamek puli przekazanej do sąsiadów obliczany jest zgodnie z 200 założoną zależnością: xd = ρd N ρ (0,1) 0 : ρ< ρsp 1 ρ ( sp ) : d = ρ ρ ρ ρsp ρρ - sp-ρgr 1+ exp m N(0,1) prawdopodobieństwo z jakim komórka może oddać dyslokacje do sąsiadów, ρ d - całkowita pula dyslokacji, którą komórka jest w stanie przekazać do sąsiadów zgodnie z zależnością przedstawioną gęstość dyslokacji ρd gęstość dyslokacji ρ c
30 dynamicznej - automat komórkowy Ułamek puli przyjmowanej od sąsiadów obliczany jest zgodnie z 1 założoną zależnością: x a ρ ρ0.5 = 1+ exp n 1 ułamek gęstości dyslokac x a gestość dyslokacji ρ c
31
32 dynamicznej - automat komórkowy Reguły przejścia W przypadku gdy w poprzednim kroku czasowym (t-1) któryś z sąsiadów komórki (i,j) uległ rekrystalizacji & gęstość dyslokacji w sąsiednich komórkach jest mniejsza niż gęstość dyslokacji w danej (i,j) komórce to ta komórka również ulega rekrystalizacji. Jej gęstość dyslokacji ρ c ustawiana jest na poziom odniesienia. W przypadku gdy w danej (i,j) komórce przekroczona zostanie krytyczna wartość gęstości dyslokacji ρ c > ρ critical & komórka znajduje się przy granicy ziarna to komórka staje się zarodkiem rekrystalizacji i jej gęstość dyslokacji również spada do poziomu odniesienia.
33 dynamicznej Mikrostruktura Działo Dyslokacji Migracja dyslokacji Reguły Przejścia DRX Out Put
34 Przykładowe wyniki obliczeń Z modelu uzyskuje się wiele informacji dotyczących: rozwoju mikrostruktury ilości nowo powstałych ziaren średnicy ziaren informacje dotyczące procesu rekrystalizacji naprężenie uplastyczniające. Naprężenie uplastyczniające obliczane jest z powszechnie znanej zależności: σ = σ0 + αμb ρ Wartości uzyskiwanych naprężeń umożliwią porównanie wyników obliczeń z wynikami uzyskanymi z modelu.
35 dynamicznej - automat komórkowy M I K R O S T R U K T U R A
36 dynamicznej - automat komórkowy doświadczenie Obliczenia CA stress, MPa strain rate = 0.01s-1 T = 900 oc T = 1000 o C T = 1100 oc time, s
Modelowanie Wieloskalowe. Automaty Komórkowe w Inżynierii Materiałowej
Modelowanie Wieloskalowe Automaty Komórkowe w Inżynierii Materiałowej Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek
Modelowanie wieloskalowe. Automaty Komórkowe - podstawy
Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl
Modelowanie wieloskalowe. Automaty Komórkowe - podstawy
Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Metali i Informatyki Przemysłowej Katedra Informatyki Stosowanej i Modelowania
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Metali i Informatyki Przemysłowej Katedra Informatyki Stosowanej i Modelowania Rozprawa doktorska Modelowanie wieloskalowe metodą automatów
Wykład IX: Odkształcenie materiałów - właściwości plastyczne
Wykład IX: Odkształcenie materiałów - właściwości plastyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Odkształcenie
Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis
Nauka o Materiałach Wykład IX Odkształcenie materiałów właściwości plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Odkształcenie plastyczne 2. Parametry makroskopowe 3. Granica plastyczności
WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe
WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ Zmiany makroskopowe Zmiany makroskopowe R e = R 0.2 - umowna granica plastyczności (0.2% odkształcenia trwałego); R m - wytrzymałość na rozciąganie (plastyczne); 1
OBRÓBKA PLASTYCZNA METALI
OBRÓBKA PLASTYCZNA METALI Plastyczność: zdolność metali i stopów do trwałego odkształcania się bez naruszenia spójności Obróbka plastyczna: walcowanie, kucie, prasowanie, ciągnienie Produkty i półprodukty
BADANIA PÓL NAPRĘśEŃ W IMPLANTACH TYTANOWYCH METODAMI EBSD/SEM. Klaudia Radomska
WyŜsza Szkoła InŜynierii Dentystycznej im. prof. Meissnera w Ustroniu Wydział InŜynierii Dentystycznej BADANIA PÓL NAPRĘśEŃ W IMPLANTACH TYTANOWYCH METODAMI EBSD/SEM Klaudia Radomska Praca dyplomowa napisana
Przedmowa Czêœæ pierwsza. Podstawy frontalnych automatów komórkowych... 11
Spis treœci Przedmowa... 9 Czêœæ pierwsza. Podstawy frontalnych automatów komórkowych... 11 1. Wstêp... 13 1.1. Rys historyczny... 14 1.2. Klasyfikacja automatów... 18 1.3. Automaty komórkowe a modelowanie
Badanie materiałów polikrystalicznych w aspekcie optymalizacji ich własności
WydziałFizyki i Informatyki Stosowanej Badanie materiałów polikrystalicznych w aspekcie optymalizacji ich własności dr inż. Sebastian Wroński Ośrodki współpracujące Modyfikacja własności poprzez: Deformacje
Nauka o Materiałach. Wykład VI. Odkształcenie materiałów właściwości sprężyste i plastyczne. Jerzy Lis
Nauka o Materiałach Wykład VI Odkształcenie materiałów właściwości sprężyste i plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Statyczna próba rozciągania.
WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ MATERIAŁ. Właściwości materiałów. Właściwości materiałów
WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ Właściwości materiałów O możliwości zastosowania danego materiału decydują jego właściwości użytkowe; Zachowanie się danego materiału w środowisku pracy to zaplanowana
PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Reologia jest nauką,
Modelowanie Wieloskalowe
Modelowanie Wieloskalowe Modele naprężenia uplastyczniającego w ujęciu symulacji numerycznej Dr hab. inż. Łukasz Madej, prof. AGH Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali
- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.
4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające
Zjawisko to umożliwia kształtowanie metali na drodze przeróbki plastycznej.
ODKSZTAŁCENIE PLASTYCZNE, ZGNIOT I REKRYSTALIZACJA Zakres tematyczny 1 Odkształcenie materiałów metalicznych Materiały metaliczne są ciałami plastycznymi pod wpływem obciążenia, którego wartość przekracza
WIELOSKALOWY NUMERYCZNY MODEL PRZEMIANY AUSTENIT FERRYT UWZGLĘDNIAJĄCY WPŁYW WYDZIELEŃ WĘGLIKOAZOTKÓW NIOBU
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Metali i Informatyki Przemysłowej Katedra Informatyki Stosowanej i Modelowania Rozprawa doktorska WIELOSKALOWY NUMERYCZNY MODEL PRZEMIANY
2. WPŁYW ODKSZTAŁCENIA PLASTYCZNEGO NA ZIMNO NA ZMIANĘ WŁASNOŚCI MECHANICZNYCH METALI
2. WPŁYW ODKSZTAŁCENIA PLASTYCZNEGO NA ZIMNO NA ZMIANĘ WŁASNOŚCI MECHANICZNYCH METALI 2.1. Cel ćwiczenia Zapoznanie się z możliwością trwałego odkształcenia metalu na zimno oraz z wpływem tego odkształcenia
Badanie mechanizmów rekrystalizacji w metalach
Badanie mechanizmów rekrystalizacji w metalach Jacek Tarasiuk KFMS, 2007 dr Philippe Gerber, dr Krystian Piękoś prof. Krzysztof Wierzbanowski dr Brigitte Bacroix LPMTM, Univ. Paris XIII Plan referatu (1)
Integralność konstrukcji
1 Integralność konstrukcji Wykład Nr 1 Mechanizm pękania Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Konspekty wykładów dostępne na stronie: http://zwmik.imir.agh.edu.pl/dydaktyka/imir/index.htm
Podstawy Nauki o Materiałach II Wydział Inżynierii Materiałowej Politechniki Warszawskiej
Podstawy Nauki o Materiałach II Wydział Inżynierii Materiałowej Politechniki Warszawskiej Zbigniew Pakieła Klasyfikacja defektów struktury krystalicznej wg wymiarów elementów 0 - wymiarowe (defekty punktowe)
ODKSZTAŁCANIE NA ZIMNO I WYŻARZANIE MATERIAŁÓW
8 Ćwiczenie 1 ODKSZTAŁCANIE NA ZIMNO I WYŻARZANIE MATERIAŁÓW Celem ćwiczenia jest: - poznanie zjawisk wywołujących umocnienie materiałów, - poznanie wpływu wyżarzania odkształconego na zimno materiału
Technologie Materiałowe II Wykład 2 Technologia wyżarzania stali
KATEDRA INŻYNIERII MATERIAŁOWEJ I SPAJANIA ZAKŁAD INŻYNIERII SPAJANIA Technologie Materiałowe II Wykład 2 Technologia wyżarzania stali dr hab. inż. Jerzy Łabanowski, prof.nadzw. PG Kierunek studiów: Inżynieria
INŻYNIERIA MATERIAŁOWA w elektronice
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej... INŻYNIERIA MATERIAŁOWA w elektronice... Dr hab. inż. JAN FELBA Profesor nadzwyczajny PWr 1 PROGRAM WYKŁADU Struktura materiałów
ODKSZTAŁCENIE I REKRYSTALIZACJA METALI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
ODKSZTAŁCENIE I REKRYSTALIZACJA METALI Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego ODKSZTAŁCENIE I REKRYSTALIZACJA METALI 1. ODKSZTAŁCENIE METALI
TEMAT PRACY DOKTORSKIEJ
Krynica, 12.04.2013 Wpływ cyrkonu i skandu na zmiany mikrostruktury i tekstury w silnie odkształconych stopach aluminium ---------------------------------------------------------------------------- TEMAT
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 03 (uzupełnienie Wykładu 02) Jarosław Miszczak IITiS PAN Gliwice 31/03/2016 1 / 17 1 2 / 17 Dynamika populacji Równania Lotki-Voltery opisują model drapieżnik-ofiara.
Optymalizacja. Przeszukiwanie lokalne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x
Poprawa właściwości konstrukcyjnych stopów magnezu - znaczenie mikrostruktury
Sympozjum naukowe Inżynieria materiałowa dla przemysłu 12 kwietnia 2013 roku, Krynica-Zdrój, Hotel Panorama Poprawa właściwości konstrukcyjnych stopów magnezu - znaczenie mikrostruktury P. Drzymała, J.
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Metaloznawstwo I Metal Science I
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków, ul. Reymonta 25
Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, 30059 Kraków, ul. Reymonta 25 Tel.: (012) 295 28 86, pokój 10, fax: (012) 295 28 04 email: w.wajda@imim.pl Miejsca zatrudnienia
Stochastic modelling of phase transformations using HPC infrastructure
Stochastic modelling of phase transformations using HPC infrastructure (Stochastyczne modelowanie przemian fazowych z wykorzystaniem komputerów wysokiej wydajności) Daniel Bachniak, Łukasz Rauch, Danuta
Rys Przykładowe krzywe naprężenia w funkcji odkształcenia dla a) metali b) polimerów.
6. Właściwości mechaniczne II Na bieżących zajęciach będziemy kontynuować tematykę właściwości mechanicznych, którą zaczęliśmy tygodnie temu. Ponownie będzie nam potrzebny wcześniej wprowadzony słowniczek:
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 02 Jarosław Miszczak IITiS PAN Gliwice 06/10/2016 1 / 31 Czego dowiedzieliśmy się na poprzednim wykładzie? 1... 2... 3... 2 / 31 1 2 3 3 / 31 to jeden z pierwszych
Metody dużego odkształcenia plastycznego
Metody dużego odkształcenia plastycznego Metody dużego odkształcenia plastycznego SPD (ang. severe plastic deformation) to grupa technik polegających na przekształcaniu struktury mikrometrycznej materiałów,
MECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
8. PODSTAWY ANALIZY NIELINIOWEJ
8. PODSTAWY ANALIZY NIELINIOWEJ 1 8. 8. PODSTAWY ANALIZY NIELINIOWEJ 8.1. Wprowadzenie Zadania nieliniowe mają swoje zastosowanie na przykład w rozwiązywaniu cięgien. Przyczyny nieliniowości: 1) geometryczne:
Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek
Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę
OBRÓBKA PLASTYCZNA METALI
OBRÓBKA PLASTYCZNA METALI ODKSZTAŁCENIE I REKRYSTALIZACJA METALI 1. ODKSZTAŁCENIE METALI 2. ZDROWIENIE I REKRYSTALIZACJA 3. TECHNICZNE ASPEKTY ODKSZTAŁCENIA PLASTYCZNEGO ODKSZTAŁCENIE METALI Ciało stałe
Zmęczenie Materiałów pod Kontrolą
1 Zmęczenie Materiałów pod Kontrolą Wykład Nr 9 Wzrost pęknięć przy obciążeniach zmęczeniowych Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji http://zwmik.imir.agh.edu.pl
Osiągnięcia Uzyskane wyniki
Osiągnięcia 1. Opracowano wieloskalowe narzędzie informatyczne, pozwalające na modelowanie procesów rekrystalizacji stopów magnezu w procesie ciągnienia drutów o średnicach 0.05-0.1 mm w podgrzewanych
Narzędzia do geometrycznej charakteryzacji granic ziaren. K. Głowioski
Narzędzia do geometrycznej charakteryzacji granic ziaren K. Głowioski Plan prezentacji Wprowadzenie do granic ziaren Cel badao Przykłady zastosowania rozwijanych metod i narzędzi: - Rozkłady granic i ich
Optymalizacja konstrukcji
Optymalizacja konstrukcji Kształtowanie konstrukcyjne: nadanie właściwych cech konstrukcyjnych przeszłej maszynie określenie z jakiego punktu widzenia (wg jakiego kryterium oceny) będą oceniane alternatywne
Podstawy technologii monokryształów
1 Wiadomości ogólne Monokryształy - Pojedyncze kryształy o jednolitej sieci krystalicznej. Powstają w procesie krystalizacji z substancji ciekłych, gazowych i stałych, w określonych temperaturach oraz
Dyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura
Dyslokacje w kryształach ach Keshra Sangwal, Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: podstawowe pojęcie III. Własności mechaniczne kryształów IV. Źródła i rozmnażanie się dyslokacji
Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska
Dyslokacje w kryształach ach Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: Podstawowe pojęcie III. Własności mechaniczne kryształów
PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH
PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH ( Na przykładzie POWERSIM) M. Berndt-Schreiber 1 Plan Zasady modelowania Obiekty symbole graficzne Dyskretyzacja modelowania Predefiniowane
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Ścisła próba rozciągania stali Numer ćwiczenia: 2 Laboratorium z przedmiotu:
SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization
Wrocław University of Technology SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Jakub M. Tomczak Studenckie Koło Naukowe Estymator jakub.tomczak@pwr.wroc.pl 4.1.213 Klasteryzacja Zmienne
Nauka o Materiałach Wykład II Monokryształy Jerzy Lis
Wykład II Monokryształy Jerzy Lis Treść wykładu: 1. Wstęp stan krystaliczny 2. Budowa kryształów - krystalografia 3. Budowa kryształów rzeczywistych defekty WPROWADZENIE Stan krystaliczny jest podstawową
Wzrost fazy krystalicznej
Wzrost fazy krystalicznej Wydzielenie nowej fazy może różnić się of fazy pierwotnej : składem chemicznym strukturą krystaliczną orientacją krystalograficzną... faza pierwotna nowa faza Analogia elektryczna
Metoda Monte Carlo. Jerzy Mycielski. grudzien Jerzy Mycielski () Metoda Monte Carlo grudzien / 10
Metoda Monte Carlo Jerzy Mycielski grudzien 2012 Jerzy Mycielski () Metoda Monte Carlo grudzien 2012 1 / 10 Przybliżanie całek Powiedzmy, że mamy do policzenia następującą całkę: b f (x) dx = I a Założmy,
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego
Wykład 8. Przemiany zachodzące w stopach żelaza z węglem. Przemiany zachodzące podczas nagrzewania
Wykład 8 Przemiany zachodzące w stopach żelaza z węglem Przemiany zachodzące podczas nagrzewania Nagrzewanie stopów żelaza powyżej temperatury 723 O C powoduje rozpoczęcie przemiany perlitu w austenit
Systemy masowej obsługi
Systemy masowej obsługi Celem niniejszego ćwiczenia jest: zapoznanie się z podstawowymi właściwościami najprostszego systemu analizowanego w ramach teorii masowej obsługi, systemu M/M/ zapoznanie się z
OPRACOWANIE WYDAJNEGO FRAMEWORKU DO METODY AUTOMATÓW KOMÓRKOWYCH Z WYKORZYSTANIEM OBLICZEŃ RÓWNOLEGŁYCH I ROZPROSZONYCH
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 740 STUDIA INFORMATICA NR 31 2012 RAFAŁ GOŁĄB, ŁUKASZ MADEJ Akademia Górniczo-Hutnicza w Krakowie OPRACOWANIE WYDAJNEGO FRAMEWORKU DO METODY AUTOMATÓW KOMÓRKOWYCH
W dowolnym kwadracie 3x3 ustawiamy komórki na palące się (stan 3). Program powinien pokazywać ewolucję pożaru lasu.
1. Symulacja pożaru lasu ver. 1 Las reprezentowany jest przez macierz 100x100. W lesie występują dwa rodzaje drzew: liściaste i iglaste. Przyjmijmy, że prostokąt A(1:50,1:100) wypełniony jest drzewami
Ćwiczenie nr 3 Statyczna próba jednoosiowego rozciągania. Umocnienie odkształceniowe, roztworowe i przez rozdrobnienie ziarna
Przedmiot: Badanie własności mechanicznych materiałów Wykładowca: dr inż. Łukasz Cieniek Autor opracowania: dr inż. Łukasz Cieniek Ćwiczenie nr 3 Statyczna próba jednoosiowego rozciągania. Czas przewidywany
DEFEKTY STRUKTURY KRYSTALICZNEJ
DEFEKTY STRUKTURY KRYSTALICZNEJ Rodzaje defektów (wad) budowy krystalicznej Punktowe Liniowe Powierzchniowe Defekty punktowe Wakanse: wolne węzły Atomy międzywęzłowe Liczba wad punktowych jest funkcją
SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania
SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru
A G H dr hab. inż. Łukasz Madej, prof. AGH
AKADEMIA GÓRNICZO- HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydz i ał Inżynierii Metali i Informatyki Przemysłowej Al. Mickiewicza 30, 30-059 Kraków Tel: +48 (12) 617 5154 Fax: +48 (12) 617 29 21 A
Prawdopodobieństwo i rozkład normalny cd.
# # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =
HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki
Obróbka cieplna stali
OBRÓBKA CIEPLNA Obróbka cieplna stali Powstawanie austenitu podczas nagrzewania Ujednorodnianie austenitu Zmiany wielkości ziarna Przemiany w stali podczas chłodzenia Martenzytyczna Bainityczna Perlityczna
Dekohezja materiałów. Przedmiot: Degradacja i metody badań materiałów Wykład na podstawie materiałów prof. dr hab. inż. Jerzego Lisa, prof. zw.
Dekohezja materiałów Przedmiot: Degradacja i metody badań materiałów Wykład na podstawie materiałów prof. dr hab. inż. Jerzego Lisa, prof. zw. AGH Nauka o Materiałach Treść wykładu: 1. Dekohezja materiałów
1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH
1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH Ośrodki materialne charakteryzują dwa rodzaje różniących się zasadniczo od siebie wielkości fizycznych: globalne (ekstensywne) przypisane obszarowi przestrzeni fizycznej,
Ruch drogowy, korki uliczne - czy fizyk może coś na to poradzić?
Ruch drogowy, korki uliczne - czy fizyk może coś na to poradzić? KNF Migacz, Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski 16-18 listopada 2007 Spis treści Spis treści 1 Spis treści 1 2 Spis treści
Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis
Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia
Temat 1 (2 godziny): Próba statyczna rozciągania metali
Temat 1 (2 godziny): Próba statyczna rozciągania metali 1.1. Wstęp Próba statyczna rozciągania jest podstawowym rodzajem badania metali, mających zastosowanie w technice i pozwala na określenie własności
Analiza stateczności zbocza
Przewodnik Inżyniera Nr 25 Aktualizacja: 06/2017 Analiza stateczności zbocza Program: MES Plik powiązany: Demo_manual_25.gmk Celem niniejszego przewodnika jest analiza stateczności zbocza (wyznaczenie
FLAC Fast Lagrangian Analysis of Continua
FLAC Fast Lagrangian Analysis of Continua Program FLAC jest oparty o metodę róŝnic skończonych. Metoda RóŜnic Skończonych (MRS) jest chyba najstarszą metodą numeryczną. W metodzie tej kaŝda pochodna w
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: MODELOWANIE I SYMULACJA PROCESÓW WYTWARZANIA Modeling and Simulation of Manufacturing Processes Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy specjalności PSM Rodzaj zajęć: wykład,
DEFEKTY STRUKTURY KRYSTALICZNEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
DEFEKTY STRUKTURY KRYSTALICZNEJ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Defekty struktury krystalicznej są to każdego rodzaju odchylenia od
Materiały Reaktorowe. Właściwości mechaniczne
Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie
α k = σ max /σ nom (1)
Badanie koncentracji naprężeń - doświadczalne wyznaczanie współczynnika kształtu oprac. dr inż. Ludomir J. Jankowski 1. Wstęp Występowaniu skokowych zmian kształtu obciążonego elementu, obecności otworów,
MODELOWANIE WARSTWY POWIERZCHNIOWEJ O ZMIENNEJ TWARDOŚCI
Dr inż. Danuta MIEDZIŃSKA, email: dmiedzinska@wat.edu.pl Dr inż. Robert PANOWICZ, email: Panowicz@wat.edu.pl Wojskowa Akademia Techniczna, Katedra Mechaniki i Informatyki Stosowanej MODELOWANIE WARSTWY
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Integralność konstrukcji
Integralność konstrukcji Wykład Nr 3 Zależność między naprężeniami i odkształceniami Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji 2 3.. Zależność
PRZYKŁADY CHARAKTERYSTYK ŁOŻYSK
ROZDZIAŁ 9 PRZYKŁADY CHARAKTERYSTYK ŁOŻYSK ŁOŻYSKO LABORATORYJNE ŁOŻYSKO TURBINOWE Przedstawimy w niniejszym rozdziale przykładowe wyniki obliczeń charakterystyk statycznych i dynamicznych łożysk pracujących
Materiałoznawstwo. Wzornictwo Przemysłowe I stopień ogólnoakademicki stacjonarne wszystkie Katedra Technik Komputerowych i Uzbrojenia
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Materiałoznawstwo Nazwa modułu w języku angielskim Materials Science Obowiązuje od roku akademickiego 2014/2015 A. USYTUOWANIE MODUŁU W SYSTEMIE
Ćwiczenie nr 4 Anizotropia i tekstura krystalograficzna. Starzenie po odkształceniu
Przedmiot: Badanie własności mechanicznych materiałów Wykładowca: dr inż. Łukasz Cieniek Autor opracowania: dr inż. Łukasz Cieniek Ćwiczenie nr 4 Anizotropia i tekstura krystalograficzna. Czas przewidywany
17. 17. Modele materiałów
7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie
STRUKTURA IDEALNYCH KRYSZTAŁÓW
BUDOWA WEWNĘTRZNA MATERIAŁÓW METALICZNYCH Zakres tematyczny y 1 STRUKTURA IDEALNYCH KRYSZTAŁÓW 2 1 Sieć przestrzenna kryształu TRANSLACJA WĘZŁA TRANSLACJA PROSTEJ SIECIOWEJ TRANSLACJA PŁASZCZYZNY SIECIOWEJ
BADANIA STRUKTURY MATERIAŁÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
BADANIA STRUKTURY MATERIAŁÓW Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego 1. MAKROSTRUKTURA 2. MIKROSTRUKTURA 3. STRUKTURA KRYSTALICZNA Makrostruktura
FLAC Fast Lagrangian Analysis of Continua. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki
FLAC Fast Lagrangian Analysis of Continua Program FLAC jest oparty o metodę różnic skończonych. Metoda Różnic Skończonych (MRS) jest chyba najstarszą metodą numeryczną. W metodzie tej każda pochodna w
Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
Metoda elementów skończonych
Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk
5. ODKSZTAŁCENIE PLASTYCZNE I REKRYSTALIZACJA MATERIAŁÓW METALICZNYCH. Opracował: dr inż. Janusz Ryś
5. ODKSZTAŁCENIE PLASTYCZNE I REKRYSTALIZACJA MATERIAŁÓW METALICZNYCH Opracował: dr inż. Janusz Ryś Plastyczność czyli zdolność materiału do osiągania dużych i trwałych odkształceń bez wywołania jego zniszczenia
JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE
JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE 1 Dokładność i poprawność Dr hab. inż. Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/12 80-233 GDAŃSK e-mail:
Przemiana martenzytyczna
Przemiana martenzytyczna Przemiana martenzytyczna jest przemianą bezdyfuzyjną (atermiczną) do jej realizacji nie jest wymagane wzbudzenie cieplne atomów Zachodzi przy dużym przechłodzeniu austenitu do
Kształtowanie struktury i własności użytkowych umacnianej wydzieleniowo miedzi tytanowej. 7. Podsumowanie
Kształtowanie struktury i własności użytkowych umacnianej wydzieleniowo miedzi tytanowej 7. Podsumowanie Praca wykazała, że mechanizm i kinetyka wydzielania w miedzi tytanowej typu CuTi4, jest bardzo złożona
SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING
MARIUSZ DOMAGAŁA, STANISŁAW OKOŃSKI ** SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING S t r e s z c z e n i e A b s t r a c t W artykule podjęto próbę modelowania procesu
Adam PŁACHTA, Dariusz KUC, Grzegorz NIEWIELSKI. Politechnika Śląska, Wydział Inżynierii Materiałowej i Metalurgii, Katowice
76 Prace IMŻ 1 (2012) Adam PŁACHTA, Dariusz KUC, Grzegorz NIEWIELSKI Politechnika Śląska, Wydział Inżynierii Materiałowej i Metalurgii, Katowice OPRACOWANIE CHARAKTERYSTYK TECHNOLOGICZNEJ PLASTYCZNOŚCI
Zadania badawcze realizowane na Wydziale Inżynierii Materiałowej Politechniki Warszawskiej
Zadania badawcze realizowane na Wydziale Inżynierii Materiałowej Politechniki Warszawskiej Łukasz Ciupiński Politechnika Warszawska Wydział Inżynierii Materiałowej Zakład Projektowania Materiałów Zaangażowanie