Modelowanie systemów biomedycznych
|
|
- Marcin Cieślik
- 9 lat temu
- Przeglądów:
Transkrypt
1 Modelowanie systemów biomedycznych - automaty komórkowe (czy jest to "nowe oblicze nauki"?) Arkadiusz Mandowski
2 Modelowanie... R. Tadeusiewicz (2008)
3 Modelowanie... R. Tadeusiewicz (2008)
4 Jak rozpoznać życie?
5 Jak rozpoznać życie?
6 Jak rozpoznać życie?
7
8 Formy życia temat do dyskusji Załóżmy, że przybywając do odległej planety mamy zidentyfikować nowe formy życia. Zadanie: spróbuj sformułować 7 cech, których użyjesz do określenia, czy dana forma materii jest żywa. Czy istnieje uniwersalna definicja życia? Jak zdefiniować sztuczne życie (Alife = artificial life) i jak je odróżnić od zwykłego życia?
9 John von Neumann: życie = rozmnażanie...? kinematon, kinematic beast
10 Stwór Kinematyczny von Neumann'a A - maszyna budująca B - maszyna kopiująca C - maszyna sterująca F - ciąg instrukcji do budowy maszyny (Stwór jest zanurzony w oceanie części zamienych) Zykov V., Mytilinaios E., Adams B., Lipson H. (2005) "Self-reproducing machines", Nature Vol. 435 No. 7038, pp
11 Stwór Kinematyczny II - realizacja von Neumann'a i Ulama Koncepcja Automatu Komórkowego 1. Przestrzeń złożona z ok komórek 2. Każda komórka może się znajdować w jednym z 29 stanów 3. Zmiana stanu komórki uzależniona jest od ogólnych reguł automatu i aktualnego stanu jej sąsiadów ( ) stanów Stanisław Ulam: Czy mechanizmy rekursywne mogą wyjaśnić przyczynę złożoności świata? Czy złożoność jest w istocie pozorna, bo reguły za nią stojące są proste?
12 Historia automatów komórkowych John von Neumann ( ) - w latach 1930/40 stworzył teorię gier (z myślą o ekonomii). Koncepcja automatu samo-powielającego się (kinematic beast - factory/duplicator/controller/instructions - łącznie komórek o 29 stanach). Stanisław Ulam ( ) - twórca pierwszych gier komputerowych 2-D i 3-D. Gry strategiczne na różnego rodzaju sieciach komórkowych (np. trójkątne, sześciokątne) "obiekty geometryczne zdefiniowane rekursywnie". John Horton Conway (1937- ) - matematyk w Gonville and Caius College (Cambridge) potem Princeton. w 1970 r. uprościł automat von Neumann'a (game of life). Teoria gier i teoria liczb. Stephen Wolfram ( ) - Eton/Oxford/Caltech; pierwszy artykuł, 1979 Ph.D. (Caltech - fizyka teoretyczna). Fizyka wysokich energii, pól kwantowych, kosmologia, dynamika cieczy. Od 1986 tworzy program Mathematica klasyfikacja automatów komórkowych 1-D; (2002) książka New kind of science.
13 John von Neumann ( ) Stanisław Ulam ( )
14 John H. Conway (1937- )
15 Automaty Komórkowe (cellular automata) CA - dyskretne systemy dynamiczne, których zachowanie jest w pełni określone poprzez lokalne reguły. Automat komórkowy jest wymyślonym wszechświatem, w którym przestrzeń jest reprezentowana poprzez jednorodną sieć z komórkami zawierającymi niewielką ilość informacji (właściwości = stan komórki). Czas ma również charakter dyskretny i jest określony przez kolejne generacje automatu.
16 Automaty komórkowe definicja I Automat Komórkowy (AK) to sieć N komórek, z których każda jest w jednym z k stanów w czasie t Każda z komórek podlega tym samym prawom rozwoju Stan komórki s w czasie t+1 zależy od jej własnego stanu, oraz stanu pewnej liczby jej sąsiadów w chwili t Dla 1-D AK otoczenie komórki składa się z r sąsiadów po każdej stronie, stąd parametrami AK są k i r k 2r +1 możliwości różnego sąsiedztwa k k 2r +1 możliwych reguł ewolucji (typów AK)
17 Automaty komórkowe definicja II Zbiór (K, E, S, f) jest nazwany automatem komórkowym, jeżeli: K jest siecią komórek (i, j)
18 E jest zbiorem stanów elementarnych np: np. E { zdrowy = czarny, zakażony = czerwony, uzdrowiony = niebieski } S sąsiedztwo (otoczenie) i, j Moore i, j+1 i-1, j i, j i+1, j i, j-1 Von Neumann f funkcja lokalna nowy stan w miejscu (i, j) = f ( sąsiedztwo (i, j) )
19 Przykładowe typy sieci Jednowymiarowe (1-D) Dwuwymiarowe (2-D) sieć kwadratowa sieć trójkątna sieć heksagonalna Trójwymiarowe (3-D) sieć kubiczna
20 Problem nieskończoności - warunki brzegowe (w implementacjach) Ograniczone Periodyczne
21 Typy sąsiedztwa (otoczenie - neighborhood) otoczenie von Neumann a otoczenie Moore a rozszerzone otoczenie Moore a
22 Gra w życie (game of life - Conway) Zasady (jeden z wariantów) 1. Przetrwanie: gdy żywa komórka ma 2 lub 3 sąsiadów 2. Śmierć: gdy żywa komórka ma mniej niż 2 lub więcej niż 3 sąsiadów 3. Narodziny: gdy martwa komórka ma dokładnie 3 sąsiadów 4. Typ sąsiedztwa: sąsiedztwo Moore a
23 Typowe struktury automatów 2-D Typ I obiekty statyczne Typ III obiekty ruchome Typ II oscylatory Typ IV żyjące komórki IVa działo (emituje szybowce) IVb parowiec IVc hodowla Typ V obiekty niestabilne
24 Automaty 1-D (Wolfram) Jednowymiarowa sieć komórek z periodycznymi warunkami brzegowymi Każda komórka ma dwóch sąsiadów Każda komórka znajduje się w jednym z dwu stanów (np. 0, 1 OFF i ON )
25 Klasyfikacja automatów 1-D (CAR Cellular Automata Rule) Przyszły stan komórki określony jest przez: aktualny stan komórki stan jej sąsiadów Tryplet Typ sąsiedztwa Kolejny krok 2 8 =256 reguł CAR = = = = 106
26 Przykład CAR30 step 1: step 2: step 3: step 4: step 5: step 6: step 7: step 8: step 9: step 10:
27 Klasy automatów komórkowych (Wolfram) Klasa 1: po skończonej liczbie kroków AK zmierza do osiągnięcia określonego stanu wychodząc z niemal każdych warunków początkowych Klasa 2: AK wytwarza struktury powtarzające się periodycznie lub stabilne Klasa 3: prawie dla wszystkich warunków początkowych AK zmierza do struktur aperiodycznych (chaotycznych), których statystyczne właściwości upodabniają się do struktur początkowych (samopodobieństwo fraktalne) Klasa 4: bardziej złożona; po skończonej liczbie kroków AK zwykle wymiera; może pozostać jedynie kilka stabilnych lub periodycznych struktur; pomieszanie porządku i przypadkowości
28 CAR kroków
29 CAR kroków
30 CAR kroków
31 CAR kroków
32 Złożoność automatów komórkowych (przykład: sąsiedztwo Moore'a; 2 stany) Dla 1-D AK: 2 3 = 8 możliwych "typów sąsiedztwa" 2 8 = 256 możliwych reguł rozwoju Dla 2-D AK: 2 9 = 512 możliwych "typów sąsiedztwa" możliwych reguł rozwoju (GoL) Dla 3-D AK: 2 27 = możliwych "typów sąsiedztwa" możliwych reguł rozwoju
33 Wszechświat (liczby dla porównania) Promień Wszechświata: R min lat św m Gęstość materii: ρ kg/m 3 (tylko 4% materii 0.25 atomów na m 3 ) (max. 6 atomów na m 3 wliczając ciemną materię) Ilość atomów we Wszechświecie: N π R n = N ( ) 3
34 Automaty Jednowymiarowe (1-D)
35 Automaty Dwuwymiarowe (2-D)
36 Wirtualne mrówki Langton a 1. Zacznij w dowolnym punkcie płaszczyzny euklidesowej 2. Wykonaj krok naprzód 3. Jeżeli stoisz na polu białym pokoloruj je na czerwono i wykonaj zwrot o 90 w prawo 4. Jeżeli stoisz na polu czerwonym pokoloruj je na biało i wykonaj zwrot o 90 w lewo 5. Przejdź do kroku 2 i powtarzaj dowolną ilość iteracji
37 Mrówki Langton a - przykład
38 Mrówki Langton a - przykład Pierwsze iteracji wydaje się być chaotyczne. W końcu mrówki formują ścieżkę it it it.
39 Optymalizacja drogi (Marco Dorigo) a) Mrówki podążają z A do E. b) Ustawiamy przeszkodę; mrówka może ją obejść z równym prawdopodobieństwem c) Na krótszej ścieżce mrówki zostawiają więcej feromonu
40 Optymalizacja drogi - zastosowanie
41
42
43
44 Płatki śniegu - symulacje na sieci heksagonalnej S. Wolfram A New Kind of Science, Wolfram Media, Champaign 2002
45 Co mogą automaty komórkowe? Modelować układy stabilne okresowe chaotyczne złożone Tworzyć struktury samo-powielające się (organizmy żywe?) Emulować maszynę Turinga (a więc i rozwiązać dowolne zagadnienie algorytmizowalne) Efektywnie rozwiązywać niektóre złożone zagadnienia obliczeniowe (np. problem komiwojażera i mrówcze ścieżki ) Zaleta: są naturalne dla komputerów (naturalnie dyskretne)
46 Czy rzeczywiście nowe oblicze nauki? S. Wolfram A New Kind of Science, Wolfram Media, Champaign 2002 Wolfram: Świat jako automat komórkowy (złożoność wynikająca z prostych reguł) fizyka biologia kryptografia ekonomia Wątpliwości: arbitralność wyboru automatu brak mocy predykcyjnej (opis jakościowy) Zalety: prostota modeli możliwość praktycznych zastosowań Co z opisem świata?
47 Czy rzeczywiście nowe oblicze nauki? S. Wolfram A New Kind of Science, Wolfram Media, Champaign 2002 Wolfram: Świat jako automat komórkowy (złożoność wynikająca z prostych reguł) fizyka biologia kryptografia ekonomia Wątpliwości: arbitralność wyboru automatu brak mocy predykcyjnej (opis jakościowy) Zalety: prostota modeli możliwość praktycznych zastosowań Co z opisem świata?
Automaty komórkowe. Katarzyna Sznajd-Weron
Automaty komórkowe Katarzyna Sznajd-Weron Trochę historii CA (Cellular Automata) Koniec lat 40-tych John von Neuman maszyna z mechanizmem samopowielania Sugestia Ulama 1952 dyskretny układ komórek dyskretne
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 02 Jarosław Miszczak IITiS PAN Gliwice 06/10/2016 1 / 31 Czego dowiedzieliśmy się na poprzednim wykładzie? 1... 2... 3... 2 / 31 1 2 3 3 / 31 to jeden z pierwszych
Modelowanie wieloskalowe. Automaty Komórkowe - podstawy
Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Modelowanie wieloskalowe. Automaty Komórkowe - podstawy
Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl
Układy dynamiczne Chaos deterministyczny
Układy dynamiczne Chaos deterministyczny Proste iteracje odwzorowań: Funkcja liniowa Funkcja logistyczna chaos deterministyczny automaty komórkowe Ewolucja układu dynamicznego Rozwój w czasie układu dynamicznego
Ruch drogowy, korki uliczne - czy fizyk może coś na to poradzić?
Ruch drogowy, korki uliczne - czy fizyk może coś na to poradzić? KNF Migacz, Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski 16-18 listopada 2007 Spis treści Spis treści 1 Spis treści 1 2 Spis treści
Podręcznik. Model czy teoria
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 58 92 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Od maszyn Turinga do automatów komórkowych Jarosław Miszczak IITiS PAN Gliwice 03/03/2016 1 / 16 1 2 3 Krótka historia Znaczenie 2 / 16 Czego dowiedzieliśmy się
AUTOMATY KOMÓRKOWE. Symulacje komputerowe (11) Sławomir Kulesza
Sławomir Kulesza kulesza@matman.uwm.edu.pl Symulacje komputerowe (11) AUTOMATY KOMÓRKOWE Wykład dla studentów Informatyki (1 rok MU) Ostatnia zmiana: 1.06.2012 (ver. 3.13) UKŁADY ZŁOŻONE Wszelki rozwój
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Turing i jego maszyny
Turing Magdalena Lewandowska Politechnika Śląska, wydział MS, semestr VI 20 kwietnia 2016 1 Kim był Alan Turing? Biografia 2 3 Mrówka Langtona Bomba Turinga 4 Biografia Kim był Alan Turing? Biografia Alan
ŻYCIE I EWOLUCJA. w komputerze. czwartek, 23 maja 13
ŻYCIE I EWOLUCJA w komputerze CO TO JEST ŻYCIE? CO TO JEST EWOLUCJA? CO TO JEST ŻYCIE? Trudno zdefiniować jednoznacznie co to jest życie Łatwiej podać cechy charakteryzujące organizmy (niekoniecznie pojedyncze
Symulacje komputerowe
Fizyka w modelowaniu i symulacjach komputerowych Jacek Matulewski (e-mail: jacek@fizyka.umk.pl) http://www.fizyka.umk.pl/~jacek/dydaktyka/modsym/ Symulacje komputerowe Automaty komórkowe Wersja: 6 maja
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
Tworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Wykład 11 O czym dzisiaj? labirynty, dużo labiryntów; automaty komórkowe; algorytmy do budowy labiryntów; algorytmy do szukania wyjścia z labiryntów; Blueprints i drzewa zachowań
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych
Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl tel. 022
Podręcznik. Przykład 1: Wyborcy
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 5892 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula
Modelowanie Wieloskalowe. Automaty Komórkowe w Inżynierii Materiałowej
Modelowanie Wieloskalowe Automaty Komórkowe w Inżynierii Materiałowej Dr inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p.
Powstanie gry Opis reguł gry Reguły według Conwaya Elementy występujące w grze Modyfikacje gry Charakterystyka automatu komórkowego Gra w Życie
Game of life Spis treści Powstanie gry Opis reguł gry Reguły według Conwaya Elementy występujące w grze Modyfikacje gry Charakterystyka automatu komórkowego Gra w Życie Powstanie gry Game of life (Gra
Prawdopodobieństwo geometryczne
Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 03 (uzupełnienie Wykładu 02) Jarosław Miszczak IITiS PAN Gliwice 31/03/2016 1 / 17 1 2 / 17 Dynamika populacji Równania Lotki-Voltery opisują model drapieżnik-ofiara.
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka w informatyce Rocznik: 2013/2014 Język wykładowy: Polski
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2013/2014 Język wykładowy: Polski Semestr
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2013/2014 Język wykładowy: Polski
W dowolnym kwadracie 3x3 ustawiamy komórki na palące się (stan 3). Program powinien pokazywać ewolucję pożaru lasu.
1. Symulacja pożaru lasu ver. 1 Las reprezentowany jest przez macierz 100x100. W lesie występują dwa rodzaje drzew: liściaste i iglaste. Przyjmijmy, że prostokąt A(1:50,1:100) wypełniony jest drzewami
O RÓŻNYCH SPOSOBACH ROZUMIENIA ANALOGOWOŚCI W INFORMATYCE
Filozofia w informatyce, Kraków, 17-18 listopada 2016 O RÓŻNYCH SPOSOBACH ROZUMIENIA ANALOGOWOŚCI W INFORMATYCE Paweł Stacewicz Politechnika Warszawska Analogowe? płyta analogowa telewizja analogowa dawne
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
prawda symbol WIEDZA DANE komunikat fałsz liczba INFORMACJA (nie tyko w informatyce) kod znak wiadomość ENTROPIA forma przekaz
WIEDZA prawda komunikat symbol DANE fałsz kod INFORMACJA (nie tyko w informatyce) liczba znak forma ENTROPIA przekaz wiadomość Czy żyjemy w erze informacji? TAK Bo używamy nowego rodzaju maszyn maszyn
Studia I stopnia kierunek: chemia Załącznik nr 3
Studia I stopnia kierunek: chemia Załącznik nr 3 Matryca efektów kształcenia określa relacje między efektami kształcenia zdefiniowanymi dla programu kształcenia (efektami kierunkowymi) i efektami kształcenia
Algorytm Grovera. Kwantowe przeszukiwanie zbiorów. Robert Nowotniak
Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka 13 listopada 2007 Plan wystapienia 1 Informatyka Kwantowa podstawy 2 Opis problemu (przeszukiwanie zbioru) 3 Intuicyjna
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2014/2015 Język wykładowy: Polski Semestr
CZYM SĄ OBLICZENIA NAT A URALNE?
CZYM SĄ OBLICZENIA NATURALNE? Co to znaczy obliczać (to compute)? Co to znaczy obliczać (to compute)? wykonywać operacje na liczbach? (komputer = maszyna licząca) wyznaczać wartości pewnych funkcji? (program
S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)
Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Jest to technika probabilistyczna rozwiązywania problemów obliczeniowych, które mogą zostać sprowadzone do problemu znalezienie
Ramowy Program Specjalizacji MODELOWANIE MATEMATYCZNE i KOMPUTEROWE PROCESÓW FIZYCZNYCH Studia Specjalistyczne (III etap)
Ramowy Program Specjalizacji MODELOWANIE MATEMATYCZNE i KOMPUTEROWE PROCESÓW FIZYCZNYCH Studia Specjalistyczne (III etap) Z uwagi na ogólno wydziałowy charakter specjalizacji i możliwość wykonywania prac
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 00 Metainformacje i wprowadzenie do tematyki Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 19 1 Metainformacje Prowadzący, terminy, i.t.p. Cele wykładu Zasady
Informacja w perspektywie obliczeniowej. Informacje, liczby i obliczenia
Informacja w perspektywie obliczeniowej Informacje, liczby i obliczenia Cztery punkty odniesienia (dla pojęcia informacji) ŚWIAT ontologia fizyka UMYSŁ psychologia epistemologia JĘZYK lingwistyka nauki
Algorytm. Krótka historia algorytmów
Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne
Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia
Studia pierwszego stopnia I rok Matematyka dyskretna 30 30 Egzamin 5 Analiza matematyczna 30 30 Egzamin 5 Algebra liniowa 30 30 Egzamin 5 Statystyka i rachunek prawdopodobieństwa 30 30 Egzamin 5 Opracowywanie
MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność
MATERIA ciała stałe - kryształy - ciała bezpostaciowe (amorficzne) - ciecze - gazy KRYSZTAŁY Periodyczność Kryształ (idealny) struktura zbudowana z powtarzających się w przestrzeni periodycznie identycznych
oności. Zastosowanie modelowania Agent-based Computational Economics w nauczaniu zdalnym
Ekonomia złożonoz oności. Zastosowanie modelowania Agent-based Computational Economics w nauczaniu zdalnym Tomasz Kopczewski Wydział Nauk Ekonomicznych, Uniwersytet Warszawski Mikroekonomia Praktyka wykładania:
Naukowiec NASA zasugerował, że żyjemy w sztucznej rzeczywistości stworzonej przez zaawansowaną obcą cywilizację
Naukowiec NASA zasugerował, że żyjemy w sztucznej rzeczywistości stworzonej przez zaawansowaną obcą cywilizację Coraz więcej dowodów wskazuje na to, że nasza rzeczywistość nie jest tak realna jak wydaje
Efekt kształcenia. Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną w zakresie algorytmów i ich złożoności obliczeniowej.
Efekty dla studiów pierwszego stopnia profil ogólnoakademicki na kierunku Informatyka w języku polskim i w języku angielskim (Computer Science) na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie-
INFORMATYKA POZIOM ROZSZERZONY
EGZAMIN MATURALNY W ROKU SZKOLNYM 2015/2016 FORMUŁA DO 2014 ( STARA MATURA ) INFORMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-R1, R2 MAJ 2016 Uwaga: Akceptowane są wszystkie odpowiedzi
INFORMATYKA POZIOM ROZSZERZONY
EGZAMIN MATURALNY W ROKU SZKOLNYM 2015/2016 FORMUŁA DO 2014 ( STARA MATURA ) INFORMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-R1, R2 MAJ 2016 Uwaga: Akceptowane są wszystkie odpowiedzi
Algorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
Algorytmy i schematy blokowe
Algorytmy i schematy blokowe Algorytm dokładny przepis podający sposób rozwiązania określonego zadania w skończonej liczbie kroków; zbiór poleceń odnoszących się do pewnych obiektów, ze wskazaniem porządku,
Elementy teorii powierzchni metali
Prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład dla studentów fizyki Rok akademicki 2017/18 (30 godz.) Wykład 1 Plan wykładu Struktura periodyczna kryształów, sieć odwrotna Struktura
FRAKTALE. nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę, bądź za pomocą
Małgorzata Mielniczuk FRAKTALE Poniższy referat będzie traktować o fraktalach, majestatycznych wzorach, których kręte linie nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę,
Scenariusz lekcji Ozobot w klasie: Spacer losowy po układzie współrzędnych
Scenariusz lekcji Ozobot w klasie: Spacer losowy po układzie współrzędnych Opracowanie scenariusza: Richard Born Adaptacja scenariusza na język polski: mgr Piotr Szlagor Tematyka: Informatyka, Matematyka,
Fraktale deterministyczne i stochastyczne. Katarzyna Weron Katedra Fizyki Teoretycznej
Fraktale deterministyczne i stochastyczne Katarzyna Weron Katedra Fizyki Teoretycznej Szare i Zielone Scena z Fausta Goethego (1749-1832), Mefistofeles do doktora (2038-2039): Wszelka, mój bracie, teoria
Złożoność obliczeniowa zadania, zestaw 2
Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze
Symulacje komputerowe w fizyce. Wykład 13: Cztery linijki kodu
Symulacje komputerowe w fizyce Wykład 13: Cztery linijki kodu Automaty komórkowe Historia The general and logical theory of automata, 1948 (badania nad możliwością konstrukcji samo-powielającej się automatu)
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Spis treści. Wstęp 13. Część I. UKŁADY REDUKCJI DRGAŃ Wykaz oznaczeń 18. Literatura Wprowadzenie do części I 22
Spis treści Wstęp 13 Literatura - 15 Część I. UKŁADY REDUKCJI DRGAŃ - 17 Wykaz oznaczeń 18 1. Wprowadzenie do części I 22 2. Teoretyczne podstawy opisu i analizy układów wibroizolacji maszyn 30 2.1. Rodzaje
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
Umysł Komputer Świat TEX output: :17 strona: 1
Umysł Komputer Świat INFORMATYKA I FILOZOFIA Witold Marciszewski Paweł Stacewicz Umysł Komputer Świat O zagadce umysłu z informatycznego punktu widzenia E Warszawa Akademicka Oficyna Wydawnicza EXIT 2011
Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka
Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej
Andrzej Rzepkowski Teoria przeciwieństw. Copyright by Andrzej Rzepkowski, 2016 Copyright by Wydawnictwo Psychoskok Sp. z o.o.
Andrzej Rzepkowski Teoria przeciwieństw Copyright by Andrzej Rzepkowski, 2016 Copyright by Wydawnictwo Psychoskok Sp. z o.o., 2016 Wszelkie prawa zastrzeżone. Żadna część niniejszej publikacji nie może
ECTS Razem 30 Godz. 330
3-letnie stacjonarne studia licencjackie kier. Matematyka profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Algebra liniowa z geometrią analityczną I 7 30 30 E Analiza matematyczna I 13 60 60 E Technologie
mgr Roman Rusin nauczyciel fizyki w Zespole Szkół Ponadgimnazjalnych Nr 1 w Kwidzynie
Indywidualny plan nauczania z przedmiotu Fizyka, opracowany na podstawie programu,,ciekawi świata autorstwa Adama Ogazy, nr w Szkolnym Zestawie Programów Nauczania 12/NPP/ZSP1/2012 dla kl. I TL a na rok
Układy stochastyczne
Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.
Mateusz Żyliński Tadeusz Włodarkiewicz. WireWorld. Zebranie informacji dotyczących tematyki projektu oraz przedstawienie koncepcji realizacji projektu
Mateusz Żyliński Tadeusz Włodarkiewicz WireWorld Zebranie informacji dotyczących tematyki projektu oraz przedstawienie koncepcji realizacji projektu 1 I. Informacje ogólne A utomat komórkowy to system
Algorytmy sztucznej inteligencji
www.math.uni.lodz.pl/ radmat Przeszukiwanie z ograniczeniami Zagadnienie przeszukiwania z ograniczeniami stanowi grupę problemów przeszukiwania w przestrzeni stanów, które składa się ze: 1 skończonego
Optymalizacja. Przeszukiwanie lokalne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x
Ćwiczenia z przetwarzania tablic 2D
Ćwiczenia z przetwarzania tablic 2D Wyświetlanie tablic 2D Jako wstęp do przetwarzania obrazów w pythonie przećwiczmy podstawowe operacje na dwuwymiarowych tablicach numpy w postaci których będziemy takie
O REDUKCJI U-INFORMACJI
O REDUKCJI U-INFORMACJI DO DANYCH Cztery punkty odniesienia (dla pojęcia informacji) ŚWIAT ontologia fizyka UMYSŁ psychologia epistemologia JĘZYK lingwistyka nauki o komunikacji KOMPUTER informatyka elektronika
Wstęp do rachunku prawdopodobieństwa. Cz. 1 / William Feller. wyd. 6, dodr. 4. Warszawa, Spis treści
Wstęp do rachunku prawdopodobieństwa. Cz. 1 / William Feller. wyd. 6, dodr. 4. Warszawa, 2012 Spis treści Od Wydawnictwa 5 Z przedmowy autora do wydania pierwszego 7 Z przedmowy autora do wydania drugiego
Podstawy metodologiczne symulacji
Sławomir Kulesza kulesza@matman.uwm.edu.pl Symulacje komputerowe (05) Podstawy metodologiczne symulacji Wykład dla studentów Informatyki Ostatnia zmiana: 26 marca 2015 (ver. 4.1) Spirala symulacji optymistycznie
Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie.
Teoria ewolucji Podstawowe pojęcia. Wspólne pochodzenie. Informacje Kontakt: Paweł Golik Instytut Genetyki i Biotechnologii, Pawińskiego 5A pgolik@igib.uw.edu.pl Informacje, materiały: http://www.igib.uw.edu.pl/
Technologie Informacyjne
POLITECHNIKA KRAKOWSKA - WIEiK - KATEDRA AUTOMATYKI Technologie Informacyjne www.pk.edu.pl/~zk/ti_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład: Generacja liczb losowych Problem generacji
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII Kierunek Matematyka Studia stacjonarne i niestacjonarne I i II stopnia Organizacja roku akademickiego 2017/2018 Studia stacjonarne I
ATOLL. Wykonali: Aleksandra Kuchta, Łukasz Wójcik, Sztuczna Inteligencja, Semestr trzeci, Kierunek Informatyka, Wydział Informatyki i Zarządzania,
Sztuczna Inteligencja, Semestr trzeci, Kierunek Informatyka, Wydział Informatyki i Zarządzania, Politechnika Poznańska ATOLL Wykonali: Aleksandra Kuchta, WFT, PP, nr 76690, rok IV Łukasz Wójcik, WIiZ,
Podręcznik. Wzór Shannona
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 5892 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula
Projektowanie Wirtualne bloki tematyczne PW I
Podstawowe zagadnienia egzaminacyjne Projektowanie Wirtualne - część teoretyczna Projektowanie Wirtualne bloki tematyczne PW I 1. Projektowanie wirtualne specyfika procesu projektowania wirtualnego, podstawowe
Faculty of Applied Physics and Mathematics -> Department of Solid State Physics. dydaktycznych, objętych planem studiów
Nazwa i kod przedmiotu Kierunek studiów Mechanika kwantowa, NAN1B0051 Nanotechnologia Poziom studiów I stopnia - inżynierskie Typ przedmiotu obowiąkowy Forma studiów stacjonarne Sposób realizacji na uczelni
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Teoria ergodyczna. seminarium monograficzne dla studentów matematyki. dr hab. Krzysztof Barański i prof. dr hab. Anna Zdunik. rok akad.
Teoria ergodyczna seminarium monograficzne dla studentów matematyki dr hab. Krzysztof Barański i prof. dr hab. Anna Zdunik rok akad. 2013/14 Teoria ergodyczna Teoria ergodyczna Teoria ergodyczna zajmuje
Elementy modelowania matematycznego
Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny
Fizyka Ciała Stałego
Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,
EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW INFORMATYKA. STUDIA PIERWSZEGO STOPNIA - PROFIL OGÓLNOAKADEMICKI
EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW INFORMATYKA. STUDIA PIERWSZEGO STOPNIA - PROFIL OGÓLNOAKADEMICKI Umiejscowienie kierunku w obszarze kształcenia: Kierunek studiów informatyka należy do obszaru kształcenia
CZY INFORMATYKOM MUSI WYSTARCZYĆ NIESKOŃCZONOŚĆ POTENCJALNA?
Filozofia w matematyce i informatyce, Poznań, 9-10 grudnia 2016 CZY INFORMATYKOM MUSI WYSTARCZYĆ NIESKOŃCZONOŚĆ POTENCJALNA? Paweł Stacewicz Politechnika Warszawska Nieskończoność a granice informatyki
Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.
Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Jedną z metod symulacji dynamiki cieczy jest zastosowanie metody siatkowej Boltzmanna.
Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop
Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop. 2015 Spis treści Przedmowa do wydania pierwszego 7 Przedmowa do wydania drugiego 9
STRUKTURA KRYSTALICZNA
PODSTAWY KRYSTALOGRAFII Struktura krystaliczna Wektory translacji sieci Komórka elementarna Komórka elementarna Wignera-Seitza Jednostkowy element struktury Sieci Bravais go 2D Sieci przestrzenne Bravais
Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji
Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW Edukacja przez badania Hoża 69: 1921-2014 r. 2014-09-25
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
Dwuletnie studia II stopnia na kierunku fizyka, specjalność Geofizyka, specjalizacje: Fizyka atmosfery; Fizyka Ziemi i planet; Fizyka środowiska
Dwuletnie studia II stopnia na kierunku fizyka, specjalność Geofizyka, specjalizacje: Fizyka atmosfery; Fizyka Ziemi i planet; Fizyka środowiska 1. CHARAKTERYSTYKA STUDIÓW Celem specjalności Geofizyka,
Elementy Teorii Obliczeń
Wykład 2 Instytut Matematyki i Informatyki Akademia Jana Długosza w Częstochowie 10 stycznia 2009 Maszyna Turinga uwagi wstępne Maszyna Turinga (1936 r.) to jedno z najpiękniejszych i najbardziej intrygujacych
JAKIEGO RODZAJU NAUKĄ JEST
JAKIEGO RODZAJU NAUKĄ JEST INFORMATYKA? Computer Science czy Informatyka? Computer Science czy Informatyka? RACZEJ COMPUTER SCIENCE bo: dziedzina ta zaistniała na dobre wraz z wynalezieniem komputerów
TEORIA WĘZŁÓW. Natalia Grzechnik 10B2
TEORIA WĘZŁÓW Natalia Grzechnik 10B2 Słowem wstępu zastosowanie teorii węzłów Biologiczna rola węzłów w białkach Wyznaczanie topologii białek Kryptografia Biofizyka Opis struktur DNA, RNA, białek DNA a
Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku.
Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Uogólnienie na przeliczalnie nieskończone przestrzenie stanów zostało opracowane
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE