MODELOWANIE RZECZYWISTOŚCI
|
|
- Krystian Arkadiusz Wojciechowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej tel
2 Podręcznik Iwo Białynicki-Birula Iwona Białynicka-Birula
3 Modelowanie społeczeństwa Modelowanie społeczeństwa jest znacznie trudniejsze niż modelowanie zjawisk fizycznych, chemicznych, czy biologicznych Ludzie są znacznie mniej przewidywalni niż obiekty nieożywione Człowiek jest niezwykle złożonym tworem: reaguje na olbrzymią liczbę bodźców w niezwykle złożony sposób
4 Modelowanie społeczeństwa Jedynie metody statystyczne dają szansę na udane modelowanie społeczności Jest tak jak z rzutami monetą: nie potrafimy przewidzieć wyniku jednego rzutu, ale możemy przewidzieć, że około połowy rzutów to będą orły Przypadkowość zachowań poszczególnych osób ułatwia opis populacji
5 Modelowanie społeczeństwa Przewidywanie dynamiki społeczeństwa jest jak przewidywanie pogody: długoterminowe prognozy są niewiarygodne
6 Problemy modelowania społecznego Interpretacja wyników ankiet ludzie niechętnie przyznają się do niemodnych poglądów Duża zmienność opinii jednostkowych Żeby modelować społeczeństwo, trzeba znać się zarówno na modelowaniu jak i na procesach społecznych
7 Techniki używane w modelowaniu Metody statystyczne (średnie zachowanie) Automaty komórkowe (wielostanowe) Sieci (grafy) Układy dynamiczne Teoria gier Sieci neuronowe...
8 Znaczenie komputerów Ze względu na brak odpowiednich modeli matematycznych układów społecznych, komputery są niezbędne w modelowaniu Matematyka jest niezbędna, gdyż dostarcza języka do formułowania i opisywania problemów
9 Konstrukcja modeli społeczności Decydujemy, co jest elementarnym blokiem modelu (człowiek, rodzina, grupa społeczna) Wybieramy aspekty elementu, które chcemy uwzględnić w modelu. Ciekawy model dostajemy kiedy mamy kilka aspektów i badamy zależności między nimi Ustalamy reguły ewolucji układu: jak każdy element wpływa na inne elementy i na swój przyszły stan
10 Niebezpieczeństwa Unikać trywializacji: jeżeli wsadzimy do symulacji przywódców, którzy przyciągają inne elementy, nie potrzebujemy komputera, by stwierdzić, że pojawią się klastry Wartościowe modele przewidują zjawiska, które nie wynikają w oczywisty sposób z początkowych założeń modelu
11 Model Schellinga Model segregacji rasowej Pomimo jego prostocie wyniki nie są zupełnie trywialne Mamy grupę osobników, którzy przenoszą się, jeżeli procent sąsiadów innej rasy w najbliższym sąsiedztwie przekracza 30% W tym modelu równomiernie wymieszane społeczeństwo rozwarstwia się na czyste etnicznie grupy
12 Szczegóły modelu Schellinga Jednostki żyją na dwuwymiarowej planszy. W każdej komórce może być najwyżej jeden osobnik. Każdy osobnik należy do jednej z dwóch ras. W każdym kroku osobnik wybiera kierunek, w którym patrzy (płn, płd, wsch, zach). Jeżeli na daną pustą komórkę patrzy dokładnie jeden osobnik, może tam się przenieść. Przenosi się wtedy i tylko wtedy, gdy stosunek liczby osobników innej rasy do liczby wszystkich osobników w jego okolicy (9 komórek) jest większy niż t. Biały puste komórki niebieski, czerwony dwie rasy
13 Pasteur: Model propagacji infekcji Każdy osobnik na planszy ma pewien poziom bakterii we krwi pomiędzy 0 a 100% Osobniki mogą przejść na pustą komórkę na takich samych zasadach jak w Schellingu W każdym kroku układ immunologiczny organizmu niszczy r% bakterii we krwi Jeżeli poziom bakterii w organizmie przekracza t, organizmu nie można zarazić (ma antyciała) Jeżeli organizm może być zarażony, prawdopodobieństwo jego zarażenia jest takie jak poziom bakterii organizmu, na który patrzy Po infekcji poziom bakterii skacze do 100% Białe puste komórki, czerwone 100%, niebieskie 0% bakterii
14 Socjodynamika Najlepsze efekty w modelowaniu zjawisk społecznych osiągniemy, kiedy mamy wiele danych, np. w badaniach migracji ludzkich Takie badania nazywa się socjodynamiką Wolfgang Weidlich znalazł złożony układ równań opisujących procesy migracji pomiędzy różnymi obszarami kraju Przewidywania płynące z tych równań można wykorzystywać np. do planowania rozwoju infrastruktury kraju Inną dziedziną, gdzie jest dostępnych wiele danych, jest giełda, którą również modeluje się przy użyciu podobnych technik
15 Problemy modelowania społecznego Nie ma modelu, który by kompletnie ilustrował wybrany aspekt zachowań społecznych i pozwalał na testowalne przewidywania (Układ Słoneczny) Badanie jednostki/grupy zmienia stan obiektu, np. wypełnianie ankiety można wpłynąć na zmianę naszych poglądów
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Podręcznik. Model czy teoria
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 58 92 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Podręcznik. Przykład 1: Wyborcy
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 5892 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula
Podręcznik. Wzór Shannona
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 5892 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula
Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe
Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe Empik każdego inspiruje inaczej Aleksander Puszkin (1799 1837) Andrey (Andrei) Andreyevich Markov (1856 1922) Wśród 20 tysięcy początkowych
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Modelowanie wieloskalowe. Automaty Komórkowe - podstawy
Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa
Kampus Ochota 18 kwietnia 2015 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Andrey (Andrei)
Układy dynamiczne Chaos deterministyczny
Układy dynamiczne Chaos deterministyczny Proste iteracje odwzorowań: Funkcja liniowa Funkcja logistyczna chaos deterministyczny automaty komórkowe Ewolucja układu dynamicznego Rozwój w czasie układu dynamicznego
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa
Po co nam matematyka? 7 kwietnia 2016 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Empik
ODWZOROWANIE RZECZYWISTOŚCI
ODWZOROWANIE RZECZYWISTOŚCI RZECZYWISTOŚĆ RZECZYWISTOŚĆ OBIEKTYWNA Ocena subiektywna OPIS RZECZYWISTOŚCI Odwzorowanie rzeczywistości zależy w dużej mierze od możliwości i nastawienia człowieka do otoczenia
Modelowanie wieloskalowe. Automaty Komórkowe - podstawy
Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl
Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych
Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl tel. 022
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 03 (uzupełnienie Wykładu 02) Jarosław Miszczak IITiS PAN Gliwice 31/03/2016 1 / 17 1 2 / 17 Dynamika populacji Równania Lotki-Voltery opisują model drapieżnik-ofiara.
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 02 Jarosław Miszczak IITiS PAN Gliwice 06/10/2016 1 / 31 Czego dowiedzieliśmy się na poprzednim wykładzie? 1... 2... 3... 2 / 31 1 2 3 3 / 31 to jeden z pierwszych
Algorytmy sztucznej inteligencji
www.math.uni.lodz.pl/ radmat Przeszukiwanie z ograniczeniami Zagadnienie przeszukiwania z ograniczeniami stanowi grupę problemów przeszukiwania w przestrzeni stanów, które składa się ze: 1 skończonego
Mateusz Żyliński Tadeusz Włodarkiewicz. WireWorld. Zebranie informacji dotyczących tematyki projektu oraz przedstawienie koncepcji realizacji projektu
Mateusz Żyliński Tadeusz Włodarkiewicz WireWorld Zebranie informacji dotyczących tematyki projektu oraz przedstawienie koncepcji realizacji projektu 1 I. Informacje ogólne A utomat komórkowy to system
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 25 lutego 2019 Magdalena Alama-Bućko Statystyka matematyczna 25 lutego 2019 1 / 18 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45
Pomyłka Lincolna Lekcje z wykopem
Pomyłka Lincolna Lekcje z wykopem Scenariusz lekcji dla nauczyciela Pomyłka Lincolna Opis: Anegdota o zadaniu postawionym przed Lincolnem prowadzi do analizy modelu wzrostu liczby ludności zgodnego z ciągiem
Rachunek prawdopodobieństwa
Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry
Opis kierunkowych efektów kształcenia w obszarze nauk przyrodniczych na I stopniu kierunku BIOLOGIA
Opis kierunkowych efektów kształcenia w obszarze nauk przyrodniczych na I stopniu kierunku BIOLOGIA Umiejscowienie kierunku w obszarze kształcenia Kierunek studiów BIOLOGIA o profilu ogólnoakademickim
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.0. Wstęp Katarzyna Rybarczyk-Krzywdzińska Wstęp Dlaczego prawdopodobieństwo klasyczne nie wystarcza? Jak opisać grę w ruletkę,
CZĘŚĆ HUMANISTYCZNA Z ZAKRESU HISTORII I WIEDZY O SPOŁECZEŃSTWIE
Informacje o wynikach egzaminu gimnazjalnego w 214 r. przeprowadzonego w Zespole Szkół im. Ignacego Łukasiewicza w Policach Gimnazjum Nr 6 z Oddziałami Dwujęzycznymi Do egzaminu gimnazjalnego w Zespole
Dwuletnie studia II stopnia na kierunku fizyka, specjalność Geofizyka, specjalizacje: Fizyka atmosfery; Fizyka Ziemi i planet; Fizyka środowiska
Dwuletnie studia II stopnia na kierunku fizyka, specjalność Geofizyka, specjalizacje: Fizyka atmosfery; Fizyka Ziemi i planet; Fizyka środowiska 1. CHARAKTERYSTYKA STUDIÓW Celem specjalności Geofizyka,
Prawdopodobieństwo geometryczne
Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo
Model Marczuka przebiegu infekcji.
Model Marczuka przebiegu infekcji. Karolina Szymaniuk 27 maja 2013 Karolina Szymaniuk () Model Marczuka przebiegu infekcji. 27 maja 2013 1 / 17 Substrat Związek chemiczny, który ulega przemianie w wyniku
Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest
określone Uchwałą Senatu Uniwersytetu Kazimierza Wielkiego Nr 156/2012/2013 z dnia 25 września 2013 r.
Załącznik Nr 5.1 do Uchwały Nr 156/2012/2013 Senatu UKW z dnia 25 września 2013 r. EFEKTY KSZTAŁCENIA określone Uchwałą Senatu Uniwersytetu Kazimierza Wielkiego Nr 156/2012/2013 z dnia 25 września 2013
Programowanie genetyczne, gra SNAKE
STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................
Halina Piotrowska. Rozwiązywanie problemów decyzyjnych w nauczaniu fizyki
Halina Piotrowska Rozwiązywanie problemów decyzyjnych w nauczaniu fizyki 1 Problemy decyzyjne pojawiają się podczas czynności wyboru działania. Rozwiązywanie problemów decyzyjnych składa się z całego szeregu
Wojny Coli - czyli siła reklamy na rynku oligopolicznym
Wojny Coli (Cola wars) - czyli siła reklamy na rynku oligopolicznym Maja Włoszczowska Promotor: Dr Rafał Weron Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wrocław, 26 stycznia 2008
ŻYCIE I EWOLUCJA. w komputerze. czwartek, 23 maja 13
ŻYCIE I EWOLUCJA w komputerze CO TO JEST ŻYCIE? CO TO JEST EWOLUCJA? CO TO JEST ŻYCIE? Trudno zdefiniować jednoznacznie co to jest życie Łatwiej podać cechy charakteryzujące organizmy (niekoniecznie pojedyncze
Modelowanie komputerowe w zagadnieniach środowiska. Strona:
Modelowanie komputerowe w zagadnieniach środowiska Wykład 30 godzin + Laboratorium 30 godzin Strona: http://www.icm.edu.pl/~aniat/modele/wdw1 Literatura Modelowanie Urszula Foryś, Matematyka w biologii,
Sieci Mobilne i Bezprzewodowe laboratorium 1
Sieci Mobilne i Bezprzewodowe laboratorium 1 Plan laboratoriów Teoria zdarzeń dyskretnych Modelowanie zdarzeń dyskretnych Symulacja zdarzeń dyskretnych Problem rozmieszczenia stacji raportujących i nieraportujących
Scenariusz lekcji Ozobot w klasie: Spacer losowy po układzie współrzędnych
Scenariusz lekcji Ozobot w klasie: Spacer losowy po układzie współrzędnych Opracowanie scenariusza: Richard Born Adaptacja scenariusza na język polski: mgr Piotr Szlagor Tematyka: Informatyka, Matematyka,
Z poprzedniego wykładu
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne
Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy
Definicje owanie i symulacja owanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano model, do
GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils
GRA Przykład 1) Zbiór graczy n = 2 myśliwych I= {1,,n} 2) Zbiór strategii S = {polować na jelenia, gonić zająca} S = {1,,m} 3) Wypłaty jeleń - zając - 10 utils 3 utils U i : S n R i=1,,n J Z J Z J 5 0
TEORIA ERGODYCZNA. Bartosz Frej Instytut Matematyki i Informatyki Politechniki Wrocławskiej
TEORIA ERGODYCZNA Bartosz Frej Instytut Matematyki i Informatyki Politechniki Wrocławskiej Przedmiot zainteresowania Teoria ergodyczna to dziedzina matematyki zajmująca się badaniem przekształceń określonych
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
Najprostszy schemat blokowy
Definicje Modelowanie i symulacja Modelowanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego układu rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano
Modelowanie systemów biomedycznych
Modelowanie systemów biomedycznych - automaty komórkowe (czy jest to "nowe oblicze nauki"?) Arkadiusz Mandowski Modelowanie... R. Tadeusiewicz (2008) Modelowanie... R. Tadeusiewicz (2008) Jak rozpoznać
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14
Badanie naukowe: CZY MĄDROŚĆ TŁUMU RZECZYWIŚCIE ISTNIEJE?
Badanie naukowe: CZY MĄDROŚĆ TŁUMU RZECZYWIŚCIE ISTNIEJE? Scientific research: IS CROWDSOURCING ACTUALLY REAL? Cele: - Sprawdzenie, czy zjawisko Mądrości Tłumu rzeczywiście działa w 3 różnych sytuacjach;
Zmienna losowa (wygrana w pojedynczej grze): (1, 0.5), ( 1, 0.5)
Przykład 0. Gra polega na jednokrotnym rzucie symetryczną monetą, przy czym wygrywamy 1 jeżeli wypadnie orzeł oraz przegrywamy 1 jeżeli wypadnie reszka. Nasz początkowy kapitał wynosi 5. Jakie jest prawdopodobieństwo,
Ramowy Program Specjalizacji MODELOWANIE MATEMATYCZNE i KOMPUTEROWE PROCESÓW FIZYCZNYCH Studia Specjalistyczne (III etap)
Ramowy Program Specjalizacji MODELOWANIE MATEMATYCZNE i KOMPUTEROWE PROCESÓW FIZYCZNYCH Studia Specjalistyczne (III etap) Z uwagi na ogólno wydziałowy charakter specjalizacji i możliwość wykonywania prac
Elementy modelowania matematycznego
Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny
Akademia Młodego Ekonomisty
Akademia Młodego Ekonomisty Ryzyko w procesie zarządzania dr Mirosław Wójciak Uniwersytet Ekonomiczny w Katowicach 27 lutego 2012 1 Gdzie spotykamy się z ryzykiem? Praktycznie w każdej dziedzinie życia.
P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)
Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Jakubowski, Sztencel:
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
2. Lesław Gajek, Marek Kałuszka, Wnioskowanie statystyczne. Modele i metody. Dla studentów.
Literatura:. Jerzy Greń, Statystyka matematyczna. Modele i zadania.. Lesław Gajek, Marek Kałuszka, Wnioskowanie statystyczne. Modele i metody. Dla studentów.. J. Koronacki, J. Mielniczuk, Statystyka dla
Cel: Uczeń, przy użyciu programu GeoGebra, stworzy model symetrii osiowej i pozna jej własności
Temat: Symetria osiowa z GeoGebra Cel: Uczeń, przy użyciu programu GeoGebra, stworzy model symetrii osiowej i pozna jej własności Podstawa programowa Informatyka IV. Wykorzystanie komputera oraz programów
TEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą
TEORIA GIER W NAUKACH SPOŁECZNYCH Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą Przypomnienie Gry w postaci macierzowej i ekstensywnej Gry o sumie zerowej i gry o sumie niezerowej Kryterium dominacji
1. CHARAKTERYSTYKA STUDIÓW 2. SYLWETKA ABSOLWENTA
Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Geofizyka, specjalizacje: Fizyka atmosfery; Fizyka Ziemi i planet; Fizyka środowiska 1. CHARAKTERYSTYKA STUDIÓW Celem specjalności
Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II
Ćwiczenia: Ukryte procesy Markowa lista kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II dr Jarosław Kotowicz Zadanie. Dany jest łańcuch Markowa, który może przyjmować wartości,,...,
KARTAKURSU. Efekty kształcenia dla kursu Student: W01wykazuje się znajomością podstawowych koncepcji, zasad, praw i teorii obowiązujących w fizyce
KARTAKURSU Nazwa Modelowanie zjawisk i procesów w przyrodzie Nazwa w j. ang. Kod Modelling of natural phenomena and processes Punktacja ECTS* 1 Koordynator Dr Dorota Sitko ZESPÓŁDYDAKTYCZNY: Dr Dorota
Rachunek prawdopodobieństwa- wykład 2
Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet
Zdarzenia losowe i prawdopodobieństwo
Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne. Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych Plan wystąpienia Co to jest sztuczna inteligencja? Pojęcie słabej
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Rola logiki w strukturze kondycji ludzkiego bytowania
Seminarium GLLI - 17 maja 2011 - Uniwersytet Opolski Rola logiki w strukturze kondycji ludzkiego bytowania Andrzej Grzegorczyk Poniższy tekst stanowi bardzo uproszczony spis treści omówionych w wykładzie.
zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.
Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie
ANALITYKA GOSPODARCZA, STUDIA LICENCJACKIE WIEDZA
ANALITYKA GOSPODARCZA, STUDIA LICENCJACKIE WIEDZA Ma podstawową wiedzę o charakterze nauk ekonomicznych oraz ich miejscu w AG1_W01 systemie nauk społecznych i w relacjach do innych nauk. Ma wiedzę o sposobach
MODELOWANIE I PROGNOZOWANIE ZAGROŻEŃ EPIDEMIOLOGICZNYCH
MODELOWANIE I PROGNOZOWANIE ZAGROŻEŃ EPIDEMIOLOGICZNYCH Epidemia - wystąpienie na danym obszarze zakażeń lub zachorowań na chorobę zakaźną w liczbie wyraźnie większej niż we wcześniejszym okresie albo
Teoria gier. Łukasz Balbus Anna Jaśkiewicz
Teoria gier Łukasz Balbus Anna Jaśkiewicz Teoria gier opisuje sytuacje w których zachodzi konflikt interesów. Znajduje zastosowanie w takich dziedzinach jak: Ekonomia Socjologia Politologia Psychologia
Temat: Konstrukcja prostej przechodzącej przez punkt A i prostopadłej do danej prostej k.
Temat: Konstrukcja prostej przechodzącej przez punkt A i prostopadłej do danej prostej k. Cel: Uczeń, przy użyciu programu GeoGebra, stworzy model konstrukcji prostej prostopadłej i wykorzysta go w zadaniach
Automaty komórkowe. Katarzyna Sznajd-Weron
Automaty komórkowe Katarzyna Sznajd-Weron Trochę historii CA (Cellular Automata) Koniec lat 40-tych John von Neuman maszyna z mechanizmem samopowielania Sugestia Ulama 1952 dyskretny układ komórek dyskretne
EFEKTY KSZTAŁCENIA ORAZ MACIERZE POKRYCIA KIERUNKU ANALITYKA GOSPODARCZA STUDIA LICENCJACKIE
EFEKTY KSZTAŁCENIA ORAZ MACIERZE POKRYCIA KIERUNKU ANALITYKA GOSPODARCZA STUDIA LICENCJACKIE ------------------------------------------------------------------------------------------------- WIEDZA AG1_W01
Deska Galtona. Adam Osękowski. Instytut Matematyki, Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski
a schemat Bernoulliego Instytut Matematyki, Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski XV Festiwal Nauki, 21 września 2011r. a schemat Bernoulliego Schemat Bernoulliego B(n, p)
XV FESTIWAL NAUKI 2011 WPROWADZENIE DO BIOCYBERNETYKI
XV FESTIWAL NAUKI 2011 WPROWADZENIE DO BIOCYBERNETYKI ZESPÓŁ APARATURY BIOCYBERNETYCZNEJ (http://www.ise.pw.edu.pl/index.php?id=138) STUDENCKIE KOŁO NAUKOWE CYBERNETYKI (http://cyber.ise.pw.edu.pl) INSTYTUT
Konspekt lekcji biologii w gimnazjum klasa I
mgr Piotr Oleksiak Gimnazjum nr.2 wopatowie. Temat. Cechy populacji biologicznej. Konspekt lekcji biologii w gimnazjum klasa I Zakres treści: Populacja cechy charakterystyczne: liczebność, zagęszczenie,
Model MULTIPOLES - narzędzie do prognozowania, projekcji i symulacji stanu i struktury ludności
Model MULTIPOLES - narzędzie do prognozowania, projekcji i symulacji stanu i struktury ludności Dorota Kupiszewska i Marek Kupiszewski Konferencja Perspektywy demograficzne Europy Instytut Statystyki i
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2013/2014 Język wykładowy: Polski Semestr
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2013/2014 Język wykładowy: Polski
Zestawienie wyników egzaminu maturalnego przeprowadzonego w latach w województwie pomorskim
O K E Gdańsk Zestawienie wyników egzaminu maturalnego przeprowadzonego w latach 2010-2014 w województwie pomorskim Podstawowe dane statystyczne Gdańsk, październik 2014 roku 1. Populacja zdających Tabela
Wykrywalność ptaków: metody szacowania i czynniki na nią wpływające
Wykrywalność ptaków: metody szacowania i czynniki na nią wpływające Przemysław Chylarecki Pracownia Badań Ornitologicznych MiIZ PAN Zadanie realizowane w ramach umowy nr OR.271.3.12.2015 z dnia 18 maja
Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Matematyczne i komputerowe modelowanie procesów fizycznych
Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Matematyczne i komputerowe modelowanie procesów fizycznych 1. CHARAKTERYSTYKA STUDIÓW Celem specjalności Matematyczne i komputerowe
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka w informatyce Rocznik: 2013/2014 Język wykładowy: Polski
WYKŁAD 3. DYNAMIKA ROZWOJU
WYKŁAD 3. DYNAMIKA ROZWOJU POPULACJI MODELE Z CZASEM DYSKRETNYM DR WIOLETA DROBIK- CZWARNO MODELE ZMIAN ZAGĘSZCZENIA POPULACJI Wyróżniamy modele: z czasem dyskretnym wykorzystujemy równania różnicowe z
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 26 lutego 2018 Magdalena Alama-Bućko Statystyka matematyczna 26 lutego 2018 1 / 16 Wykład : 10h (przez 10 tygodni po 45 minut) zaliczenie wykładu
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2014/2015 Język wykładowy: Polski Semestr
CZYM SĄ OBLICZENIA NAT A URALNE?
CZYM SĄ OBLICZENIA NATURALNE? Co to znaczy obliczać (to compute)? Co to znaczy obliczać (to compute)? wykonywać operacje na liczbach? (komputer = maszyna licząca) wyznaczać wartości pewnych funkcji? (program
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Od maszyn Turinga do automatów komórkowych Jarosław Miszczak IITiS PAN Gliwice 03/03/2016 1 / 16 1 2 3 Krótka historia Znaczenie 2 / 16 Czego dowiedzieliśmy się
Temat: Konstrukcja prostej przechodzącej przez punkt A i prostopadłej do danej prostej k.
Temat: Konstrukcja prostej przechodzącej przez punkt A i prostopadłej do danej prostej k. Cel: Uczeń, przy użyciu programu GeoGebra, stworzy model przestrzenny graniastosłupa i wykorzysta go w zadaniach
Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Metody fizyki w ekonomii (ekonofizyka)
Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Metody fizyki w ekonomii (ekonofizyka) 1. CHARAKTERYSTYKA STUDIÓW Celem kształcenia w ramach specjalności Metody fizyki w ekonomii
Symulacje komputerowe (1) WPROWADZENIE DO MOD/SYM
Sławomir Kulesza wmii.uwm.edu.pl/~kulesza Symulacje komputerowe (1) WPROWADZENIE DO MOD/SYM Wykład dla studentów Informatyki (I SMU) Ostatnia zmiana: 26.02.2015 (ver. 8.3) PROFIL ZAJĘĆ Modelowanie i rozwiązywanie
Zagrajmy w ekologię gra dydaktyczna.
1 Zagrajmy w ekologię gra dydaktyczna. Czas trwania zajęć: 45 minut Podstawowe pojęcia: - populacja, - gatunek, - łańcuch pokarmowy, - sieć pokarmowa, - poziom troficzny, - producent, - konsument, - równowaga
Mariola Winiarczyk Zespół Szkolno-Gimnazjalny Rakoniewice
Mariola Winiarczyk Zespół Szkolno-Gimnazjalny Rakoniewice Szkolny Konkurs Wiedzy o AIDS i HIV obejmuje dwa etapy. Etap pierwszy przeprowadzany jest ok. 25 października. Biorą w nim udział trój osobowe