Algorytmy sztucznej inteligencji
|
|
- Radosław Karczewski
- 6 lat temu
- Przeglądów:
Transkrypt
1 radmat
2 Przeszukiwanie z ograniczeniami Zagadnienie przeszukiwania z ograniczeniami stanowi grupę problemów przeszukiwania w przestrzeni stanów, które składa się ze: 1 skończonego zbioru zmiennych; 2 skończonego zbioru odpowiadających tym zmiennym wartości, zwanych dziedziną zmiennej; 3 skończonego zbioru ograniczeń. Rozwiązaniem problemu z ograniczeniami jest każda kombinacja wartości zmiennych, która spełnia wszystkie nałożone ograniczenia.
3 Sudoku Zagadnienie przeszukiwania z ograniczeniami zrealizujemy na przykładzie popularnej gry, jaką jest sudoku. Gra toczy się na planszy o wymiarze 9 na 9 kwadratów, podzielonego na 9 mniejszych (każdy z nich o wymiarze 3 na 3). Zadanie polega na wypełnieniu każdego z mniejszych kwadratów cyframi od 1 do 9 w taki sposób, aby w każdym wierszu i każdej kolumnie dużego kwadratu oraz w każdym wierszu i każdej kolumnie małego kwadratu każda cyfra wystąpiła jednokrotnie. Na wstępie gry duży kwadrat wypełnia się minimum 17 cyframi. Tyle bowiem potrzeba do znalezienia unikalnego rozwiązania. Z reguły wypełnia się pól.
4
5
6 Algorytm Do realizacji zagadnienia wykorzystamy mało efektywny, ale prosty w implementacji algorytm przeszukiwania przyrostowego z powracaniem. Innymi algorytmami są m.in.: sprawdzanie wprzód, wybór zmiennej najbardziej ograniczonej, wybór zmiennej najbardziej ograniczającej, czy wybór zmiennej najmniej ograniczającej.
7 Przebieg algorytmu jest następujący: 1 Wybieramy pierwszą wolną komórkę na planszy. Jeśli ją znajdujemy, to przechodzimy do kroku 2. Jeśli nie, to przechodzimy do kroku 6. 2 Wybieramy liczbę do wstawienia. Jeśli istnieje, to przechodzimy do kroku 3. Jeśli nie istnieje, to przechodzimy do kroku 5. 3 Jeśli jest liczba, która nie powoduje konfliktu, to przechodzimy do kroku 4. Jeśli nie ma, to ją usuwamy i przechodzimy do kroku 2. 4 Wstawiamy liczbę i przechodzimy do kroku 1. 5 Usuwamy uprzednio wstawioną liczbę i przechodzimy do kroku 2. 6 Zwracamy sukces i kończymy działanie algorytmu.
8 Przykład Krok algorytmu: 1
9 Krok algorytmu: 2 Wybieramy pierwszą cyfrę z dostępnych do wstawienia: 1, 2, 3, 4, 5, 6, 7, 8, 9.
10 Krok algorytmu: 3 Konflikt!
11
12 Krok algorytmu: 2 Wybieramy pierwszą cyfrę z dostępnych do wstawienia: 2, 3, 4, 5, 6, 7, 8, 9.
13 Krok algorytmu: 3 Konflikt!
14
15 Krok algorytmu: 2 Wybieramy pierwszą cyfrę z dostępnych do wstawienia: 3, 4, 5, 6, 7, 8, 9.
16 Krok algorytmu: 3 Konflikt!
17
18 Krok algorytmu: 2 Wybieramy pierwszą cyfrę z dostępnych do wstawienia: 4, 5, 6, 7, 8, 9.
19 Krok algorytmu: 3 Brak konfliktu.
20 Krok algorytmu: 4
21 Krok algorytmu: 1
22 Wykonując kolejne kroki algorytmu po kilkunastu(?), kilku tysiącach(?), kilkudziesięciu tysiącach(?) kroków rozwiążemy problem przeszukiwania z ograniczeniami.
23 Malowanie liczbami Malowanie liczbami jest łamigłówką, która polega na zamalowywaniu pól diagramu, które utworzą rysunek. Pola, które należy zamalować wskazują liczby obok diagramu. Na przykład zapis 7, 2, 10 oznacza, że w danym wierszu należy zamalować 7 kolejnych pól, następnie 2 i na końcu 10. Taki zapis oznacza, że między grupą zawierającą 7 pól zamalowanych, a grupą zawierającą 2 pola zamalowane, znajduje się przynajmniej jedno pole niezamalowane.
24 Algorytm Podczas rozwiązywania problemu obrazków logicznych zaznaczanie pól pustych jest równie ważne, jak zaznaczanie pól zamalowanych. Proste obrazki można rozwiązywać rozpatrując jedynie dany wiersz lub kolumnę, natomiast rozpatrując bardziej skomplikowane należy brać pod uwagę więcej wierszy i kolumn.
25 Metoda koniecznie pełne Najprostszą metodą rozwiązywania zadania logicznych obrazków jest koniecznie pełne. Metody tej należy używać na samym początku do zaznaczania możliwie największej liczby pól. Polega ona na określeniu komórek, które muszą być zamalowane ze względu na ograniczone miejsce.
26
27 Metoda koniecznie puste Metoda koniecznie puste jest odwrotnością metody koniecznie pełne. Polega na określaniu tych pól, które na pewno są puste (niezamalowane), ponieważ nie ma bloków, które mogłyby je pokryć. Załóżmy, że mamy następujący układ na diagramie: Wówczas na pewno puste będą pola:
28 Metoda wciskanie Metoda wciskanie polega na dopasowywaniu całych bloków pól w miejsca, w których na pewno muszą się znaleźć, gdyż nie da się ułożyć ich inaczej. W tym przypadku pola niezamalowane wymuszą położenie całego bloku. Załóżmy, że mamy następujący układ na diagramie: Wówczas:
29 Metoda klejenie Metoda klejenie polega na uzupełnianiu pól, gdy odległość pełnego pola od brzegu jest mniejsza, niż długość pierwszego (lub też ostatniego) bloku. Załóżmy, że mamy następujący układ na diagramie: Wówczas:
30 Metoda łączenie i dzielenie Metoda łączenie i dzielenie polega na łączeniu pól, które położone są obok siebie (gdy mamy pewność, że należą do jednego bloku) lub ich rozdzielaniu (gdy na pewno należą do innych bloków). Załóżmy, że mamy następujący układ na diagramie: Wówczas:
31 Załóżmy, że mamy następujący układ na diagramie: Wówczas:
32 Metoda rtęć Metoda o nazwie rtęć jest odmianą koniecznie puste. Nazwa pochodzi od zachowania rtęci, która w naturalny sposób odpycha się od krawędzi zbiornika. Jeśli zamalowane pole odsunięte jest od brzegu o tyle pól, jaką długość ma pierwszy blok, to pierwsze pole musi być puste. Dzieje się tak oczywiście dlatego, ponieważ blok nie może być dosunięty maksymalnie, gdyż byłby zbyt długi. Załóżmy, że mamy następujący układ na diagramie: Wówczas układ na diagramie będzie następujący:
33 Metoda nie wprost W przypadku bardziej skomplikowanych obrazków powyższe metody mogą okazać się nieskuteczne. Trzeba wówczas zastosować metodę wnioskowania nie wprost. Podejście to obejmuje wnioskowanie o większej liczbie kolumn i wierszy. Metoda ta zakłada, że dane pole musi być zamalowane, ponieważ gdyby było puste, to w innych polach wystąpiłby konflikt.
34 Załóżmy, że mamy do rozpatrzenia następujący układ: Załóżmy na początek, że pierwsze pola w pierwszym i drugim wierszu są zamalowane. Wówczas: w pierwszym rzędzie pola 2, 3 i 4 są zamalowane; w drugim rzędzie pola 2 i 3 są zamalowane. Wówczas:
35 W ten sposób można analizować większą liczbę wierszy i kolumn. Problemem w wykorzystaniu tej metody jest fakt, iż nie wiadomo od którego pola powinniśmy zacząć. Analizę w tym przypadku najlepiej zacząć od pól, które: mają wiele zamalowanych pól w swoim otoczeniu; są blisko brzegów lub są blisko dużych bloków pustych pól.
36 Przykład
37 Automat Moore a Automat skończony jest abstrakcyjnym, matematycznym, iteracyjnym modelem zachowania dynamicznego, który składa się z: skończonej liczby stanów; funkcji definiującej przejścia między stanami; akcji.
38 Zasada działania Działanie automatu skończonego można przedstawić następująco: 1 Automat wczytuje podane słowo w oparciu o dany alfabet. 2 Każdy wczytany symbol powoduje, że - zgodnie z funkcją przejścia - następuje przejście z bieżącego stanu do stanu innego i wykonanie pewnej akcji. 3 Automat może przyjmować skończoną liczbę różnych stanów. 4 Automat akceptuje dane słowo, gy po jego wczytaniu znajdzie się w jednym ze stanów końcowych.
39 Model matematyczny Automat Moore a definiujemy jako uporządkowaną szóstkę: gdzie {Q, Σ,, δ, λ, q 0 }, Q = {q 1, q 2,..., q n } - skończony zbiór n stanów Σ - skończony zbiór symboli wejściowych, zwany alfabetem - alfabet wyjściowy δ - funkcja przejścia odwzorowująca zbiór Q Σ w Q, czyli taka, która każdemu stanowi q Q i każdemu symbolowi wejściowemu a Σ przyporządkowuje nowy stan λ - funkcja zwracająca wyjście związane z każdym ze stanów, czyli odwzorowująca zbiór Q w q 0 - stan początkowy
40 Przykład Zasadę działania automatu Moore a omówimy na podstawie symulacji życia czterech osobników. Każdy z osobników ma przypisaną liczbę punktów życia, która zmniejsza się wraz z wykonaniem ruchu przez danego osobnika. Na planszy znajdują się specjalne punkty z pożywieniem. Każdy z tych punktów ma określoną wartość, określającą ilość pożywienia. Jeżeli osobnik znajdzie się na tym polu, to uzupełnia swoje punkty życia, a także zapamiętuje jego położenie oraz ilość pożywienia. Liczba określająca ilość pożywienia w danym punkcie nie jest odnawialna, tzn. jest pomniejszana, aż osiągnie wartość zero.
41 Jeżeli dany osobnik znajdzie się na polu, które już zajmuje inny osobnik, to wówczas następuje rozmowa, podczas której osobniki przekazują sobie informacje o punktach z pożywieniem. Osobnik zapamiętuje uzyskane informacje lub aktualizuje posiadane przez siebie. Może się bowiem zdarzyć, że dwa osobniki posiadają informacje o tym samym punkcie z pożywieniem. Wówczas aktualną informacją jest ta, która mówi o mniejszej ilości pożywienia w danym punkcie.
42 Oczywiście najbardziej korzystną jest sytuacja, gdy dany osobnik ma możliwie największą liczbę punktów. Jeśli liczba ta osiąga wartość minimalną, to wówczas dany osobnik powinien udać się do punktu z pożywieniem i uzupełnić punkty życia. Dokonuje tego za pomocą posiadanych przez siebie informacji. Jeśli dany osobnik posiada informacje o kilku punktach pożywienia, to powinien udać się do najkorzystniejszego pod względem odległości oraz możliwych do uzyskania punktów życia. Osobnik umiera, gdy liczba punktów życia będzie wynosiła zero.
43 Skonstruujmy automat Moore a dla naszego przykładu: Zbiór stanów określamy następująco: Q = {patrol, rozmowa, poszukiwanie, jedzenie, śmierć}, gdzie patrol - stan początkowy polegający na losowym poruszaniu się osobnika po planszy rozmowa - stan, w którym następuje wymiana danych dotycząca położenia na planszy punktów z pożywieniem oraz ilości pożywienia w danym punkcie poszukiwanie - stan, w którym dany osobnik na podstawie zgromadzonych informacji podąża do punktu z pożywieniem jedzenie - stan, w którym osobnik uzupełnia punkty życia śmierć - stan, w którym osobnik znika z planszy
44 Alfabet wejściowy będzie zbiorem komunikatów postaci: k 1 - wyczerpany zasób punktów życia (0) k 2 - mała liczba punktów życia (1 499) k 3 - duża liczba punktów życia ( ) k 4 - maksymalna liczba punktów życia (1000) k 5 - rozmowa k 6 - koniec rozmowy k 7 - odnaleziono punkt z pożywieniem k 8 - wyczerpanie zasobów pożywienia
45 Funkcję przejścia określimy następująco: δ : (biezacy stan, komunikat wejsciowy) (nowy stan). W naszym przypadku funkcja przejścia wygląda następująco: (patrol, k 2 ) (poszukiwanie) (patrol, k 3 ) (patrol) (rozmowa, k 6 k 3 ) (patrol) (rozmowa, k 6 k 2 ) (poszukiwanie) (poszukiwanie, k 7 ) (jedzenie) (poszukiwanie, k 1 ) (śmierć) (jedzenie, k 2 k 8 ) (poszukiwanie) (jedzenie, k 3 k 8 ) (patrol)
Materiał wykorzystany ze stron: SUDOKU
Materiał wykorzystany ze stron: www.sudoku.name/rules/pl; www.sudoku.betterweb.pl; www.krzyzowki.eu SUDOKU Zasady Sudoku - W Sudoku gra się na planszy o wymiarach 9x9 podzielonej na mniejsze "obszary"
Turing i jego maszyny
Turing Magdalena Lewandowska Politechnika Śląska, wydział MS, semestr VI 20 kwietnia 2016 1 Kim był Alan Turing? Biografia 2 3 Mrówka Langtona Bomba Turinga 4 Biografia Kim był Alan Turing? Biografia Alan
Konkurs zagadek logicznych LOGIMISTRZ Chojnice, 13 kwietnia 2016 r.
(imię i nazwisko).. (szkoła) Drodzy uczniowie-logimistrzowie! Witamy Was w konkursie LOGIMISTRZ! W naszym konkursie możecie poczuć się jak matematyczny detektyw w świecie liczbowych zagadek! Liczy się
Optymalizacja systemów
Optymalizacja systemów Laboratorium Sudoku autor: A. Gonczarek Cel zadania Celem zadania jest napisanie programu rozwiązującego Sudoku, formułując problem optymalizacji jako zadanie programowania binarnego.
Definicje. Algorytm to:
Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości
Metoda Karnaugh. B A BC A
Metoda Karnaugh. Powszechnie uważa się, iż układ o mniejszej liczbie elementów jest tańszy i bardziej niezawodny, a spośród dwóch układów o takiej samej liczbie elementów logicznych lepszy jest ten, który
Języki formalne i automaty Ćwiczenia 9
Języki formalne i automaty Ćwiczenia 9 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Maszyna Mealy'ego... 2 Maszyna Moore'a... 2 Automat ze stosem... 3 Konwersja gramatyki bezkontekstowej
< K (2) = ( Adams, John ), P (2) = adres bloku 2 > < K (1) = ( Aaron, Ed ), P (1) = adres bloku 1 >
Typy indeksów Indeks jest zakładany na atrybucie relacji atrybucie indeksowym (ang. indexing field). Indeks zawiera wartości atrybutu indeksowego wraz ze wskaźnikami do wszystkich bloków dyskowych zawierających
Optymalizacja systemów
Optymalizacja systemów Laboratorium Zadanie nr 3 Sudoku autor: A. Gonczarek Cel zadania Celem zadania jest napisanie programu rozwiązującego Sudoku, formułując problem optymalizacji jako zadanie programowania
1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia
L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć
Zadanie: A2 Kapitan Mambeks i gra w skoczki Plik źródłowy: A2.pas dla języka Pascal Dostępna pamięć: 64 MB A2.c dla języka C A2.
Koło Młodych Informatyków - Konkurs nr -- Zadanie: A Kapitan Mambeks i gra w skoczki Plik źródłowy: A.pas dla języka Pascal Dostępna pamięć: 6 MB A.c dla języka C A.cpp dla języka C++ Ulubionym zajęciem
Propozycje tematów zadań
Propozycje tematów zadań 1. WARCABY Opracować program do gry w warcaby dla dwu graczy. Program ma umożliwiać przesuwanie kursora na zmianę po polach białych lub czarnych, wskazywanie początku końca ruchu.
Pomorski Czarodziej 2016 Zadania. Kategoria C
Pomorski Czarodziej 2016 Zadania. Kategoria C Poniżej znajduje się 5 zadań. Za poprawne rozwiązanie każdego z nich możesz otrzymać 10 punktów. Jeżeli otrzymasz za zadanie maksymalną liczbę punktów, możesz
Zajęcia nr 3_cz2 Praca z tekstem: WORD Wzory matematyczne. Tabele
Zajęcia nr 3_cz2 Praca z tekstem: WORD Wzory matematyczne. Tabele W swoim folderze utwórz folder o nazwie 5_11_2009, wszystkie dzisiejsze zadania wykonuj w tym folderze. Na dzisiejszych zajęciach nauczymy
Złożoność obliczeniowa zadania, zestaw 2
Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze
EXCEL. Diagramy i wykresy w arkuszu lekcja numer 6. Instrukcja. dla Gimnazjum 36 - Ryszard Rogacz Strona 20
Diagramy i wykresy w arkuszu lekcja numer 6 Tworzenie diagramów w arkuszu Excel nie jest sprawą skomplikowaną. Najbardziej czasochłonne jest przygotowanie danych. Utworzymy następujący diagram (wszystko
Stosowanie, tworzenie i modyfikowanie stylów.
Stosowanie, tworzenie i modyfikowanie stylów. We wstążce Narzędzia główne umieszczone są style, dzięki którym w prosty sposób możemy zmieniać tekst i hurtowo modyfikować. Klikając kwadrat ze strzałką w
1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb.
1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. Algorytmy przeszukiwania w głąb i wszerz są najczęściej stosowanymi algorytmami przeszukiwania. Wykorzystuje się je do zbadania istnienia połączenie
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem
Rozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując
Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011
Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011 Załóżmy, że uprawiamy jogging i chcemy monitorować swoje postępy. W tym celu napiszemy program, który zlicza, ile czasu
6. Zagadnienie parkowania ciężarówki.
6. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można
Konkurs Mikołajkowy. 6-9 grudnia Zadania konkursowe. Autorzy zadań Łukasz Bożykowski Piotr Gdowski Łukasz Kalinowski
Konkurs Mikołajkowy - grudnia Zadania konkursowe Autorzy zadań Łukasz Bożykowski Piotr Gdowski Łukasz Kalinowski LISTA ZADAŃ ŁAMIGŁÓWKI. Arukone+. Snake. Tapa. Shikaku. Arrow maze. Password path. Paint
Wstęp do Techniki Cyfrowej... Teoria automatów
Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia
Wyrażenie nawiasowe. Wyrażenie puste jest poprawnym wyrażeniem nawiasowym.
Wyrażenie nawiasowe Wyrażeniem nawiasowym nazywamy dowolny skończony ciąg nawiasów. Każdemu nawiasowi otwierającemu odpowiada dokładnie jeden nawias zamykający. Poprawne wyrażenie nawiasowe definiujemy
7. Zagadnienie parkowania ciężarówki.
7. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 02 Jarosław Miszczak IITiS PAN Gliwice 06/10/2016 1 / 31 Czego dowiedzieliśmy się na poprzednim wykładzie? 1... 2... 3... 2 / 31 1 2 3 3 / 31 to jeden z pierwszych
1 Wprowadzenie do algorytmiki
Teoretyczne podstawy informatyki - ćwiczenia: Prowadzący: dr inż. Dariusz W Brzeziński 1 Wprowadzenie do algorytmiki 1.1 Algorytm 1. Skończony, uporządkowany ciąg precyzyjnie i zrozumiale opisanych czynności
Modelowanie wieloskalowe. Automaty Komórkowe - podstawy
Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl
operacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.
Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie
Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów skończonych
Opracował: dr inż. Zbigniew Buchalski KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów
1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci:
1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: * Jan Kowalski * * ul. Zana 31 * 3. Zadeklaruj zmienne przechowujące
ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)
ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Instrukcja obsługi Nowego Punktatora
Instrukcja obsługi Nowego Punktatora Nowy Punktator jest niezbędnym narzędziem do wygenerowania ankiety okresowej oceny wyników pracy nauczycieli akademickich, wynikającej z art. 132 ustawy z dnia 27 lipca
XX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2011/2012
XX edycja Międzynarodowego Konkursu Matematycznego PIKOMA rok szkolny 2011/2012 Etap I Klasa IV Zastąp znaki zapytania znakami dodawania, odejmowania, mnożenia i dzielenia w taki sposób, aby wyniki obliczeń
Algorytm selekcji Hoare a. Łukasz Miemus
Algorytm selekcji Hoare a Łukasz Miemus 1 lutego 2006 Rozdział 1 O algorytmie 1.1 Problem Mamy tablicę A[N] różnych elementów i zmienną int K, takie że 1 K N. Oczekiwane rozwiązanie to określenie K-tego
24 proste kroki. aby pokonac. Obrazki. logiczne. Rozwiazania. i wskazowki dla nauczyciela. Copyright Logi Urszula Marciniak 2015
proste kroki / aby pokonac Obrazki logiczne Rozwiazania / i wskazowki dla nauczyciela Copyright Logi Urszula Marciniak 0 Szanowni Państwo Niniejsza książeczka przeznaczona jest dla osób, które nigdy nie
Heurystyczne metody przeszukiwania
Heurystyczne metody przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Pojęcie heurystyki Metody heurystyczne są jednym z ważniejszych narzędzi sztucznej inteligencji.
Lista 4. Kamil Matuszewski 22 marca 2016
Lista 4 Kamil Matuszewski 22 marca 2016 1 2 3 4 5 6 7 8 9 10 Zadanie 2 Ułóż algorytm który dla danego n-wierzchołkowego drzewa i liczby k pokoloruje jak najwięcej wierzchołków tak, by na każdej ścieżce
Algorytm. a programowanie -
Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik
Informatyka klasa III Gimnazjum wymagania na poszczególne oceny
Informatyka klasa III Gimnazjum wymagania na poszczególne oceny Algorytmika i programowanie Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera, stosowanie podejścia algorytmicznego
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
Projekty zaliczeniowe Podstawy Programowania 2012/2013
Projekty zaliczeniowe Podstawy Programowania 2012/2013 0. Zasady ogólne W skład projektu wchodzą następujące elementy: dokładny opis rozwiązywanego problemu opis słowny rozwiązania problemu wraz z pseudokodami
Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki. Podstawy Informatyki i algorytmizacji
Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki Podstawy Informatyki i algorytmizacji wykład 1 dr inż. Maria Lachowicz Wprowadzenie Dlaczego arkusz
VII Mistrzostwa Dolnego Śląska w Sudoku - Eliminacje SP7/GIM/LIC str. 1. imię i nazwisko:... kl... szkoła:... 6 pkt. 3 pkt 4 pkt.
VII Mistrzostwa Dolnego Śląska w Sudoku - Eliminacje SP/GIM/LIC str. imię i nazwisko:... kl.... szkoła:... pkt pkt pkt pkt pkt pkt pkt NIEREGULARNE DIAGONALNE Dodatkowa reguła: na dwóch zaznaczonych przekątnych
Znajdowanie wyjścia z labiryntu
Znajdowanie wyjścia z labiryntu Zadanie to wraz z problemem pakowania najcenniejszego plecaka należy do problemów optymalizacji, które dotyczą znajdowania najlepszego rozwiązania wśród wielu możliwych
Materiały dla finalistów
Materiały dla finalistów Malachoviacus Informaticus 2016 11 kwietnia 2016 Wprowadzenie Poniższy dokument zawiera opisy zagadnień, które będą niezbędne do rozwiązania zadań w drugim etapie konkursu. Polecamy
Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
Z nowym bitem. Informatyka dla gimnazjum. Część II
Z nowym bitem. Informatyka dla gimnazjum. Część II Wymagania na poszczególne oceny szkolne Grażyna Koba Spis treści 1. Algorytmika i programowanie... 2 2. Obliczenia w arkuszu kalkulacyjnym... 4 3. Bazy
Prawdopodobieństwo geometryczne
Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo
1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie
Opracował: dr hab. inż. Jan Magott KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 207 Temat: Automaty Moore'a i Mealy 1. Cel ćwiczenia Celem ćwiczenia jest
WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:
WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie
if (wyrażenie ) instrukcja
if (wyrażenie ) instrukcja Jeśli wartość wyrażenia jest różna od zera, to jest wykonywana instrukcja, jeśli wartość wyrażenia jest równa 0, to dana instrukcja nie jest wykonywana Wyrażenie testowe podajemy
Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE 2.2 Ćwiczenia komputerowe Ćwiczenie
Podstawy programowania, Poniedziałek , 8-10 Projekt, część 3
Podstawy programowania, Poniedziałek 13.05.2015, 8-10 Projekt, część 3 1. Zadanie Projekt polega na stworzeniu logicznej gry komputerowej działającej w trybie tekstowym o nazwie Minefield. 2. Cele Celem
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,
Ekonometria - ćwiczenia 10
Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na
Algorytmy i struktury danych. Wykład 4 Tablice nieporządkowane i uporządkowane
Algorytmy i struktury danych Wykład 4 Tablice nieporządkowane i uporządkowane Tablice uporządkowane Szukanie binarne Szukanie interpolacyjne Tablice uporządkowane Szukanie binarne O(log N) Szukanie interpolacyjne
1 Automaty niedeterministyczne
Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów
PANGEA KONKURS MATEMATYCZNY
~ ~ SP-6 PANGEA KONKURS MATEMATYCZNY Piątek, 28 marca 204 Czas pracy: 90 minut Maksymalna liczba punktów do uzyskania: 20 W czasie testu nie wolno używać kalkulatorów ani innych pomocy naukowych.. Zasady
1. SFC W PAKIECIE ISAGRAF 2. EDYCJA PROGRAMU W JĘZYKU SFC. ISaGRAF WERSJE 3.4 LUB 3.5 1
ISaGRAF WERSJE 3.4 LUB 3.5 1 1. SFC W PAKIECIE ISAGRAF 1.1. Kroki W pakiecie ISaGRAF użytkownik nie ma możliwości definiowania własnych nazw dla kroków. Z każdym krokiem jest związany tzw. numer odniesienia
GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI
GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa I Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej
O LICZBACH NIEOBLICZALNYCH I ICH ZWIĄZKACH Z INFORMATYKĄ
O LICZBACH NIEOBLICZALNYCH I ICH ZWIĄZKACH Z INFORMATYKĄ Jakie obiekty matematyczne nazywa się nieobliczalnymi? Jakie obiekty matematyczne nazywa się nieobliczalnymi? Najczęściej: a) liczby b) funkcje
Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu
Problem Hilberta: 9 Czy istnieje ogólna mechaniczna procedura, która w zasadzie pozwoliłaby nam po kolei rozwiązać wszystkie matematyczne problemy (należące do odpowiednio zdefiniowanej klasy)? 2 Przykłady
Niezwykłe tablice Poznane typy danych pozwalają przechowywać pojedyncze liczby. Dzięki tablicom zgromadzimy wiele wartości w jednym miejscu.
Część XIX C++ w Każda poznana do tej pory zmienna może przechowywać jedną liczbę. Jeśli zaczniemy pisać bardziej rozbudowane programy, okaże się to niewystarczające. Warto więc poznać zmienne, które mogą
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Programowanie genetyczne, gra SNAKE
STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................
Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1
Sortowanie przez wstawianie Insertion Sort
Sortowanie przez wstawianie Insertion Sort Algorytm sortowania przez wstawianie można porównać do sposobu układania kart pobieranych z talii. Najpierw bierzemy pierwszą kartę. Następnie pobieramy kolejne,
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Automat ze stosem Automat ze stosem to szóstka
WYKŁAD 3 WYPEŁNIANIE OBSZARÓW. Plan wykładu: 1. Wypełnianie wieloboku
WYKŁ 3 WYPŁNINI OSZRÓW. Wypełnianie wieloboku Zasada parzystości: Prosta, która nie przechodzi przez wierzchołek przecina wielobok parzystą ilość razy. Plan wykładu: Wypełnianie wieloboku Wypełnianie konturu
Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1. Osiągnięcia ponadprzedmiotowe
W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJĄCE WYKRACZAJĄCE czytać teksty w stylu
Semestr Pierwszy Liczby i działania
MATEMATYKA KL. I 1 Semestr Pierwszy Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej podać odwrotność liczby porównać
Języki formalne i automaty Ćwiczenia 6
Języki formalne i automaty Ćwiczenia 6 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Wyrażenia regularne... 2 Standardy IEEE POSIX Basic Regular Expressions (BRE) oraz Extended
Test na koniec nauki w klasie trzeciej gimnazjum
8 Test na koniec nauki w klasie trzeciej gimnazjum imię i nazwisko ucznia...... data klasa Test 2 1 Na przeciwległych ścianach każdej z pięciu sześciennych kostek umieszczono odpowiednio liczby: 1 i 1,
Nazwa implementacji: Nauka języka Python wyrażenia warunkowe. Autor: Piotr Fiorek. Opis implementacji: Poznanie wyrażeń warunkowych if elif - else.
Nazwa implementacji: Nauka języka Python wyrażenia warunkowe Autor: Piotr Fiorek Opis implementacji: Poznanie wyrażeń warunkowych if elif - else. Nasz kalkulator umie już liczyć, ale potrafi przeprowadzać
Synteza strukturalna automatu Moore'a i Mealy
Synteza strukturalna automatu Moore'a i Mealy (wersja robocza - w razie zauważenia błędów proszę o uwagi na mail'a) Załóżmy, że mamy następujący graf automatu z 2 y 0 q 0 z 1 z 1 z 0 z 0 y 1 z 2 q 2 z
1. SYNTEZA UKŁADÓW SEKWENCYJNYCH
DODATEK: SEKWENCJNE UKŁAD ASNCHRONICZNE CD.. SNTEZA UKŁADÓW SEKWENCJNCH Synteza to proces prowadzący od założeń definiujących sposób działania układu do jego projektu. odczas syntezy należy kolejno ustalić:
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
Podstawy OpenCL część 2
Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024
Wymagania edukacyjne z matematyki dla klasy VII
Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby
WYMAGANIA EDUKACYJNE Z INFORMATYKI dla klasy III gimnazjalnej, Szkoły Podstawowej w Rychtalu
WYMAGANIA EDUKACYJNE Z INFORMATYKI dla klasy III gimnazjalnej, Szkoły Podstawowej w Rychtalu 1 Algorytmika i programowanie Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera, stosowanie
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP WOJEWÓDZKI Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny
2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.
1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej
I. Liczby i działania
I. Liczby i działania porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na dziesiętne i odwrotnie, zaokrąglać liczby do danego rzędu, szacować wyniki działań,
WYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie I gimnazjum str. 1 Wymagania edukacyjne niezbędne
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Stany równoważne Stany p i q są równoważne,
dr inż. Jarosław Forenc
Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2010/2011 Wykład nr 7 (24.01.2011) dr inż. Jarosław Forenc Rok akademicki
WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
do instrukcja while (wyrażenie);
Instrukcje pętli -ćwiczenia Instrukcja while Pętla while (póki) powoduje powtarzanie zawartej w niej sekwencji instrukcji tak długo, jak długo zaczynające pętlę wyrażenie pozostaje prawdziwe. while ( wyrażenie
WYMAGANIA na poszczególne oceny-klasa I Gimnazjum
WYMAGANIA na poszczególne oceny-klasa I Gimnazjum Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej oceny głównej. (Znaki + i -
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Przenoszenie, kopiowanie formuł
Przenoszenie, kopiowanie formuł Jeżeli będziemy kopiowali komórki wypełnione tekstem lub liczbami możemy wykorzystywać tradycyjny sposób kopiowania lub przenoszenia zawartości w inne miejsce. Jednak przy
Gra- Oblicz i zaznacz właściwy wynik- puzzle. matematyczno - przyrodnicze
TYTUŁ AUTOR EDUKACJA Gra- Oblicz i zaznacz właściwy wynik- puzzle Aneta Kryszczak Uczeń wykonuje dzielenie, doskonali umiejętność posługiwanie się pojęciami matematycznymi; I WSKAZÓWKI AUTO dzielenie Uczeń
KADD Minimalizacja funkcji
Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków
AUTOMATY SKOŃCZONE. Automat skończony przedstawiamy formalnie jako uporządkowaną piątkę:
AUTOMATY SKOŃCZONE DETERMINISTYCZNY AUTOMAT SKOŃCZONY - DAS Automat skończony jest modelem matematycznym systemu o dyskretnych wejściach i wyjściach. System taki w danej chwili może znajdować się w jednym
Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.
ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach
WYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z INFORMATYKI w klasie II gimnazjum str. 1 1. Algorytmika i programowanie