WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI
|
|
- Alina Górska
- 8 lat temu
- Przeglądów:
Transkrypt
1 POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA MEL WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI NS 586 Dr inż. Franciszek Dul
2 5. ROZWIĄZYWANIE PROBLEMÓW Z OGRANICZENIAMI
3 Problemy z ograniczeniami Pokażemy, w jaki sposób agent może osiągnąć zamierzony cel jeżeli musi uwzględniać ograniczenia występujące w zadaniu.
4 5.1. Zadania z ograniczeniami (CSP) Różnica między zadaniami poszukiwania a zadaniami z ograniczeniami (Constraint Satisfaction Problems): W zadaniach zwykłych stan może być dowolną strukturą która umożliwia wyznaczanie następników, obliczenie funkcji kosztu, sprawdzenie osiągnięcia celu. W zadaniach z ograniczeniami: stan jest zbiorem zmiennych X i przyjmujących wartości z określonych dziedzin D i, cel zdefiniowany jest poprzez ogranicznia C i, które muszą spełniać wartości zmiennych stanu, np. C 2, : X 1 X 2 Rozwiązaniem zadania z ograniczeniami jest zgodny (nie naruszający ograniczeń) zbiór wartości zmiennych stanu spełniający wszystkie ograniczenia.
5 5.1. Zadania z ograniczeniami Cechy charakterystyczne zadań z ograniczeniami: jednolity, standardowy sposób sformułowania; standardowe postacie funkcji następstwa i funkcji celu; standardowe heurystyki, niezależne od charakteru konkretnego zadania. Przykłady zadań z ograniczeniami kolorowanie map, kompozycja parkietów, kryptografia, układanie planu zajęć, planowanie transportów, organizacja produkcji, dyslokacja wojsk, szeregowanie obserwacji dla teleskopu Hubble a.
6 5.1. Zadania z ograniczeniami Przykład - kolorowanie mapy Zmienne: WA, NT, Q, NSW, V, SA, T Dziedziny: D i = {R,G,B} ( = {Red,Green,Blue} ) Ograniczenia: obszary przyległe muszą mieć różne kolory WA NT, lub (WA,NT) { (R,G), (R,B), (G,R), (G,B), (B,R), (B,G) }
7 5.1. Zadania z ograniczeniami Przykład - kolorowanie mapy Rozwiązaniem jest każde kompletne i zgodne przypisanie wartości z dziedzin zmiennym stanu, np.: WA = R, NT = G, Q = R, NSW = G, V = R, SA = B, T = G ale rozwiązaniem są również np.: WA = G, NT = B, Q = G, NSW = B, V = G, SA = R, T = B WA = B, NT = R, Q = B, NSW = R, V = B, SA = G, T = R
8 5.1. Zadania z ograniczeniami Graf ograniczeń Zadanie binarne z ograniczeniami: każde ograniczenie jest relacją dwóch zmiennych. Graf ograniczeń: węzły są zmiennymi, krawędzie są ograniczeniami. Sformułowanie w postaci grafu pozwala uprościć poszukiwanie rozwiązania.
9 5.1. Zadania z ograniczeniami Przykład - arytmetyka kryptograficzna Znaleźć cyfry, które przyporządkowane literom w sposób jednoznaczny spełnią równanie Graf zadania Zmienne: F, T, U, W, R, O, X 1, X 2, X 3, Dziedziny: {0,1,2,3,4,5,6,7,8,9} Ograniczenia: 0. F, T, U, W, R, O są różnymi cyframi, 1. O + O = R + 10 X 1, 2. X 1 + W + W = U + 10 X 2, 3. X 2 + T + T = O + 10 X 3,, 4. X 3 = F, T 0, F 0.
10 5.1. Zadania z ograniczeniami CSP jako standardowe zadanie poszukiwania Zadanie CSP może być zawsze sformułowane w postaci standardowej jako zadanie poszukiwania. Sformułowanie przyrostowe (identyczne dla wszystkich zadań CSP) Stan początkowy = przypisanie puste { }; Funkcja następnika: przypisać jakąś wartość wolnej zmiennej pod warunkiem, że nie spowoduje to naruszenia ograniczeń; Test celu: czy aktualne przypisanie jest kompletne? Koszt drogi: przyjmuje się stały w każdym kroku; Rozwiązanie zadania CSP uzyskuje się po określonej liczbie kroków - można więc użyć algorytmu poszukiwania w głąb. Droga wyznaczenia rozwiązania jest nieistotna.
11 5.2. Poszukiwanie wsteczne Algorytm szukania w głąb zastosowany do zadania CSP z przypisaniem wartości jednej zmiennej nazywa się poszukiwaniem wstecznym (backtracking search). Idea: - przypisuje się wartość jednej zmiennej, - cofa się działanie, gdy następnej zmiennej nie można przypisać żadnej wartości bez naruszenia ograniczeń. Poszukiwanie wsteczne jest podstawowym algorytmem nieinformowanym dla zadań CSP. Strategie poszukiwania wstecznego: najbardziej ograniczonej zmiennej (most constrained variable), najmniej ograniczającej wartości (least constraining value), sprawdzania w przód (forward checking).
12 5.2. Poszukiwanie wsteczne Przykład - kolorowanie mapy
13 5.2. Poszukiwanie wsteczne Przykład - kolorowanie mapy
14 5.2. Poszukiwanie wsteczne Przykład - kolorowanie mapy
15 5.2. Poszukiwanie wsteczne Przykład - kolorowanie mapy
16 Podsumowanie Poszukiwania z ograniczeniami stanowią szczególny rodzaj zadań w których: stan jest zbiorem zmiennych którym przypisane są wartości z określonego zbioru - dziedziny, cel zdefiniowany jest poprzez ograniczenia nałożone na wartości zmiennych; Metoda poszukiwania wstecznego to odmiana poszukiwań w głąb stosowana w zagadnieniach CSP. Efektywność metody poszukiwania wstecznego znacznie poprawiają uporządkowanie zmiennych i dobre heurystyki wyboru wartości. Przy rozwiązywaniu zadań praktycznych bardzo efektywny jest algorytm minimalnych konfliktów.
Sztuczna Inteligencja i Systemy Doradcze
Sztuczna Inteligencja i Systemy Doradcze Przeszukiwanie przestrzeni stanów problemy z więzami Przeszukiwanie przestrzeni stanów problemy z więzami 1 Problemy z wiezami (CSP) Ogólnie: stan jest czarną skrzynką,
Problemy z ograniczeniami
Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.
Heurystyczne metody przeszukiwania
Heurystyczne metody przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Pojęcie heurystyki Metody heurystyczne są jednym z ważniejszych narzędzi sztucznej inteligencji.
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -
Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład Kody liniowe - kodowanie w oparciu o macierz parzystości
Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład 13 1 Kody liniowe - kodowanie w oparciu o macierz parzystości Przykład Różne macierze parzystości dla kodu powtórzeniowego. Co wiemy z algebry
WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI
POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA MEL WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI NS 586 Dr inż. Franciszek Dul Poziomy sztucznej inteligencji Sztuczna świadomość? Uczenie się
Rozwiązywanie problemów metodą przeszukiwania
Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej
Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Heurystyki. Strategie poszukiwań
Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja
Programowanie matematyczne
dr Adam Sojda Badania Operacyjne Wykład Politechnika Śląska Programowanie matematyczne Programowanie matematyczne, to problem optymalizacyjny w postaci: f ( x) max przy warunkach g( x) 0 h( x) = 0 x X
Adam Meissner SZTUCZNA INTELIGANCJA
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGANCJA Podstawy programowania z ograniczeniami
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD III: Problemy agenta
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD III: Problemy agenta To już było: AI to dziedzina zajmująca się projektowaniem agentów Określenie agenta i agenta racjonalnego Charakterystyka PAGE
Matematyka od zaraz zatrudnię
Uniwersytet Jagielloński Gdzie jest matematyka? Soczewka, 26-28 listopada 2010 Kolorowanie grafów Dobre kolorowanie wierzchołków grafu, to nadanie im kolorów w taki sposób, że każde dwa wierzchołki połaczone
Systemy wbudowane. Uproszczone metody kosyntezy. Wykład 11: Metody kosyntezy systemów wbudowanych
Systemy wbudowane Wykład 11: Metody kosyntezy systemów wbudowanych Uproszczone metody kosyntezy Założenia: Jeden procesor o znanych parametrach Znane parametry akceleratora sprzętowego Vulcan Początkowo
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las
TEORIA wiązań Magdalena Pawłowska Gr. 10B2
TEORIA wiązań Magdalena Pawłowska Gr. 10B2 Techniki kombinatoryczne rozróżniania węzłów i splotów ØLiczba skrzyżowań, ØLiczba mostów, ØKolorowanie, ØIndeks zaczepienia, ØSzkic elementów arytmetyki węzłów.
Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno
Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują
a) 7 b) 19 c) 21 d) 34
Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie
Algorytmy i struktury danych
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i struktury danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 5: Algorytmy
Wykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy
Wykład 3 Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Dynamiczne struktury danych Lista jest to liniowo uporządkowany zbiór elementów, z których dowolny element
SID Wykład 2 Przeszukiwanie
SID Wykład 2 Przeszukiwanie Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Strategie heurystyczne Strategie heurystyczne korzystaja z dodatkowej, heurystycznej funkcji oceny stanu (np.
Systemy wbudowane. Cel syntezy systemowej. Wykład 12: Przykłady kosyntezy systemów wbudowanych
Systemy wbudowane Wykład 12: Przykłady kosyntezy systemów wbudowanych Cel syntezy systemowej minimalizacja kosztu: jaka jest najtańsza architektura spełniająca nałożone wymagania (minimalna szybkość, max.
Planowanie drogi robota, algorytm A*
Planowanie drogi robota, algorytm A* Karol Sydor 13 maja 2008 Założenia Uproszczenie przestrzeni Założenia Problem planowania trasy jest bardzo złożony i trudny. W celu uproszczenia problemu przyjmujemy
8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Matematyka dyskretna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
STUDIUM PODYPLOMOWE INFORMATYKI SPI 51
STUDIUM PODYPLOMOWE INFORMATYKI SPI 51 ALGORYTMIKA I ROZWIĄZYWANIE PROBLEMÓW Temat: Kolorowanie figur (uproszczona wersja kolorowania map grafy). Zastosowanie: Edukacja wczesnoszkolna: matematyczna, plastyczna,
Rozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego
Rozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego WMS, 2019 1 Wstęp Niniejszy dokument ma na celu prezentację w teorii i na przykładach rozwiązywania szczególnych typów równań
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 12. PRZESZUKIWANIE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska ROZWIĄZYWANIE PROBLEMÓW JAKO PRZESZUKIWANIE Istotną rolę podczas
Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu
Problem Hilberta: 9 Czy istnieje ogólna mechaniczna procedura, która w zasadzie pozwoliłaby nam po kolei rozwiązać wszystkie matematyczne problemy (należące do odpowiednio zdefiniowanej klasy)? 2 Przykłady
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
znalezienia elementu w zbiorze, gdy w nim jest; dołączenia nowego elementu w odpowiednie miejsce, aby zbiór pozostał nadal uporządkowany.
Przedstawiamy algorytmy porządkowania dowolnej liczby elementów, którymi mogą być liczby, jak również elementy o bardziej złożonej postaci (takie jak słowa i daty). Porządkowanie, nazywane również często
K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz
K.Pieńkosz Wprowadzenie 1 dr inż. Krzysztof Pieńkosz Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej pok. 560 A tel.: 234-78-64 e-mail: K.Pienkosz@ia.pw.edu.pl K.Pieńkosz Wprowadzenie
Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami
Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy
Algorytm. Krótka historia algorytmów
Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne
Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka
Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej
Algorytm poprawny jednoznaczny szczegółowy uniwersalny skończoność efektywność (sprawność) zmiennych liniowy warunkowy iteracyjny
Algorytm to przepis; zestawienie kolejnych kroków prowadzących do wykonania określonego zadania; to uporządkowany sposób postępowania przy rozwiązywaniu zadania, problemu, z uwzględnieniem opisu danych
ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)
ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Programowanie liniowe w technice Linear programming in engineering problems Kierunek: Rodzaj przedmiotu: obowiązkowy na kierunku matematyka przemysłowa Rodzaj zajęć: wykład, laboratorium,
Algorytmy sztucznej inteligencji
www.math.uni.lodz.pl/ radmat Przeszukiwanie z ograniczeniami Zagadnienie przeszukiwania z ograniczeniami stanowi grupę problemów przeszukiwania w przestrzeni stanów, które składa się ze: 1 skończonego
Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A
Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A Zadanie do wykonania 1) Utwórz na pulpicie katalog w formacie Imię nazwisko, w którym umieść wszystkie pliki związane z
Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4
17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,
CLP Programowanie logiczne z ograniczeniami.
CLP Programowanie logiczne z ograniczeniami. Wstęp Programowanie z ograniczeniami (Constraint Programming CP) stało się w ostatnich latach popularnym sposobem modelowania i rozwiązywania wielu problemów
LABORATORIUM 2: Przeszukiwanie grafów cz. 2 strategie heurystyczne
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 2: Przeszukiwanie grafów cz. 2 strategie heurystyczne
Algorytmiczna teoria grafów
Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Wyznaczanie lokalizacji magazynów dystrybucyjnych i miejsc produkcji dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Lokalizacja magazynów dystrybucyjnych 1 Wybór miejsca produkcji
O LICZBACH NIEOBLICZALNYCH I ICH ZWIĄZKACH Z INFORMATYKĄ
O LICZBACH NIEOBLICZALNYCH I ICH ZWIĄZKACH Z INFORMATYKĄ Jakie obiekty matematyczne nazywa się nieobliczalnymi? Jakie obiekty matematyczne nazywa się nieobliczalnymi? Najczęściej: a) liczby b) funkcje
ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.
ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb
FUNKCJE. (odwzorowania) Funkcje 1
FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru
Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Analiza matematyczna dla informatyków 3 Zajęcia 14
Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:
10. Kolorowanie wierzchołków grafu
p. 10. Kolorowanie wierzchołków grafu 10.1 Definicje i twierdzenia Przez k-kolorowanie wierzchołków grafu G rozumiemy przyporzadkowanie każdemu wierzchołkowi grafu G jednego z k kolorów 1, 2,...,k. p.
Modele całkowitoliczbowe zagadnienia komiwojażera (TSP)
& Zagadnienie komowojażera 1 Modele całkowitoliczbowe zagadnienia komiwojażera (TSP) Danych jest miast oraz macierz odległości pomiędzy każdą parą miast. Komiwojażer wyjeżdża z miasta o numerze 1 chce
PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ
PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE Metody programowania sieciowego wprowadzono pod koniec lat pięćdziesiatych Ze względu na strukturę
MODELE KOLORÓW. Przygotował: Robert Bednarz
MODELE KOLORÓW O czym mowa? Modele kolorów,, zwane inaczej systemami zapisu kolorów,, są różnorodnymi sposobami definiowania kolorów oglądanych na ekranie, na monitorze lub na wydruku. Model RGB nazwa
Metoda Różnic Skończonych (MRS)
Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne
Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2
Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z
Programowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
INSTRUKCJA DO ĆWICZENIA NR 1
L01 ---2014/10/17 ---10:52---page1---#1 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów
ALGORYTMY MATEMATYCZNE Ćwiczenie 1 Na podstawie schematu blokowego pewnego algorytmu (rys 1), napisz listę kroków tego algorytmu:
ALGORYTMY MATEMATYCZNE Ćwiczenie 1 Na podstawie schematu blokowego pewnego algorytmu (rys 1), napisz listę kroków tego algorytmu: Rys1 Ćwiczenie 2 Podaj jaki ciąg znaków zostanie wypisany po wykonaniu
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym
ĆWICZENIE 1: Przeszukiwanie grafów strategie heurystyczne
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE studia niestacjonarne ĆWICZENIE 1: Przeszukiwanie grafów strategie
Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0
ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru
ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe opracował:
Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa
Adam Meissner SZTUCZNA INTELIGENCJA Problem spełnialności (SAT)
Instytut Automatyki, Robotyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Problem spełnialności
Plan. Struktura czynności myślenia (materiał, operacje reguły)
Myślenie Pojęcie myślenia Plan Struktura czynności myślenia (materiał, operacje reguły) Funkcje myślenia Rola myślenia w rozwiązywaniu problemów (pojęcie problemu i jego rodzaje, fazy rozwiązywania, przeszkody)
5c. Sieci i przepływy
5c. Sieci i przepływy Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5c. Sieci i przepływy zima 2016/2017 1 / 40 1 Definicje
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 2 2 Problemy algorytmiczne Klasy problemów algorytmicznych Liczby Fibonacciego Przeszukiwanie tablic Największy
Programowanie w Logice Struktury danych (Lista 2)
Programowanie w Logice Struktury danych (Lista 2) Przemysław Kobylański Wstęp Struktury danych wyraża się w Prologu w postaci termów, tj. symbolicznych wyrażeń. Dotychczas poznaliśmy proste termy takie
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla
Algorytm. Algorytmy Marek Pudełko
Algorytm Algorytmy Marek Pudełko Definicja Algorytm to skończony, uporządkowany ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego zadania. Algorytm ma przeprowadzić system z pewnego
1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie
Opracował: dr hab. inż. Jan Magott KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 207 Temat: Automaty Moore'a i Mealy 1. Cel ćwiczenia Celem ćwiczenia jest
Automatyczne planowanie oparte na sprawdzaniu spełnialności
Automatyczne planowanie oparte na sprawdzaniu spełnialności Linh Anh Nguyen Instytut Informatyki Uniwersytet Warszawski Linh Anh Nguyen Algorytm planowania SatPlan 1 Problem planowania sufit nie malowany?
Plan lekcji Optivum. Jak przypisywać do przydziałów preferencje dotyczące sal?
Plan lekcji Optivum Jak przypisywać do przydziałów preferencje dotyczące sal? Aby ułożenie planu było możliwe, należy uzupełnić dane zaczerpnięte z arkusza. Powinniśmy między innymi opisać zasoby lokalowe
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą
Sortowanie przez wstawianie Insertion Sort
Sortowanie przez wstawianie Insertion Sort Algorytm sortowania przez wstawianie można porównać do sposobu układania kart pobieranych z talii. Najpierw bierzemy pierwszą kartę. Następnie pobieramy kolejne,
Wykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne
Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Przeszukiwanie Przeszukiwanie przestrzeni stanów Motywacja Rozwiązywanie problemów: poszukiwanie sekwencji operacji prowadzącej do celu poszukiwanie
Algorytmy wyznaczania centralności w sieci Szymon Szylko
Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9,
1 Kody Tunstalla Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9, 14.04.2005 Inne podejście: słowa kodowe mają ustaloną długość, lecz mogą kodować ciągi liter z alfabetu wejściowego o różnej
SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych.
SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Rozważamy graf G = (V, E) Dwie krawędzie e, e E nazywamy niezależnymi, jeśli nie są incydentne ze wspólnym wierzchołkiem. Skojarzeniem w grafie G nazywamy dowolny
Wykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.
SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu
Wykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
Definicje. Algorytm to:
Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06
Grafy Alberta-Barabasiego
Spis treści 2010-01-18 Spis treści 1 Spis treści 2 Wielkości charakterystyczne 3 Cechy 4 5 6 7 Wielkości charakterystyczne Wielkości charakterystyczne Rozkład stopnie wierzchołków P(deg(x) = k) Graf jest
Metody Kompilacji Wykład 3
Metody Kompilacji Wykład 3 odbywa się poprzez dołączenie zasad(reguł) lub fragmentów kodu do produkcji w gramatyce. Włodzimierz Bielecki WI ZUT 2 Na przykład, dla produkcji expr -> expr 1 + term możemy
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
Problem kodowania w automatach
roblem kodowania w automatach Kodowanie stanów to przypisanie kolejnym stanom automatu odpowiednich kodów binarnych. Minimalna liczba bitów b potrzebna do zakodowania automatu, w którym liczność zbioru
Numeryczne rozwiązywanie równań i układów równań
Lekcja Strona z 2 Numeryczne rozwiązywanie równań i układów równań Rozwiązywanie pojedynczego równania - funkcja root Do rozwiązywania jednego równania z jedną niewiadomą służy funkcja root(f(z), z), gdzie:
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Reprezentacja
Uczenie sieci neuronowych i bayesowskich
Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10