SPEKTROSKOPIA ATOMOWA I MOLEKULARNA
|
|
- Laura Domagała
- 8 lat temu
- Przeglądów:
Transkrypt
1 SPEKTROSKOPIA ATOMOWA I MOLEKULARNA Ćwiczenie 1 : Charakterystyka widm elektronowych akwakompleksów wybranych jonów metali Charakterystyka widma elektronowego Promieniowanie elektromagnetyczne jest falą i strumieniem fotonów, których energia jest wyrażona zależnością Plancka: E = h = h c/ = h ῡ c Gdzie : h = stała Plancka (6, [J s] ; = częstotliwość, liczba cykli na jednostkę czasu [Hz] ; c prędkość światła w próżni wynosząca [m/s]; = długość fali [m] ; ῡ = 1/ liczba falowa [cm -1 ]. Promieniowanie elektromagnetyczne padające na materię może być absorbowane, emitowane lub rozpraszane określonymi porcjami wynoszącymi h. W wyniku absorpcji promieniowania elektromagnetycznego przez cząsteczki zachodzą w niej zmiany stanów energetycznych. Absorpcja promieniowania z zakresu UV-VIS oraz NIR (bliskiej podczerwieni) wywołuje wzbudzenie zewnętrznych elektronów, efektem czego jest elektronowe widmo absorpcyjne. Jeśli zaniedbamy energię rotacji, zmiana stanu energetycznego cząsteczki może być przedstawiona w postaci dwóch krzywych, odnoszących się do stanu podstawowego i wzbudzonego. Zasada Francka- Condona zakłada, że wzbudzenie elektronów w atomie nie powoduje zmiany położenia jąder czyli przejścia zachodzą,,pionowo (Rys. 1). Rys. 1. Krzywe energii potencjalnej dla stanu podstawowego (1) i wzbudzonego (2) ilustruje zasadę Francka-Condona. Koniecznym warunkiem absorpcji fotonu wywołującego przeniesienie elektronu z niższego poziomu energetycznego na wyższy jest dopasowanie wielkości fotonu do różnicy poziomów energetycznych czyli E = h. Jest to warunek konieczny ale nie wystarczający. Jeśli, mimo dopasowania fotonu, prawdopodobieństwa przejścia jest równe zero to absorpcja nie zachodzi. Moment przejścia miedzy termami elektronowymi, określającymi prawdopodobieństwo absorpcji dopasowanego fotonu : + R lm =. * l m d Przejście elektronowe jest dozwolone gdy R lm 0, gdy iloczyn * m jest w pełni symetryczny przynajmniej dla jednej składowej momentu dipolowego. Przejście elektronowe jest wzbronione gdy Rlm = 0. Natomiast R lm 0 tylko wtedy gdy termy l i m mają tę samą multipletowość spinową, dlatego tez kolejną reguła jest S = 0 i dozwolone są przejścia miedzy termami elektronowymi o tej samej multipletowości np. singlet-singlet, dublet-dublet, tryplet-tryplet, kwartet-kwartet. Jednak reguła ta jest przybliżona, ponieważ w widmie elektronowym pojawiają się również przejścia wzbronione, których intensywność jest znacznie niższa niż przejść dozwolonych. Jest to bardzo subtelnych efekt wzajemnego oddziaływania elementów struktury molekuły. Jednym z oddziaływań, które powodują pojawienie się w widmie pasm wzbronionych, jest tak zwane sprzężenie wibronowe. Zręby atomowe w molekule wykonują drgania, które zmieniają moment dipolowy. Zdarza się, że Rlm = 0 dla momentu dipolowego określonego dla stanu równowagi drgania (q = 0) ale gdy
2 Rys. 2. Krzywa Gaussa opisująca typowe pasmo elektronowe. zręby atomowe są wychylone ze stanu równowagi (q 0), moment dipolowy jako operator da Rlm 0 i czyni przejście dozwolonym. Pasmo elektronowe określa różnicę energii między stanami podstawowym i wzbudzonym (Rys.1). Dla pasma związanego z przejściem elektronowym ważne jest : a) położenie, przy którym występuje maksimum pasma, 0 b) wysokość, Imax ( max) c) szerokość, 2q (Rys. 2). Widma elektronowe kompleksów jonów metali przejściowych są skutkiem przejść elektronowych z udziałem elektronów d jonów centralnych. Charakter tych przejść elektronowych tłumaczy teoria pola ligandów. W izolowanym gazowym jonie metalu orbital d jest pięciokrotnie zdegenerowany tj. wszystkie orbitale mają identyczną energię. W kompleksach jon metalu jest w większości przypadków otoczony przez cztery lub sześć ligandów, które wytwarzają pole ładunków ujemnych. Pole to nie jest sferyczne symetrycznie i na pięć orbitali d (dxy, dxz, dyz, dz2, dx2-y2) nie działa w identyczny sposób, rozszczepiając orbital d na grupy orbitali o różnych wartościach energii. W oktaedrycznym polu ligandów (np. [Ni(H2O)6] 2+ ) orbital d zostaje rozszczepiony na dwie grupy : o niższej energii t2g (dxy, dxz, dyz) i wyższej energii eg (dz2, dx2-y2). Natomiast w polu o symetrii tetraedrycznej następuje również rozszczepienie z dwie grupy jednak energia orbitalni z grupy t2g jest wyższa od energii orbitali grupy eg (Rys.3). Różnica energii między poziomami t2g i eg (oktaedry) lub eg i t2g (tetraedry) oznacza się symbolem 10Dq lub o i jest miarą siły pola ligandów. Energię tę można wyznaczyć z długości fali promieniowania pochłoniętego przez kompleks. W związkach kompleksowych metali przejściowych, w których występuje rozszczepienie orbitali d możliwe są przejścia elektronu z niższego poziomu do poziomu wyższego wskutek absorpcji fotonu o energii równej o (Rys.3). Rys. 3. Rozszczepienie orbitali d w polu o różnych symetriach. Ligandy, które powodują niewielkie rozszczepienie nazywamy się słabymi a ligandy powodujące duże rozszczepienie nazywa się mocnymi. Szereg złożony z ligandów w kolejności wzrastających wartości 10Dq w związkach kompleksowych wytwarzanych przez ligandy to szereg spektrochemiczny : I - < Br - < Cl - < F - < OH - < C2O4 2- < H2O < O 2- < NH3 < H2N CH2 CH2 NH2 < NO2 - << CN -
3 z 2 x 2 -y 2 z 2 x 2 -y 2 o E o z 2 x 2 -y 2 o xy xz yz xy xz yz xy xz yz [Ni(H2O)6] 2+ [Ni(NH3)6] 2+ [Ni(en)3] 2+ zielony niebieski fioletowy Natomiast, jeśli wybierzemy jeden ligand i przeanalizujemy wartość Dq dla kompleksów różnych jonów metali z tym samym ligandem to wartość rozszczepienia Dq wzrasta ze wzrostem ładunku jonu centralnego : Mn 2+ < Ni 2+ < Co 2+, Fe 2+ < Fe 3+ < Cr 3+ < V 3+ < Co 3+ < Mn 4+ < Pd 4+ < Pt 4+ Pasma przejść leżą w zakresie światła widzialnego lub nadfioletu i są odpowiedzialne za barwy kompleksów metali przejściowych. Barwa jest wrażeniem wzrokowym wywołanym przez widzialną część promieniowania elektromagnetycznego. Jeden z przykładów podziału widma przedstawia Tabela 1. Tabela 1. Barwa Przybliżony zakres długości fali [nm] Barwa dopełniająca(wg. Helmholtza) Fioletowa Żółtozielona Indygo Żółta Niebieska Pomarańczowa Zielona Purpurowa Żółta Indygo Pomarańczowa Niebieska Czerwona Niebieskozielona Zależność między wartością energii rozszczepienia w kompleksie a długością fali promieniowania pochłoniętego przez elektron wyraża zależność : o = hc / co, oznacza że im większe rozszczepienie, tym mniejsza długość fali światła absorbowanego przez kompleks. Rzeczywista barwa kompleksu zależy od położenia odpowiednich pasm, czyli 10Dq, intensywności pasma oraz konturu pasma. Według Jørgensena wartość 10Dq jest równa w przybliżeniu iloczynowi f g gdzie : f = charakterystyczna wartość dla jonu centralnego [cm -1 ]; g = wielkość niemianowana dla określonego liganda. Empiryczne wartości g dla jonów pierwiastków przejściowych oraz wartości f dla wybranych ligandów w kompleksach oktaedrycznych podaje Tabela 2.
4 Tabela 2. Jon pierwiastka g 10 3 [cm -1 ] Ligand f Mn 2+ 8,5 6Br - 0,76 Co 2+ 9,3 6 Cl - 0,80 Ni 2+ 8,5 6OH - 0,94 Fe 2+ 10,4 6 H2O 1,00 V 2+ 12,3 6 NH3 1,25 Cu 2+ 12,0 6 CN - 1,70 Dla widm roztworowych obowiązuje Prawo Beera-Waltera (prawo Lamberta-Beera), czyli absorbancja A jest proporcjonalna do stężenia roztworu c oraz grubości warstwy absorpcyjnej: A = k b c lub A = l c gdzie k = współczynnik proporcjonalności i gdzie = molowy współczynnik absorpcji [mol -1 dm 3 cm -1 ] ; l = grubość warstwy [cm]; c = stężenie molowe [mol/dm 3 ] Intensywności (wartość ) w widmie zależą od wielkości momentu przejścia M. Wartość jest ważną wskazówką dotyczącą charakteru danego przejścia elektronowego (Tabela 3). Można wyróżnić następujące typy przejść : przejścia miedzy orbitalami w jonie centralnym (, f-f) przejścia typu przeniesienia ładunku (ang. Charge-transfer, CT) między jonem centralnym a ligandami, w kompleksach LMCT ligand-metal charge transfer i MLCT metal-ligand chargé transfer przejścia własne w cząsteczce liganda (elektrony wiązań typu i ). Tabela 3. Zakres intensywności przejść elektronowych ( ). Przejście elektronowe Zakres Przykład intensywności mol -1 dm 3 cm -1 Spinowo i orbitalnie dozwolone [CrO4] 2-, CT charge transfer Spinowo dozwolone, orbitalnie wzbronione ale dozwolone przez mieszanie się orbitali p i d [NiCl4] 2- (Td) Spinowo dozwolone, orbitalnie wzbronione [Ni(H2O)6] 2+ (Oh) Spinowo i orbitalnie wzbronione [Mn(H2O)6] 2+ (Oh)
5 Najliczniejszą grupę barwnych nieorganicznych związków chemicznych tworzą związki pierwiastków przejściowych czyli d-elektronowch. Charakteryzują się one selektywną absorpcją promieniowania w zakresie widzialnym. Główne typy przejść elektronowych, które są źródłem barwności związków metali przejściowych obejmują przejścia pola krystalicznego i przejścia przeniesienia ładunku (charge-transfer). W roztworach wodnych soli metali d- elektronowych tworzą się akwakompleksy typu np.: [Co(H2O)2] 2+, [Ni(H2O)] 2+. Wodne roztwory jonów pierwiastków przejściowych w zależności od liczby elektronów q w konfiguracji d q czyli od d o do d 10 wykazują różne zabarwienia oraz występującymi różnicami w ilości oraz położeniu pasm absorpcyjnych. CEL ĆWICZENIA rejestracja widm akwakompleksów jonów metali d-elektronowych (Cu 2+, Ni 2+, Co 2+, Cr 3+ ) wyznaczenie maksimów absorpcyjnych w otrzymanych widmach wyjaśnienie pochodzenia barwy akwakompleksów określenie, jaka barwa światła widzialnego jest pochłaniana przy jakiej długości fali następuje absorpcja a jaka barwa jest przepuszczalna wyznaczenie wartości molowy współczynnik absorpcji i określenie typu przejścia elektronowego określenie przybliżonych wartości rozszczepienia 10 Dq w badanych kompleksach w oparciu o zależność 10 Dq = f g określić ilość pasm typu obserwowanych na widmach i połączyć ich ilość z konfiguracją metalu centralnego przypisanie przejść elektronowych dla każdego pasma na podstawia diagramu Tanabe- Sugano WYKONANIE Przygotować roztwory wodne o stężeniu 0.1 mol/dm 3 soli następujących jonów metali Cu 2+, Ni 2+, Co 2+, Cr 3+ w kolbach o objętości 25 ml. Wykonać widma absorpcyjne otrzymanych roztworów używając kuwet o l=10mm i wody jako odnośnika. Literatura [1] R. M. Silverstein, F. X. Webster, D. J. Klemle, SPEKTROSKOPOWE METODY IDENTYFIKACJI ZWIĄZKÓW ORGANICZNYCH, PWN, 2012 [2] R. Mazurkiewicz, A. Rajca, E. Salwińska, A. Skibiński, J. Suwiński, W. Zieliński, METODY SPEKTROSKOPOWE I ICH ZASTOSOWANIE DO IDENTYFIKACJI ZWIĄZKÓW ORGANICZNYCH, WNT, WARSZAWA 2000, 1995 [3] A.B.P. Lever, INORGANIC ELECTRONIC SPECTROSCOPY, Elsevier, New York, [4] C. N. R. Rao, SPEKTROSKOPIA ELEKTRONOWA ZWIĄZKÓW ORGANICZNYCH, WIDMA W NADFIOLECIE I ZAKRESIE WIDZIALNYM, PWN Warszawa [5] Zbigniew Kęcki: PODSTAWY SPEKTROSKOPII MOLEKULARNEJ. Wyd. III. Warszawa: PWN, [6] R. Łyszczek, A. Bartyzel, Z. Rzączyńska, CHEMIA KOORDYNACYJNA W ĆWICZENIACH LABORATORYJNYCH, Wyd. Uniwersytetu Marii Curie-Skłodowskiej [7] M. Cieślak-Golonka, J. Starosta, M. Wasielewski, WSTĘP DO CHEMI KOORDYNACYJNEJ, Wydz. Nuakowe PWN 2010 [8] A. Bartecki, BARWA ZWIĄZKÓW METALI, Wydawnictwo PWR, Wrocław 1993 Opracowanie : dr inż. Agnieszka Wojciechowska
SPEKTROSKOPIA ATOMOWA I MOLEKULARNA
SPEKTROSKOPIA ATOMOWA I MOLEKULARNA Ćwiczenie 2 : Reakcje wymiany ligandów w kompleksach jonów Co(II) Charakterystyka widma elektronowego Promieniowanie elektromagnetyczne jest falą i strumieniem fotonów,
BARWY W CHEMII Dr Emilia Obijalska Katedra Chemii Organicznej i Stosowanej UŁ
BARWY W CHEMII Dr Emilia bijalska Katedra Chemii rganicznej i Stosowanej UŁ Akademia Ciekawej Chemii Czym jest światło? Wzrok człowieka reaguje na fale elektromagnetyczne w zakresie 380-760nm. Potocznie
Szeregi spektrochemiczne
..PBN.CHE09 ĆWICZENIE 0 Szeregi spektrochemiczne Celem ćwiczenia jest zapoznanie się z podstawowymi pojęciami z zakresu spektroskopii optycznej kompleksów metali przejściowych na przykładzie wykonanych
ZASADY ZALICZENIA PRZEDMIOTU MBS
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll
ZWIĄZKI METALI PRZEJŚCIOWYCH. Jak powstaje jon kompleksowy? K 3 FeF 6 3K + + (FeF 6 ) 3-
WYKŁAD 4 ZWIĄZKI METALI PRZEJŚCIOWYCH Jak powstaje jon kompleksowy? K 3 FeF 6 3K (FeF 6 ) 3 Fe 3 (1s) 2 (2s) 2 (2p) 6 (3s) 2 (3p) 6 (3d) 5 OKTAEDR F F F 3 Fe F F F jon centralny ligand Energia elektronów
PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR
PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)
SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE
Spektroskopia molekularna. Ćwiczenie nr 1. Widma absorpcyjne błękitu tymolowego
Spektroskopia molekularna Ćwiczenie nr 1 Widma absorpcyjne błękitu tymolowego Doświadczenie to ma na celu zaznajomienie uczestników ćwiczeń ze sposobem wykonywania pomiarów metodą spektrofotometryczną
Spektroskopia molekularna. Spektroskopia w podczerwieni
Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego
SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne
SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów
BARWY W CHEMII Dr Emilia Obijalska Katedra Chemii Organicznej i Stosowanej UŁ
BARWY W CHEMII Dr Emilia bijalska Katedra Chemii rganicznej i Stosowanej UŁ Akademia Ciekawej Chemii Czym jest światło? Czym jest światło? Rozszczepienie światła białego przez pryzmat Fala elektromagnetyczna
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące
INSTRUKCJA DO ĆWICZEŃ
INSTRUKCJA DO ĆWICZEŃ Zastosowanie spektroskopii UV/VIS w określaniu struktury elektronowej związków koordynacyjnych kobaltu(ii) I. Cel ćwiczenia Głównym celem ćwiczenia jest wyznaczenie struktury elektronowej
Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM
Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Światło słoneczne jest mieszaniną fal o różnej długości i różnego natężenia. Tylko część promieniowania elektromagnetycznego
SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s]
SPEKTROFOTOMETRIA UV-Vis Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. Spektrofotometria w zakresie nadfioletu (UV) i promieniowania widzialnego (Vis) jest jedną
METODY SPEKTROSKOPOWE II. UV-VIS od teorii do praktyki Jakub Grynda Katedra Technologii Leków i Biochemii
METODY SPEKTROSKOPOWE II UV-VIS od teorii do praktyki Jakub Grynda Katedra Technologii Leków i Biochemii Pokój nr 1 w Chemii B Godziny konsultacji: Poniedziałek 11-13 E-mail: jakub.grynda@gmail.com PLAN
Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego
Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej
czyli reakcje wymiany ligandów i ich zastosowanie Mateusz Bożejko Edmund Pelc Liceum Ogólnokształcące nr III we Wrocławiu
czyli reakcje wymiany ligandów i ich zastosowanie Mateusz Bożejko Edmund Pelc Liceum Ogólnokształcące nr III we Wrocławiu Podstawowe pojęcia Podstawowe pojęcia Związek kompleksowy Sfera koordynacyjna Ligand
Wykład z Chemii Ogólnej
Wykład z Chemii Ogólnej Część 2 Budowa materii: od atomów do układów molekularnych 2.3. WIĄZANIA CHEMICZNE i ODDZIAŁYWANIA Katedra i Zakład Chemii Fizycznej Collegium Medicum w Bydgoszczy Uniwersytet Mikołaja
Spektroskopia Analiza rotacyjna widma cząsteczki N 2. Cel ćwiczenia: Wyznaczenie stałych rotacyjnych i odległości między atomami w cząsteczce N 2
Spektroskopia Analiza rotacyjna widma cząsteczki N 2 Cel ćwiczenia: Wyznaczenie stałych rotacyjnych i odległości między atomami w cząsteczce N 2 w stanach B 2 v=0 oraz X 2 v=0. System B 2 u - X 2 g cząsteczki
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Spektroskopowe metody identyfikacji związków organicznych
Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego
PRACOWNIA CHEMII. Równowaga chemiczna (Fiz2)
PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Równowaga chemiczna (Fiz2)
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny
CHEMIA. Wymagania szczegółowe. Wymagania ogólne
CHEMIA Wymagania ogólne Wymagania szczegółowe Uczeń: zapisuje konfiguracje elektronowe atomów pierwiastków do Z = 36 i jonów o podanym ładunku, uwzględniając rozmieszczenie elektronów na podpowłokach [
Jak analizować widmo IR?
Jak analizować widmo IR? Literatura: W. Zieliński, A. Rajca, Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych. WNT. R. M. Silverstein, F. X. Webster, D. J. Kiemle, Spektroskopowe
dr inż. Beata Brożek-Pluska SERS La boratorium La serowej
dr inż. Beata Brożek-Pluska La boratorium La serowej Spektroskopii Molekularnej PŁ Powierzchniowo wzmocniona sp ektroskopia Ramana (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych
Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej
Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB Tematyka Spektroskopia - podział i zastosowanie
Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu
Imię i nazwisko ucznia Nazwa i adres szkoły Imię i nazwisko nauczyciela Tytuł eksperymentu Dział fizyki Potrzebne materiały do doświadczeń Kamil Jańczyk i Mateusz Kowalkowski I Liceum Ogólnokształcące
ANALITYKA W KONTROLI JAKOŚCI
ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII
Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil
Spektroskopia Spotkanie pierwsze Prowadzący: Dr Barbara Gil Temat rozwaŝań Spektroskopia nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na
Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy
T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR
Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Szczególnym i bardzo charakterystycznym rodzajem oddziaływań międzycząsteczkowych jest wiązanie wodorowe. Powstaje ono między molekułami,
Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych
Zwiększenie liczby wysoko wykwalifikowanych absolwentów kierunków ścisłych Uniwersytetu Jagiellońskiego POKL.04.01.02-00-097/09-00 Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych
Ćw. 11 wersja testowa Wyznaczanie odległości krytycznej R 0 rezonansowego przeniesienia energii (FRET)
Ćw. 11 wersja testowa Wyznaczanie odległości krytycznej R 0 rezonansowego przeniesienia energii (FRET) Wstęp W wyniku absorpcji promieniowania elektromagnetycznego o odpowiedniej długości fali (najczęściej
Promieniowanie cieplne ciał.
Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych
Elektronowa struktura atomu
Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii
Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie
Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,
1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?
Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody
Związki kompleksowe. pigmenty i barwniki. co to są związki kompleksowe? jaka jest ich budowa? skąd się bierze kolor? Pierwiastki
pigmenty i barwniki co to są związki kompleksowe? jaka jest ich budowa? skąd się bierze kolor? 1 07_117 Układ okresowy Pierwiastki 1 1 H 3 Li 11 Na 19 K 37 Rb 55 Cs 87 Fr metale niemetale 2 13 14 15 16
Związki kompleksowe pigmenty i barwniki co to są związki kompleksowe? jaka jest ich budowa? skąd się bierze kolor?
pigmenty i barwniki co to są związki kompleksowe? jaka jest ich budowa? skąd się bierze kolor? 1 1 1 H 3 Li 11 Na 19 K 37 Rb 55 Cs 87 Fr 4 Be 12 Mg 20 Ca 38 Sr 56 Ba 88 Ra Układ okresowy 2 13 14 15 16
PRACOWNIA CHEMII. Wygaszanie fluorescencji (Fiz4)
PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Wygaszanie fluorescencji
że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41?
TEST. Ortogonalne i znormalizowane funkcje f i f są funkcjami własnymi operatora αˆ, przy czym: α ˆ f =. 05 f i α ˆ f =. 4f. Stan pewnej cząstki opisuje 3 znormalizowana funkcja falowa Ψ = f + f. Jakie
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
8. Trwałość termodynamiczna i kinetyczna związków kompleksowych
8. Trwałość termodynamiczna i kinetyczna związków kompleksowych Tworzenie związku kompleksowego w roztworze wodnym następuje poprzez wymianę cząsteczek wody w akwakompleksie [M(H 2 O) n ] m+ na inne ligandy,
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Spektrofotometryczne oznaczanie stężenia jonów żelaza(iii) opiekun mgr K. Łudzik
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Spektrofotometryczne oznaczanie stężenia jonów żelaza(iii) opiekun mgr K. Łudzik ćwiczenie nr 26 Zakres zagadnień obowiązujących do ćwiczenia 1. Prawo Lamberta
Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR
Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR 1. Wstęp Związki karbonylowe zawierające w położeniu co najmniej jeden atom wodoru mogą ulegać enolizacji przez przesunięcie protonu
Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności
Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu
KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE
1 3 4 5 6 7 8 8.0 Kod przedmiotu Nazwa przedmiotu Jednostka Punkty ECTS Język wykładowy Poziom przedmiotu Symbole efektów kształcenia Symbole efektów dla obszaru kształcenia Symbole efektów kierunkowych
Spektroskopia elektronowa
Spektroskopia elektronowa Przejście elektronów w cząsteczce ze stanu podstawowego do wzbudzonego powoduje zmiany energii oscylacyjnej i rotacyjnej. Widma UV-VIS są zatem widmami elektronoworotacyjno-oscylacyjnymi
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około
Fizykochemiczne metody w kryminalistyce. Wykład 7
Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne
Chemia Nieorganiczna II (3.3.PBN.CHE109), konwersatorium Chemia, I stopień, III r., semestr 5. Lista 1.
Lista 1. 1. Określ zależność pomiędzy właściwościami magnetycznymi (wartością momentu magnetycznego µ B, wyrażonego w magnetonach Bohra) a przynależnością do typu kompleksów wewnątrz- i zewnątrz-orbitalowych,
Temat 1: Budowa atomu zadania
Budowa atomu Zadanie 1. (0-1) Dany jest atom sodu Temat 1: Budowa atomu zadania 23 11 Na. Uzupełnij poniższą tabelkę. Liczba masowa Liczba powłok elektronowych Ładunek jądra Liczba nukleonów Zadanie 2.
Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych
Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie
Konwersatorium 1. Zagadnienia na konwersatorium
Konwersatorium 1 Zagadnienia na konwersatorium 1. Omów reguły zapełniania powłok elektronowych. 2. Podaj konfiguracje elektronowe dla atomów Cu, Ag, Au, Pd, Pt, Cr, Mo, W. 3. Wyjaśnij dlaczego występują
c) prawdopodobieństwo znalezienia cząstki między x=1.0 a x=1.5 jest równe
TEST 1. Ortogonalne i znormalizowane funkcje f 1 i f są funkcjami własnymi operatora, przy czym: f 1 =1.05 f 1 i f =.41 f. Stan pewnej cząstki opisuje znormalizowana funkcja 1 3 falowa = f1 f. Jakie jest
Zastosowanie spektroskopii UV/VIS w określaniu struktury związków organicznych Małgorzata Krasodomska
Zastosowanie spektroskopii UV/VIS w określaniu struktury związków organicznych Małgorzata Krasodomska 1.1. Wprowadzenie do spektroskopii UV/VIS Spektroskopia w nadfiolecie, oraz świetle widzialnym UV/VIS
EFEKT SOLWATOCHROMOWY. WYZNACZANIE MOMENTU DIPOLOWEGO CZĄSTECZKI W STANIE WZBUDZONYM METODĄ SOLWATOCHROMOWĄ
Ćwiczenie EFEKT SOLWATOCHROMOWY. WYZNACZANIE MOMENTU DIPOLOWEGO CZĄSTECZKI W STANIE WZBUDZONYM METODĄ SOLWATOCHROMOWĄ Zagadnienia: typy przejść elektronowych, orbitale atomowe (s, p, d) i molekularne (σ,
ZWIĄZKI KOMPLEKSOWE. dr Henryk Myszka - Uniwersytet Gdański - Wydział Chemii
ZWIĄZKI KOMPLEKSOWE SOLE PODWÓJNE Sole podwójne - to sole zawierające więcej niż jeden rodzaj kationów lub więcej niż jeden rodzaj anionów. Należą do nich m. in. ałuny, np. siarczan amonowo-żelazowy(ii),
Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.
Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:
TEORIA PASMOWA CIAŁ STAŁYCH
TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s
ZWIĄZKI KOMPLEKSOWE SOLE PODWÓJNE
ZWIĄZKI KOMPLEKSOWE SOLE PODWÓJNE Sole podwójne - to sole zawierające więcej niż jeden rodzaj kationów lub więcej niż jeden rodzaj anionów. Należą do nich m. in. ałuny, np. ałun glinowo-potasowy K 2 Al
WYZNACZANIE ODLEGŁOŚCI KRYTYCZNEJ POMIĘDZY CZĄSTECZKAMI DONORA I AKCEPTORA W PROCESIE REZONANSOWEGO PRZENIESIENIA ENERGII (FRET)
Ćwiczenie 9 WYZNACZANIE ODLEGŁOŚCI KRYTYCZNEJ POMIĘDZY CZĄSTECZKAMI DONORA I AKCEPTORA W PROCESIE REZONANSOWEGO PRZENIESIENIA ENERGII (FRET) Zagadnienia: procesy dezaktywacji stanów elektronowo wzbudzonych
WYKŁAD 5 Zastosowanie teorii grup w analizie widm oscylacyjnych
WYKŁAD 5 Zastosowanie teorii grup w analizie widm oscylacyjnych Prof. dr hab. Halina Abramczyk Dr inż. Beata Brożek-Płuska POLITECHNIKA ŁÓDZKA Wydział Chemiczny, Instytut Techniki Radiacyjnej Laboratorium
Wprowadzenie do technologii HDR
Wprowadzenie do technologii HDR Konwersatorium 2 - inspiracje biologiczne mgr inż. Krzysztof Szwarc krzysztof@szwarc.net.pl Sosnowiec, 5 marca 2018 1 / 26 mgr inż. Krzysztof Szwarc Wprowadzenie do technologii
Wykład Atom o wielu elektronach Laser Rezonans magnetyczny
Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe
SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ
SPEKTROSKOPIA RAMANA Laboratorium Laserowej Spektroskopii Molekularnej PŁ WIDMO OSCYLACYJNE Zręby atomowe w molekule wykonują oscylacje wokół położenia równowagi. Ruch ten można rozłożyć na 3n-6 w przypadku
PODSTAWY BARWY, PIGMENTY CERAMICZNE
PODSTAWY BARWY, PIGMENTY CERAMICZNE Barwa Barwą nazywamy rodzaj określonego ilościowo i jakościowo (długość fali, energia) promieniowania świetlnego. Głównym i podstawowym źródłem doznań barwnych jest
PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ
PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ Kierowniczka pracowni: dr hab. Magdalena Pecul-Kudelska, (pok. 417), e-mail mpecul@chem.uw.edu.pl, tel 0228220211 wew 501; Spis ćwiczeń i osoby prowadzące 1.
Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ
Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów
Fizyka atomowa r. akad. 2012/2013
r. akad. 2012/2013 wykład VII - VIII Podstawy Procesów i Konstrukcji Inżynierskich Fizyka atomowa Zakład Biofizyki 1 Spin elektronu Elektrony posiadają własny moment pędu L s. nazwany spinem. Wartość spinu
Kwantowa natura promieniowania
Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała
Spektroskopia elektronowa
Spektroskopia elektronowa Przejście elektronów w cząsteczce ze stanu podstawowego do wzbudzonego powoduje zmiany energii oscylacyjnej i rotacyjnej. Widma UV-VIS są zatem widmami elektronoworotacyjno-oscylacyjnymi
PDF stworzony przez wersję demonstracyjną pdffactory
Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna
Elektronowa struktura atomu
Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii
Atom wodoru w mechanice kwantowej. Równanie Schrödingera
Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz
Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych.
Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych. Geometria cząsteczek Geometria cząsteczek decyduje zarówno o ich właściwościach fizycznych jak i chemicznych, np. temperaturze wrzenia,
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz
Atomy wieloelektronowe
Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,
Stany skupienia materii
Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię
Wykład z Chemii Ogólnej
Wykład z Chemii Ogólnej Część 2 Budowa materii: od atomów do układów molekularnych 2.2. BUDOWA CZĄSTECZEK Katedra i Zakład Chemii Fizycznej Collegium Medicum w Bydgoszczy Uniwersytet Mikołaja Kopernika
ĆWICZENIE 3 LUMINOFORY ORGANICZNE I NIEORGANICZNE.
Laboratorium specjalizacyjne A ĆWICZENIE 3 LUMINOFORY ORGANICZNE I NIEORGANICZNE. Zagadnienia: Podział luminoforów: fluorofory oraz fosfory Luminofory organiczne i nieorganiczne Różnorodność stanów wzbudzonych
Orbitale typu σ i typu π
Orbitale typu σ i typu π Dwa odpowiadające sobie orbitale sąsiednich atomów tworzą kombinacje: wiążącą i antywiążącą. W rezultacie mogą powstać orbitale o rozkładzie przestrzennym dwojakiego typu: σ -
Chemia I Semestr I (1 )
1/ 6 Inżyniera Materiałowa Chemia I Semestr I (1 ) Osoba odpowiedzialna za przedmiot: dr inż. Maciej Walewski. 2/ 6 Wykład Program 1. Atomy i cząsteczki: Materia, masa, energia. Cząstki elementarne. Atom,
Przejścia promieniste
Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej
Temat: Promieniowanie atomu wodoru (teoria)
Temat: Promieniowanie atomu wodoru (teoria) Zgodnie z drugim postulatem Bohra elektron poruszając się po dozwolonej orbicie nie wypromieniowuje energii. Promieniowanie zostaje wyemitowane, gdy elektron
spektroskopia elektronowa (UV-vis)
spektroskopia elektronowa (UV-vis) rodzaje przejść elektronowych Energia σ* π* 3 n 3 π σ σ σ* daleki nadfiolet (λ max < 200 nm) π π* bliski nadfiolet jednostki energii atomowa jednostka energii = energia
Wykład Budowa atomu 3
Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n
ELEMENTY ANALIZY INSTRUMENTALNEJ. SPEKTROFOTOMETRII podstawy teoretyczne
ELEMENTY ANALZY NSTRUMENTALNEJ Ćwiczenie 3 Temat: Spektrofotometria UV/ViS SPEKTROFOTOMETR podstawy teoretyczne SPEKTROFOTOMETRA jest techniką instrumentalną, w której do celów analitycznych wykorzystuje
Kolorymetryczne oznaczanie stężenia Fe 3+ metodą rodankową
Kolorymetryczne oznaczanie stężenia Fe 3+ metodą rodankową (opracowanie: Barbara Krajewska) Celem ćwiczenia jest zapoznanie się z podstawami spektrofotometrii absorpcyjnej w świetle widzialnym (kolorymetrią)
Fizyka 3.3 WYKŁAD II
Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło
Optyczna spektroskopia oscylacyjna. w badaniach powierzchni
Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość
Metody spektroskopowe:
Katedra Chemii Analitycznej Metody spektroskopowe: Absorpcyjna Spektrometria Atomowa Fotometria Płomieniowa Gdańsk, 2010 Opracowała: mgr inż. Monika Kosikowska 1 1. Wprowadzenie Spektroskopia to dziedzina
Chemia koordynacyjna. Podstawy
Chemia koordynacyjna Podstawy NR 170 Jan G. Małecki Chemia koordynacyjna Podstawy Wydawnictwo Uniwersytetu Śląskiego Katowice 2016 Redaktor serii: Chemia Piotr Kuś Recenzenci Rafał Kruszyński, Iwona Łakomska
CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej metodę (teorię): metoda wiązań walencyjnych (VB)
CZĄSTECZKA Stanislao Cannizzaro (1826-1910) cząstki - elementy mikroświata, termin obejmujący zarówno cząstki elementarne, jak i atomy, jony proste i złożone, cząsteczki, rodniki, cząstki koloidowe; cząsteczka