Możliwości minimalizacji liczby wymian narzędzi z wykorzystaniem oprogramowanego modelu numerycznego
|
|
- Weronika Nowakowska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Michał Dobrzyński * Piotr Waszczur ** Możliwości minimalizacji liczby wymian narzędzi z wykorzystaniem oprogramowanego modelu numerycznego Wstęp Efektywność zautomatyzowanych systemów produkcyjnych uzależniona jest od sposobu przydziału przeznaczonych do wykonania części do poszczególnych maszyn. Z powyższym zadaniem planistycznym ściśle związany jest problem przydziału narzędzi niezbędnych do przeprowadzenia obróbki. Ze względu na strukturę i organizację systemu wytwarzania rozróżnić możemy różne sposoby przepływu narzędzi obróbkowych na poziomie produkcji. W większości przypadków operacje, przeznaczone do wykonania przez program produkcyjny, przydzielane są do obrabiarek łącznie z niezbędnymi do ich przeprowadzenia narzędziami. Umożliwia to realizację produkcji bez żadnych przestojów powodowanych koniecznością dostarczania, czy też wymiany narzędzi [Stecke, 1983, s. 273]. Jedynymi składowymi, które muszą być uwzględniane są bieżące zmiany narzędzi (uzależnione rozwiązaniem konstrukcyjnym głowicy narzędziowej) oraz awaryjne wymiany narzędzi spowodowane katastroficznym zużyciem ostrza. Innym przypadkiem są systemy produkcyjne wyposażone w wielofunkcyjne i wielozadaniowe obrabiarki zapewniające obróbkę części w jednej lub dwóch operacjach technologicznych. Praktycznie każda z obrabiarek zapewnia wykonanie wszystkich wymaganych operacji przydzielonej części. Głównym ograniczeniem przydziału części do maszyn jest dostępność narzędzi obróbkowych i przyrządów specjalnych na każdej z nich. W przeciwnym przypadku w przedsiębiorstwie trzeba by utrzymywać ogromny kapitał zamrożony w narzędziach, przyrządach i uchwytach obróbkowych. Z tego powodu istnieje konieczność ustalania zoptymalizowa- * Dr inż., Katedra Technologii Maszyn i Automatyzacji Produkcji, Wydział Mechaniczny, Politechnika Gdańska, adres mdobrzyn@pg.gda.pl ** Dr inż., Katedra Technologii Maszyn i Automatyzacji Produkcji, Wydział Mechaniczny, Politechnika Gdańska, adres waszczur@pg.gda.pl
2 Możliwości minimalizacji liczby wymian narzędzi z wykorzystaniem 355 nego obiegu narzędzi, który zapewnić może płynną realizację produkcji przy racjonalnych kosztach posiadania i utrzymania środków produkcji. Kluczowym jest ustalenie przydział części do maszyn przy ustalonej liczbie narzędzi każdego typu (poziom duplikacji). Zadanie to rozpatrywane może być przy dynamicznej wymianie narzędzi pomiędzy obrabiarkami. W literaturze zaproponowanych zostało wiele modeli, których celem jest rozwiązanie problemu przydziału części i narzędzi do maszyn [Tang, 1988, s. 767; Tzur 2004, s. 95; Crama, 2007, s. 952]. W wielu przypadkach nie dają one jednak rozwiązań optymalnych [Crama, 1997, s. 136]. Transport narzędzi pomiędzy obrabiarkami przy dynamicznej wymianie związany jest z czasem, wymusza również posiadanie zaawansowanego systemu sterowania obiegiem narzędzi. Statyczny przydział narzędzi wymaga znacznie większego zasobu narzędziowego (licznych duplikatów) oraz jest silnie uzależniony od pojemności magazynu narzędziowego obrabiarki. Alternatywnym rozwiązaniem może być stosowanie narzędzi, które umożliwiają wykonywanie także innych operacji niż pierwotnie dla nich przewidziane (alternatywne narzędzia). Przypadek ten zwiększa elastyczność obiegu narzędzi, natomiast może prowadzić do wydłużenia całkowitego czasu przetwarzania. Wynika to z zasady pierwszego wyboru narzędzia. Zasada ta opiera się na doborze spośród alternatywnych narzędzi tego, które zapewnia najkrótszy czas obróbki. Podsumowując, problem decyzyjny polega na takim przydziale części i narzędzi do obrabiarek, aby zoptymalizowana została wybrana miara efektywności zautomatyzowanego systemu wytwarzania. 1. Minimalizacja liczby wymian narzędzi Głównym celem ustalenia przydziału części i narzędzi do maszyn jest zminimalizowanie liczby wymian narzędzi pomiędzy obrabiarkami lub obrabiarką i buforowym magazynem narzędzi. Model uwzględniać musi takie podstawowe czynniki jak pojemność magazynu narzędziowego obrabiarki, duplikaty narzędzi każdego typu oraz możliwość zastosowania alternatywnych narzędzi w procesie. Song w analizie numerycznej tego modelu badał wpływ m.in. poziomu duplikacji narzędzi i stosowania alternatywnych narzędzi na wydajność systemu wytwórczego. Obliczenia oparte były na danych teoretycznych oraz elastycznym systemie wytwarzania składającym się z centrów obróbkowych o dużych pojemnościach magazynów narzędziowych [Song, 1995, s. 160].
3 356 Michał Dobrzyński, Piotr Waszczur W niniejszym artykule skoncentrowano się na analizie i ocenie rzeczywistego zautomatyzowanego systemu. Model rozpatrywano zatem dla systemu wytwarzania złożonego z identycznych obrabiarek, których pojemność magazynów narzędziowych jest ograniczona i wynosi od kilku do kilkunastu narzędzi. Funkcja celu minimalizuje liczbę wymian narzędzi przy następujących założeniach. Wszystkie centra obróbkowe są identyczne i mogą wykonywać wszystkie przydzielone do nich operacje. Dostępne są narzędzia alternatywne dla realizacji poszczególnych operacji. Magazyn narzędzi ma ograniczoną pojemność. Narzędzia mają jednakową wielkość i zajmują jedno gniazdo w magazynie. Środek transportu narzędzi jest zawsze dostępny, a czasy transportu narzędzi pomiędzy maszynami lub między maszyną a magazynem narzędzi są sobie równe. Pełne sformułowanie modelu jako zadanie liniowego programowania całkowitoliczbowego przedstawione zostało poniżej [Song, 1995, s.160]. Minimalizacja w (1) p k T przy założeniu: y pktm ytm wpktm p P, k K, T ( T1,..., Tn), m M (2) y pm = 1 p P (3) T p T ak m m pktm y Tm z Tx T ( T1,..., Tn) (4) m y Tm S m m M (5) T y k Op, p P, m M (6) k pktm y pm T { 0,1} T ak t y f ( 1+ a) m M (7) kt pktm y, y, y, w p P, k K, T ( T1,..., Tn), m M (8) pktm Tm pm pktm W powyższym modelu, przyjęto następujące oznaczenia: P zbiór części p, K zbiór operacji k, T typ narzędzia należącego do zbioru narzędzi (T1,,Tn), Op zbiór operacji wymaganych dla części p, Tak zbiór narzędzi alternatywnych dla operacji k, ztx liczba duplikatów dla narzędzia typu T, Sm pojemność magazynu narzędzi obrabiarki m, tk T czas obróbki operacji k narzędziem typu T, f obciążenie pojedynczej maszyny przy idealnym wyrównoważeniu obciążeń (tzn. czas, obliczony w wyniku podzielenia sumy czasów trwania wszystkich operacji zadania produkcyjnego; z wykorzystaniem narzędzi pierwszego doboru; przez liczbę obrabiarek).
4 Możliwości minimalizacji liczby wymian narzędzi z wykorzystaniem 357 Zmienne decyzyjne zostały zdefiniowano następująco: yp m 1, jeżeli część p jest przydzielona do maszyny m, 0 w innym przypadku, yt m 1, jeżeli narzędzie T jest przydzielone do maszyny m, 0 w innym przypadku, yp k Ta m 1, jeżeli operacja k części p jest wykonywana narzędziem Ta na maszynie m, 0 w innym przypadku. Zmienna wp k T m (nie jest zmienną niezależną) zależy od wartości zmiennych decyzyjnych (2): wp k T m = 0, jeżeli yt m = 0 i yp k Ta m = 1, wp k T m = 1, jeżeli narzędzie typu T powinno być przetransportowane do obrabiarki k z innej obrabiarki lub magazynu narzędziowego. Ograniczenie (3) oznacza, że każda część powinna być przydzielona tylko do jednej maszyny. Następne ograniczenia dotyczą zastosowanych w procesach narzędzi obróbkowych. Ograniczenie (4) nie dopuszcza, aby liczba duplikatów narzędzi przydzielonych do maszyn przekroczyła zdefiniowanej liczby kopii narzędzia. Natomiast ograniczenie (5) uwzględnia limitowaną pojemność magazynów narzędziowych obrabiarek. Nierówność (6) zapewnia, że operacje niezbędne dla danego typu części po przydzieleniu do danej obrabiarki, zostaną na niej wykonane przy użyciu: alternatywnych narzędzi lub narzędzi przetransportowanych z innej obrabiarki/magazynu narzędziowego. Nierówność (7) zapewnia wyrównoważenie obciążeń maszyn systemu. Wyrównoważenie odniesione jest do obciążenia pojedynczej maszyny przy idealnym wyrównoważeniu obciążeń maszyn systemu f, dodatkowo wprowadzono współczynnik dopuszczalnego przeciążenia a przyjmujący wartości 0 a 1. Wyniki eksperymentalne wykazały, że występowanie alternatywnych narzędzi dla operacji technologicznej lub założenie wysokich poziomów duplikacji narzędzi powoduje wyraźną poprawę efektywności systemu wytwarzania [Song, 1995, s. 160]. Uzyskuje się dzięki temu zmniejszenie liczby transportów narzędzi i redukcję obciążenia narzędzi z pierwszego doboru. 3. Analiza wyników Ocenę funkcjonowania modelu matematycznego przeprowadzono bazując na rzeczywistym zautomatyzowanym systemie wytwarzania, który składa się z dwóch homogenicznych obrabiarek (centrów tokarskich). W badaniach przyjęto cztery poziomy pojemności Sm magazynów narzędziowych obrabiarek: 6, 8, 12 i 15 narzędzi. Analizie poddane zostały dwa poziomy duplikacji D narzędzi, tj. brak kopii narzędzia (poziom I) i podwójna liczba dostępnych narzędzi (poziom II). Eksperyment przeprowadzono dla trzech zadań produkcyjnych o liczności odpowiednio 5, 10 i 15
5 358 Michał Dobrzyński, Piotr Waszczur typów części. W zadaniach produkcyjnych przyjęto dwa poziomy zróżnicowania typów części pod względem czasu ich wykonania. Dla poziomu pierwszego A przyjęto, że wszystkie typy części wchodzące w skład partii produkcyjnej mają równe czasy wykonania przy użyciu podstawowych narzędzi. Poziom drugi B uwzględniał zróżnicowanie czasów wykonania typów części wchodzących w skład partii produkcyjnej. Dla obu poziomów A i B przyjęto taką sama liczność typów narzędzi potrzebnych do zrealizowania poszczególnych zadań produkcyjnych. Wartości współczynnika przeciążenia przyjęto następująco: a = 0, a = 0,5 i a = 1. Założono udział alternatywnych narzędzi na poziomie 20%. Wynikał on z przyjętych do analizy danych uzyskanych z rzeczywistych zadań produkcyjnych realizowanych w zakładzie o profilu maszynowym. Tablica 1. Wyniki obliczeń dla przyjętego poziomu A i p = 5 a =0 a =0,5 a =1 % Sm % Sm % Sm Sm D a=0 a=0,5 a=1 m1 m2 m1 m2 m1 m2 w I % 50% 100% 50% 100% 0% 6 w II % 100% 100% 100% 100% 67% %D II 44% 44% 22% w I % 25% 75% 38% 100% 0% 8 w II % 63% 100% 63% 100% 0% %D II 56% 56% 0% w I % 42% 42% 33% 75% 0% 12 w II % 75% 75% 75% 75% 75% %D II 100% 100% 100% w I % 33% 33% 27% 60% 0% 15 w II % 60% 60% 60% 60% 60% %D II 100% 100% 100% Tablica 2. Wyniki obliczeń dla przyjętego poziomu A i p = 10 a =0 a =0,5 a =1 % Sm % Sm % Sm Sm D a=0 a=0,5 a=1 m1 m2 m1 m2 m1 m2 w I % 100% 100% 100% 100% 100% 6 w II % 100% 100% 100% 100% 100%
6 Możliwości minimalizacji liczby wymian narzędzi z wykorzystaniem 359 %D II 12% 0% 6% w I % 88% 100% 100% 88% 100% 8 w II % 100% 88% 100% 100% 100% %D II 12% 0% 0% w I % 67% 67% 58% 75% 58% 12 w II % 67% 100% 58% 100% 100% %D II 18% 29% 53% w I % 53% 53% 47% 93% 0% 15 w II % 67% 80% 47% 93% 0% %D II 18% 29% 0% Tablica 3. Wyniki obliczeń dla przyjętego poziomu A i p = 15 a =0 a =0,5 a =1 % Sm % Sm % Sm Sm D a=0 a=0,5 a=1 m1 m2 m1 m2 m1 m2 w I % 100% 100% 100% 100% 100% 6 w II % 100% 100% 100% 100% 100% %D II 5% 0% 0% w I % 100% 100% 100% 100% 100% 8 w II % 100% 100% 100% 100% 100% %D II 14% 5% 5% w I % 92% 67% 100% 67% 100% 12 w II % 100% 100% 92% 100% 92% %D II 19% 14% 14% w I % 73% 87% 47% 87% 47% 15 w II % 93% 100% 73% 100% 93% %D II 43% 24% 38% Do obliczeń wykorzystano program IBM ILOG CPLEX Optimization Studio V Wyniki obliczeń niezbędnej liczby wymian w narzędzi, umożliwiającej realizację programu produkcyjnego, zawierają tablice 1 6. W tablicach tych umieszczono także procentowy udział duplikatów narzędzi (%D) dla przyjętego II poziomu duplikacji oraz wartość wykorzystania magazynów narzędziowych (%Sm) maszyn m1 i m2.
7 360 Michał Dobrzyński, Piotr Waszczur Analizując wyniki, można zauważyć, że wpływ na liczbę wymian narzędzi w ma pojemność magazynów narzędziowych obrabiarek oraz wartość współczynnika przeciążenia a. Powyższą zależność zaobserwować można w przypadku liczności partii produkcyjnych składających się z 10 i 15 części. Wraz ze wzrostem pojemności magazynu narzędziowego i wartości współczynnika a, spada liczba wymian niezależnie od poziomu zróżnicowania czasów wykonania części, a tym samym poprawia się efektywność systemu wytwarzania. Natomiast, przy partii produkcyjnej o liczności 5 typów części (zobacz tablica 1 i 4), uzyskano takie same wyniki niezależnie o liczby gniazd obrabiarek. Można to tłumaczyć tym, że w zbiorze o małej liczbie typów części (a co za tym idzie również małej liczbie narzędzi), nie uzyskujemy wystarczająco dużych możliwości kombinacji przydziałów części i narzędzi do obrabiarek. Dla takich zadań produkcyjnych korzystniejsze jest zapewnienie duplikatów narzędzi, które umożliwiają wyrównoważenie obciążenia maszyn. Tablica 4. Wyniki obliczeń dla przyjętego poziomu B i p = 5 a =0 a =0,5 a =1 % Sm % Sm % Sm Sm D a=0 a=0,5 a=1 m1 m2 m1 m2 m1 m2 w I % 100% 67% 83% 100% 0% 6 w II % 100% 100% 100% 100% 67% %D II 44% 44% 22% w I % 50% 50% 63% 100% 0% 8 w II % 75% 88% 75% 100% 0% %D II 44% 44% 0% w I % 33% 42% 33% 67% 0% 12 w II % 75% 75% 75% 75% 75% %D II 100% 100% 100% w I % 33% 33% 27% 53% 0% 15 w II % 60% 60% 60% 60% 60% %D II 100% 100% 100% Oceniając uzyskane wyniki pod kątem liczby wymian narzędzi w zauważono (tablica 5 i 6), że dla zadania produkcyjnego składającej się z 15 typów części, uzyskano większą liczbę wymian narzędzi dla zadania pro-
8 Możliwości minimalizacji liczby wymian narzędzi z wykorzystaniem 361 dukcyjnego o bardziej zróżnicowanych czasach wykonania części przy wyrównoważeniu obciążenia maszyn (a = 0). Redukcję wymian zapewnia również załadowanie do magazynów duplikatów narzędzi. Należy przy tym wziąć pod uwagę pojemność magazynu narzędziowego, ponieważ wprowadzenie duplikatów może być niemożliwe przy małych pojemnościach magazynów narzędziowych obrabiarek i zadaniach produkcyjnych o dużej liczbie typów części (tabl. 5 i 6). Tablica 5. Wyniki obliczeń dla przyjętego poziomu B i p = 10 a =0 a =0,5 a =1 % Sm % Sm % Sm Sm D a=0 a=0,5 a=1 m1 m2 m1 m2 m1 m2 w I % 100% 100% 100% 100% 100% 6 w II % 100% 100% 100% 100% 100% %D II 12% 6% 6% w I % 100% 88% 100% 88% 100% 8 w II % 100% 100% 100% 100% 100% %D II 6% 0% 0% w I % 67% 75% 67% 75% 67% 12 w II % 83% 100% 58% 100% 92% %D II 29% 29% 47% w I % 53% 53% 60% 100% 0% 15 w II % 93% 80% 47% 87% 73% %D II 76% 29% 53% Tablica 6. Wyniki obliczeń dla przyjętego poziomu B i p = 15 a =0 a =0,5 a =1 % Sm % Sm % Sm Sm D a=0 a=0,5 a=1 m1 m2 m1 m2 m1 m2 w I % 100% 100% 100% 100% 100% 6 w II % 100% 100% 100% 100% 100% %D II 5% 0% 0% w I % 100% 100% 100% 100% 100% 8 w II % 100% 100% 100% 100% 100% %D II 10% 5% 5%
9 362 Michał Dobrzyński, Piotr Waszczur w I % 100% 58% 100% 67% 100% 12 w II % 100% 100% 100% 100% 92% %D II 24% 19% 14% w I % 87% 87% 53% 87% 47% 15 w II % 100% 93% 93% 100% 93% %D II 48% 38% 38% W tym przypadku zwiększenie efektywności systemu wytwarzania można uzyskać wprowadzając narzędzia alternatywne umożliwiające wykonywanie kilku operacji na różnych typach części. Warunkiem zwiększenia wspomnianej efektywności jest to, aby dłuższe czasy obróbki alternatywnymi narzędziami miały korzystną relację do czasów wymiany narzędzi. Dodatkowo zauważono, że model ma tendencję przydzielania duplikatów narzędzi w nadmiernej ilości. Na przykład, w zadaniu produkcyjnym dla 10 części, przy założeniu Sm = 12 gniazd (zobacz tablica 2), zwiększając współczynnik przeciążenia a do 0,5 uzyskiwano wzrost udziału duplikatów z poziomu 18% do 53% powodując zapełnianie magazynów narzędziowych obrabiarek. Dlatego też wykorzystując ten model do ustalania liczby duplikatów, pierwszym krokiem powinno być przypisanie duplikatu temu narzędziu, które było najczęściej przenoszone pomiędzy obrabiarkami przy wstępnym założeniu, że nie dysponujemy duplikatami narzędzi. Ważnym jest także ustalenie wartości współczynnika przeciążenia a. Wyniki obliczeń wskazują, że zbyt duża jego wartość nie zawsze powoduje zmniejszenie liczby duplikatów. Natomiast przyjęcie warunku idealnego wyrównoważenia maszyn (a = 0), nie zawsze jest możliwe ze względu na ograniczenie modelu, które przypisuje każdy typ części do jednej maszyny. Powoduje to, że w przypadku zadania produkcyjnego z małą liczbą typów części o zbliżonych czasach wykonania, niemożliwe jest wyrównoważenie obciążenia maszyn do wartości f. Analizując wyniki obciążenia obrabiarek zauważono, że niezależnie od przyjętych poziomów A i B zróżnicowania czasów wykonania typów części, model podobnie obciąża obrabiarki. Najlepsze wyrównoważenie uzyskuje się przy współczynniku przeciążenia a = 0 (zob. tablica 7). Jedynie dla zadań produkcyjnych o małym zróżnicowaniu czasów wykonania i nieparzystej liczbie części, nie uzyskano wyrównoważenia obrabiarek (zobacz tablica 8). Przyjmowanie zbyt dużej wartości współczynnika a nie
10 Możliwości minimalizacji liczby wymian narzędzi z wykorzystaniem 363 tylko nie wyrównoważy obciążeń obrabiarek, ale w skrajnym przypadku prowadzi do obciążenia tylko jednej z obrabiarek. Tablica 7. Obciążenie obrabiarek dla przyjętego poziomu B p = 10 Sm = 6 Sm = 8 Sm = 12 Sm = 15 D a 0 0, , , ,5 1 I II m1 49% 41% 41% 49% 41% 41% 51% 59% 59% 51% 59% 100% m2 51% 59% 59% 51% 59% 59% 49% 41% 41% 49% 42% 0% m1 51% 59% 59% 49% 41% 41% 51% 71% 67% 51% 71% 67% m2 49% 41% 41% 51% 59% 59% 49% 29% 33% 49% 29% 33% p = 15 Sm = 6 Sm = 8 Sm = 12 Sm = 15 D a 0 0, , , ,5 1 I m1 49% 35% 35% 51% 65% 35% 49% 35% 35% 49% 65% 65% m2 51% 65% 65% 49% 35% 65% 51% 65% 65% 51% 35% 35% m1 49% 65% 65% 49% 65% 65% 49% 55% 55% 50% 51% 53% II m2 51% 35% 35% 51% 35% 35% 51% 45% 45% 50% 49% 47% Tablica 8. Obciążenie obrabiarek dla przyjętego poziomu A p = 5 Sm = 6 Sm = 8 Sm = 12 Sm = 15 D a 0 0, , , ,5 1 I m1 60% 60% 100% 60% 60% 100% 60% 60% 100% 40% 60% 100% m2 40% 40% 0% 40% 40% 0% 40% 40% 0% 60% 40% 0% II m1 40% 40% 80% 60% 60% 100% 60% 60% 100% 60% 60% 100% m2 60% 60% 20% 40% 40% 0% 40% 40% 0% 40% 40% 0% Korzystnie na rozłożenie obciążeń obrabiarek wpłynęło użycie duplikatów narzędzi. Dobre rezultaty uzyskano nawet przy przyjętym współczynniku przeciążenia a = 1, ale korzystniejsze wartości zarejestrowano dla liczby typów części p = 15 co można tłumaczyć większą możliwością tworzenia kombinacji część narzędzie obrabiarka. Zakończenie W artykule przedstawiono wyniki analiz dotyczących możliwości minimalizacji liczby wymian narzędzi. Obliczenia wykonano wykorzystując dane z procesów obróbkowych realizowanych w zautomatyzowanym sys-
11 364 Michał Dobrzyński, Piotr Waszczur temie obróbkowym złożonym z dwóch homogenicznych maszyn. Zamodelowano, oprogramowano i przeprowadzono optymalizację z wykorzystaniem środków komputerowego wspomagania obliczeń. W analizach brano pod uwagę ograniczenia związane z pojemnością magazynów narzędziowych obrabiarek, poziomów duplikacji narzędzi i występowania alternatywnych narzędzi. Uzyskane wyniki pokazują, że stosując model minimalizacji wymian narzędzi dla maszyn o małych pojemnościach magazynów (np. 6, 8 gniazd), na efektywność systemu większy wpływ może mieć zastosowanie alternatywnych narzędzi, które mogą brać udział w wykonaniu kilku części wchodzących w skład zadania produkcyjnego, niż zastosowanie duplikatów narzędzi, których i tak nie można umieścić w magazynie obrabiarki. Natomiast dla obrabiarek o większych pojemnościach magazynów narzędziowych (np. 12, 15 gniazd), korzystniejsze będzie stosowanie duplikatów, których liczbę można obliczyć za pomocą analizowanego modelu, po wcześniejszym wyznaczeniu najczęściej wymienianych narzędzi. Praca naukowa finansowana ze środków na naukę w latach jako projekt badawczy Literatura 1. Crama Y. (1997), Combinatorial optimization models for production scheduling in automated manufacturing systems, European Journal of Operational Research, Crama Y., Moonen L.S., Spieksma F.C.R., Talloen E. (2007), The tool switching problem revisited, European Journal of Operational Research, Song C.Y., Hwang H., Kim Y.D. (1995), Heuristic algorithm for the tool movement policy in flexible manufacturing systems, Journal of Manufacturing Systems, vol. 14, no Stecke K.E. (1983), Formulation and solution of nonlinear integer production planning problems for flexible manufacturing systems, Management Science, Tang C.S., Denardo E.V. (1988), Models arising from a flexible manufacturing machine, part I: minimization of the number of tool switches, Operations Research, 36.
12 Możliwości minimalizacji liczby wymian narzędzi z wykorzystaniem Tzur M., Altman A. (2004), Minimization of tool switches for a flexible manufacturing machine with slot assignment of different tool sizes, IIE Transactions, 36. Streszczenie W artykule przedstawiono wyniki analizy numerycznej funkcjonowania optymalizacyjnego modelu całkowitoliczbowego, którego celem jest przydział narzędzi, który zapewni minimalizację liczbę przezbrojeń narzędziowych [Song, 1995, s. 166]. Uwzględniono ograniczenia dotyczące pojemności magazynów narzędziowych, dostępności narzędzi i ich duplikatów oraz możliwości zastosowania alternatywnych narzędzi w obróbce. W celu oceny modelu i możliwości zastosowania metodyki do rozwiązywania problemów przydziału narzędzi do obrabiarek w zautomatyzowanych systemach wytwarzania, przeprowadzono analizę obliczeniową z wykorzystaniem przykładowych danych z przemysłu maszynowego. Słowa kluczowe zarządzanie obiegiem narzędzi, zautomatyzowany system produkcyjny, modelowanie matematyczne, programowanie obliczeń numerycznych, wymiana narzędzi Possibilities of minimization of tool exchange numbers with programmed numerical model (Summary) This paper presents numerical analysis results of the integer linear programming model optimization. The object is tool allocation, that assure the minimization of tool set-ups. Limitations of tool magazine capacity, tool availability and duplicates and tool alternatives for machining were taken into account. In order to evaluate the model and the possibility of application the methodology for solving tool allocation problem in automated manufacturing system numerical analysis was carried out. It utilizes exemplary data from industrial practice. Keywords tool cycle management, automated manufacturing system, mathematical modeling, numerical programming, tool exchange
PLANOWANIE PRZEZBROJEŃ LINII PRODUKCYJNYCH Z WYKORZYSTANIEM METODY MODELOWANIA I SYMULACJI
Dariusz PLINTA Sławomir KUKŁA Akademia Techniczno-Humanistyczna w Bielsku-Białej PLANOWANIE PRZEZBROJEŃ LINII PRODUKCYJNYCH Z WYKORZYSTANIEM METODY MODELOWANIA I SYMULACJI 1. Planowanie produkcji Produkcja
Bardziej szczegółowoTechnik mechanik 311504
Technik mechanik 311504 Absolwent szkoły kształcącej w zawodzie technik mechanik powinien być przygotowany do wykonywania następujących zadań zawodowych: 1) wytwarzania części maszyn i urządzeń; 2) dokonywania
Bardziej szczegółowoCZAS WYKONANIA BUDOWLANYCH ELEMENTÓW KONSTRUKCJI STALOWYCH OBRABIANYCH METODĄ SKRAWANIA A PARAMETRY SKRAWANIA
Budownictwo 16 Piotr Całusiński CZAS WYKONANIA BUDOWLANYCH ELEMENTÓW KONSTRUKCJI STALOWYCH OBRABIANYCH METODĄ SKRAWANIA A PARAMETRY SKRAWANIA Wprowadzenie Rys. 1. Zmiana całkowitych kosztów wytworzenia
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy przedmiot kierunkowy Rodzaj zajęć: laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: KOMPUTEROWE WSPOMAGANIE WYTWARZANIA CAM Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU
Bardziej szczegółowoWYBÓR PUNKTÓW POMIAROWYCH
Scientific Bulletin of Che lm Section of Technical Sciences No. 1/2008 WYBÓR PUNKTÓW POMIAROWYCH WE WSPÓŁRZĘDNOŚCIOWEJ TECHNICE POMIAROWEJ MAREK MAGDZIAK Katedra Technik Wytwarzania i Automatyzacji, Politechnika
Bardziej szczegółowoPOLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY PROJEKT DYPLOMOWY INŻYNIERSKI
Forma studiów: stacjonarne Kierunek studiów: ZiIP Specjalność/Profil: Zarządzanie Jakością i Informatyczne Systemy Produkcji Katedra: Technologii Maszyn i Automatyzacji Produkcji Badania termowizyjne nagrzewania
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: SYSTEMY PROJEKTOWANIA PROCESÓW TECHNOLOGICZNYCH Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Automatyzacja wytwarzania i robotyka Rodzaj zajęć:
Bardziej szczegółowoInstytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż.
Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych Badania operacyjne Dr inż. Artur KIERZKOWSKI Wprowadzenie Badania operacyjne związana jest ściśle z teorią podejmowania
Bardziej szczegółowokierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) Polski semestr pierwszy
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Bardziej szczegółowoZarządzanie Produkcją V
Zarządzanie Produkcją V Dr Janusz Sasak ZP Doświadczenia Japońskie Maksymalizacja tempa przepływu materiałów Stabilizacja tempa przepływu materiałów - unifikacja konstrukcji - normalizacja konstrukcji
Bardziej szczegółowoMODELOWANIE PODSYSTEMU OBRABIAREK W ESP CZĘŚCI KLASY KORPUS Z WYKORZYSTANIEM PROGRAMU ENTERPRISE DYNAMICS
Arkadiusz Gola 1), Marta Osak 2) MODELOWANIE PODSYSTEMU OBRABIAREK W ESP CZĘŚCI KLASY KORPUS Z WYKORZYSTANIEM PROGRAMU ENTERPRISE DYNAMICS Streszczenie: Złożoność problemów techniczno-organizacyjnych,
Bardziej szczegółowoZASTOSOWANIE METOD OPTYMALIZACJI W DOBORZE CECH GEOMETRYCZNYCH KARBU ODCIĄŻAJĄCEGO
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 40, s. 43-48, Gliwice 2010 ZASTOSOWANIE METOD OPTYMALIZACJI W DOBORZE CECH GEOMETRYCZNYCH KARBU ODCIĄŻAJĄCEGO TOMASZ CZAPLA, MARIUSZ PAWLAK Katedra Mechaniki Stosowanej,
Bardziej szczegółowoOPTYMALIZACJA HARMONOGRAMOWANIA MONTAŻU SAMOCHODÓW Z ZASTOSOWANIEM PROGRAMOWANIA W LOGICE Z OGRANICZENIAMI
Autoreferat do rozprawy doktorskiej OPTYMALIZACJA HARMONOGRAMOWANIA MONTAŻU SAMOCHODÓW Z ZASTOSOWANIEM PROGRAMOWANIA W LOGICE Z OGRANICZENIAMI Michał Mazur Gliwice 2016 1 2 Montaż samochodów na linii w
Bardziej szczegółowoProgram kształcenia kursu dokształcającego
Program kształcenia kursu dokształcającego Opis efektów kształcenia kursu dokształcającego Nazwa kursu dokształcającego Tytuł/stopień naukowy/zawodowy imię i nazwisko osoby wnioskującej Dane kontaktowe
Bardziej szczegółowoKarta (sylabus) modułu/przedmiotu Mechanika i budowa maszyn] Studia II stopnia. polski
Karta (sylabus) modułu/przedmiotu Mechanika i budowa maszyn] Studia II stopnia Przedmiot: Zintegrowane systemy wytwarzania Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MBM 2 N 0 1 05-0_1 Rok: I Semestr:
Bardziej szczegółowoINTERFEJS TDM ZOLLER VENTURION 600 ZASTOSOWANIE W PRZEMYŚLE. Streszczenie INTERFACE TDM ZOLLER VENTURION 600 USE IN THE INDUSTRY.
DOI: 10.17814/mechanik.2015.8-9.461 Mgr inż. Tomasz DOBROWOLSKI, dr inż. Piotr SZABLEWSKI (Pratt & Whitney Kalisz): INTERFEJS TDM ZOLLER VENTURION 600 ZASTOSOWANIE W PRZEMYŚLE Streszczenie Przedstawiono
Bardziej szczegółowoPOSTĘPY W KONSTRUKCJI I STEROWANIU Bydgoszcz 2004
POSTĘPY W KONSTRUKCJI I STEROWANIU Bydgoszcz 2004 METODA SYMULACJI CAM WIERCENIA OTWORÓW W TARCZY ROZDRABNIACZA WIELOTARCZOWEGO Józef Flizikowski, Kazimierz Peszyński, Wojciech Bieniaszewski, Adam Budzyński
Bardziej szczegółowodoc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
Bardziej szczegółowoPrzykładowy szkolny plan nauczania* /przedmiotowe kształcenie zawodowe/
Przykładowy szkolny plan nauczania* /przedmiotowe kształcenie zawodowe/ Typ szkoły: Zasadnicza Szkoła Zawodowa - 3-letni okres nauczania /1//2/ Zawód: operator obrabiarek skrawających; symbol 722307 Podbudowa
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE
Bardziej szczegółowoDIGITALIZACJA GEOMETRII WKŁADEK OSTRZOWYCH NA POTRZEBY SYMULACJI MES PROCESU OBRÓBKI SKRAWANIEM
Dr inż. Witold HABRAT, e-mail: witekhab@prz.edu.pl Politechnika Rzeszowska, Wydział Budowy Maszyn i Lotnictwa Dr hab. inż. Piotr NIESŁONY, prof. PO, e-mail: p.nieslony@po.opole.pl Politechnika Opolska,
Bardziej szczegółowoWIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW
Uniwersytet Ekonomiczny we Wrocławiu WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW Wprowadzenie Wrażliwość wyników analizy wielokryterialnej na zmiany wag kryteriów, przy
Bardziej szczegółowoAUTOMATYZACJA PROCESU PROJEKTOWANIA RUR GIĘTYCH W OPARCIU O PARAMETRYCZNY SYSTEM CAD
mgr inż. Przemysław Zawadzki, email: przemyslaw.zawadzki@put.poznan.pl, mgr inż. Maciej Kowalski, email: e-mail: maciejkow@poczta.fm, mgr inż. Radosław Wichniarek, email: radoslaw.wichniarek@put.poznan.pl,
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE. Obróbka skrawaniem. niestacjonarne. II stopnia. ogólnoakademicki. Inne WYKŁAD ĆWICZENIA LABORATORIUM PROJEKT SEMINARIUM
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj
Bardziej szczegółowoMetody optymalizacji dyskretnej
Metody optymalizacji dyskretnej Spis treści Spis treści Metody optymalizacji dyskretnej...1 1 Wstęp...5 2 Metody optymalizacji dyskretnej...6 2.1 Metody dokładne...6 2.2 Metody przybliżone...6 2.2.1 Poszukiwanie
Bardziej szczegółowoLaboratorium Systemy wytwarzania ćw. nr 4
Laboratorium Systemy wytwarzania ćw. nr 4 Temat ćwiczenia: Sprawdzenie czasu wymiany narzędzia na centrum frezarskim Centra frezarskie są obrabiarkami przeznaczonymi do półautomatycznego wytwarzania, głownie,
Bardziej szczegółowoĆwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe. Logistyka w Hutnictwie Ćw. L.
Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe Ćw. L. Typy optymalizacji Istnieją trzy podstawowe typy zadań optymalizacyjnych: Optymalizacja statyczna- dotyczy
Bardziej szczegółowoProgram kształcenia kursu dokształcającego
Program kształcenia kursu dokształcającego Opis efektów kształcenia kursu dokształcającego Nazwa kursu dokształcającego Tytuł/stopień naukowy/zawodowy imię i nazwisko osoby wnioskującej o utworzenie kursu
Bardziej szczegółowoModele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
Bardziej szczegółowoWytwarzanie wspomagane komputerowo CAD CAM CNC. dr inż. Michał Michna
Wytwarzanie wspomagane komputerowo CAD CAM CNC dr inż. Michał Michna Wytwarzanie wspomagane komputerowo CAD CAM CNC prowadzący dr inż. Grzegorz Kostro pok. EM 313 dr inż. Michał Michna pok. EM 312 materiały
Bardziej szczegółowoZ mechanicznego i elektronicznego punktu widzenia każda z połówek maszyny składa się z 10 osi o kontrolowanej prędkości i pozycji.
Polver spółka z ograniczoną odpowiedzialnością spółka komandytowa ul. Fredry 2, 30-605 Kraków tel. +48 (12) 260-14-10; +48 (12) 260-33-00 fax.+48 (12) 260-14-11 e-mail - polver@polver.pl www.polver.pl
Bardziej szczegółowoTematy prac dyplomowych inżynierskich kierunek MiBM
Tematy prac dyplomowych inżynierskich kierunek MiBM Nr pracy Temat Cel Zakres Prowadzący 001/I8/Inż/2013 002/I8/Inż/2013 003/I8/ Inż /2013 Wykonywanie otworów gwintowanych na obrabiarkach CNC. Projekt
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Struktury i Algorytmy Wspomagania Decyzji Zadanie projektowe 2 Czas realizacji: 6 godzin Maksymalna liczba
Bardziej szczegółowoOBRÓBKA SKRAWANIEM DOBÓR NARZĘDZI I PARAMETRÓW SKRAWANIA DO FREZOWANIA. Ćwiczenie nr 6
OBRÓBKA SKRAWANIEM Ćwiczenie nr 6 DOBÓR NARZĘDZI I PARAMETRÓW SKRAWANIA DO FREZOWANIA opracowali: dr inż. Joanna Kossakowska mgr inż. Maciej Winiarski PO L ITECH NI KA WARS ZAWS KA INSTYTUT TECHNIK WYTWARZANIA
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: Systemy sterowania Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: OBRÓBKA UBYTKOWA, NARZĘDZIA I OPRZYRZĄDOWANIE TECHNOLOGICZNE I I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów ze zjawiskami fizycznymi towarzyszącymi
Bardziej szczegółowoNowoczesne systemy wspomagające pracę inżyniera
Wojciech ŻYŁKA Uniwersytet Rzeszowski, Polska Marta ŻYŁKA Politechnika Rzeszowska, Polska Nowoczesne systemy wspomagające pracę inżyniera Wstęp W dzisiejszych czasach duże znaczenie w technologii kształtowania
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Programowanie liniowe w technice Linear programming in engineering problems Kierunek: Rodzaj przedmiotu: obowiązkowy na kierunku matematyka przemysłowa Rodzaj zajęć: wykład, laboratorium,
Bardziej szczegółowoBADANIE WYDAJNOŚCI GNIAZDA MONTAŻU WRZECIENNIKA GŁÓWNEGO CENTRUM TOKARSKIEGO
KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 28 nr 4 Archiwum Technologii Maszyn i Automatyzacji 2008 OLAF CISZAK *, JAN ŻUREK ** BADANIE WYDAJNOŚCI GNIAZDA MONTAŻU WRZECIENNIKA GŁÓWNEGO CENTRUM TOKARSKIEGO
Bardziej szczegółowoPraca Dyplomowa Magisterska. Zastosowanie algorytmów genetycznych w zagadnieniach optymalizacji produkcji
Praca Dyplomowa Magisterska Zastosowanie algorytmów genetycznych w zagadnieniach optymalizacji produkcji Cel pracy zapoznanie się z zasadami działania ania algorytmów genetycznych przedstawienie możliwo
Bardziej szczegółowoZagadnienie transportowe i zagadnienie przydziału
Temat: Zagadnienie transportowe i zagadnienie przydziału Zadanie 1 Trzy piekarnie zlokalizowane na terenie miasta są zaopatrywane w mąkę z trzech magazynów znajdujących się na peryferiach. Zasoby mąki
Bardziej szczegółowoWielokryteriowa optymalizacja liniowa cz.2
Wielokryteriowa optymalizacja liniowa cz.2 Metody poszukiwania końcowych rozwiązań sprawnych: 1. Metoda satysfakcjonujących poziomów kryteriów dokonuje się wyboru jednego z kryteriów zadania wielokryterialnego
Bardziej szczegółowoSzkolenia z zakresu obsługi i programowania obrabiarek sterowanych numerycznie CNC
Kompleksowa obsługa CNC www.mar-tools.com.pl Szkolenia z zakresu obsługi i programowania obrabiarek sterowanych numerycznie CNC Firma MAR-TOOLS prowadzi szkolenia z obsługi i programowania tokarek i frezarek
Bardziej szczegółowoDodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?
Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak
Bardziej szczegółowoKarta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia specjalność: Inżynieria Powierzchni
Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia specjalność: Inżynieria Powierzchni Przedmiot: Zintegrowane systemy wytwarzania Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:
Bardziej szczegółowoAlgorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach
Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: OBRÓBKA UBYTKOWA, NARZĘDZIA I OPRZYRZĄDOWANIE TECHNOLOGICZNE II Machining, Tools And Technological Instrumentation II Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy
Bardziej szczegółowoWydział Inżynierii Produkcji i Logistyki Faculty of Production Engineering and Logistics
Wydział Inżynierii Produkcji i Logistyki Faculty of Production Engineering and Logistics Plan studiów niestacjonarnych I stopnia (inżynierskich) na kierunku ZARZĄDZANIE I INŻYNIERIA PRODUKCJI MANAGEMENT
Bardziej szczegółowoOPTYMALIZACJA DYSKRETNA
Temat nr a: odelowanie problemów decyzyjnych, c.d. OPTYALIZACJA DYSKRETA Zagadnienia decyzyjne, w których chociaż jedna zmienna decyzyjna przyjmuje wartości dyskretne (całkowitoliczbowe), nazywamy dyskretnymi
Bardziej szczegółowoPrzykładowy szkolny plan nauczania* /przedmiotowe kształcenie zawodowe/
Przykładowy szkolny plan nauczania* /przedmiotowe kształcenie zawodowe/ Typ szkoły: Technikum - 4-letni okres nauczania /1/ Zawód: technik mechanik; symbol 311504 (na podbudowie kwalifikacji M.19. dla
Bardziej szczegółowoElementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe
Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp
Bardziej szczegółowoPLANY I PROGRAMY STUDIÓW
WYDZIAŁ INŻYNIERII PRODUKCJI I LOGISTYKI PLANY I PROGRAMY STUDIÓW STUDY PLANS AND PROGRAMS KIERUNEK STUDIÓW FIELD OF STUDY - ZARZĄDZANIE I INŻYNIERIA PRODUKCJI - MANAGEMENT AND PRODUCTION ENGINEERING Studia
Bardziej szczegółowoKatalog rozwiązań informatycznych dla firm produkcyjnych
Katalog rozwiązań informatycznych dla firm produkcyjnych www.streamsoft.pl Obserwować, poszukiwać, zmieniać produkcję w celu uzyskania największej efektywności. Jednym słowem być jak Taiichi Ohno, dyrektor
Bardziej szczegółowoAPPLICATIONS OF SELECTED CAx TOOLS FOR INVESTIGATIONS OF ULTRASONIC ASSISTED GRINDING
dr hab. inż. Janusz Porzycki, prof. PRz, e-mail: jpor@prz.edu.pl mgr inż. Roman Wdowik, e-mail: rwdowik@prz.edu.pl mgr inż. Marek Krok, e-mail: mkrok@prz.edu.pl Politechnika Rzeszowska im. I. Łukasiewicza
Bardziej szczegółowoAproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Bardziej szczegółowoInstrukcja. Laboratorium Metod i Systemów Sterowania Produkcją.
Instrukcja do Laboratorium Metod i Systemów Sterowania Produkcją. 2010 1 Cel laboratorium Celem laboratorium jest poznanie metod umożliwiających rozdział zadań na linii produkcyjnej oraz sposobu balansowania
Bardziej szczegółowoKomputerowe wspomaganie procesów technologicznych I Computer Aided Technological Processes
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Bardziej szczegółowoMyślicie Państwo o inwestycji w zakup nowej obrabiarki? Najbliższe 60 sekund może dać oszczędność sporej sumy pieniędzy!
Myślicie Państwo o inwestycji w zakup nowej obrabiarki? Najbliższe 60 sekund może dać oszczędność sporej sumy pieniędzy! Dobrze od samego początku Inteligentna praca to wielka różnica Dobry początek to
Bardziej szczegółowoKarta (sylabus) przedmiotu
WM Karta (sylabus) przedmiotu MECHANIKA I BUDOWA MASZYN Studia I stopnia o profilu: A P Przedmiot: Wybrane z Kod ECTS Status przedmiotu: obowiązkowy MBM S 0 5 58-4_0 Język wykładowy: polski, angielski
Bardziej szczegółowoPlanowanie wieloasortymentowej produkcji rytmicznej Zastosowanie symulacji jako narzędzia weryfikacyjnego
Planowanie wieloasortymentowej produkcji rytmicznej Zastosowanie symulacji jako narzędzia weryfikacyjnego Bożena Skołud bozena.skolud@polsl.pl Damian Krenczyk damian.krenczyk@polsl.pl MSP & micro MSP MSP
Bardziej szczegółowoInstrukcja dla Opiekuna stażu
PODRĘCZNIK STAŻU dla nauczycielek i nauczycieli przedmiotów zawodowych oraz instruktorek i instruktorów praktycznej nauki zawodu kształcących w zawodach technik mechanik [311504] oraz mechanik [723103]
Bardziej szczegółowoRozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując
Bardziej szczegółowoWÓJCIK Ryszard 1 KĘPCZAK Norbert 2
WÓJCIK Ryszard 1 KĘPCZAK Norbert 2 Wykorzystanie symulacji komputerowych do określenia odkształceń otworów w korpusie przekładni walcowej wielostopniowej podczas procesu obróbki skrawaniem WSTĘP Właściwa
Bardziej szczegółowoWytwarzanie wspomagane komputerowo CAD CAM CNC. dr inż. Michał Michna
Wytwarzanie wspomagane komputerowo CAD CAM CNC dr inż. Michał Michna Wytwarzanie wspomagane komputerowo CAD CAM CNC prowadzący dr inż. Grzegorz Kostro pok. EM 313 dr inż. Michał Michna pok. EM 312 materiały
Bardziej szczegółowoModele optymalizacyjne wspomagania decyzji wytwórców na rynku energii elektrycznej
Modele optymalizacyjne wspomagania decyzji wytwórców na rynku energii elektrycznej mgr inż. Izabela Żółtowska Promotor: prof. dr hab. inż. Eugeniusz Toczyłowski Obrona rozprawy doktorskiej 5 grudnia 2006
Bardziej szczegółowoDobór parametrów dla frezowania
Dobór parametrów dla frezowania Wytyczne dobru parametrów obróbkowych dla frezowania: Dobór narzędzia. W katalogu narzędzi naleŝy odszukać narzędzie, które z punktu widzenia technologii umoŝliwi zrealizowanie
Bardziej szczegółowoSterowanie wewnątrzkomórkowe i zewnątrzkomórkowe, zarządzanie zdolnością produkcyjną prof. PŁ dr hab. inż. A. Szymonik
Sterowanie wewnątrzkomórkowe i zewnątrzkomórkowe, zarządzanie zdolnością produkcyjną prof. PŁ dr hab. inż. A. Szymonik www.gen-prof.pl Łódź 2017/2018 Sterowanie 2 def. Sterowanie to: 1. Proces polegający
Bardziej szczegółowoAutomatyzacja wytwarzania
Automatyzacja wytwarzania ESP, CAD, CAM, CIM,... 1/1 Plan wykładu Automatyzacja wytwarzania: NC/CNC Automatyzacja procesów pomocniczych: FMS Automatyzacja technicznego przygotowania produkcji: CAD/CAP
Bardziej szczegółowoOptymalizacja struktury produkcji kopalni z uwzględnieniem kosztów stałych i zmiennych
Optymalizacja struktury produkcji kopalni z uwzględnieniem kosztów stałych i zmiennych 1) dr hab. inż.; AGH Kraków, Wydział Górnictwa i Geoinżynierii 2) dr hab.; AGH Kraków, Wydział Matematyki Stosowanej
Bardziej szczegółowoRuch granulatu w rozdrabniaczu wielotarczowym
JÓZEF FLIZIKOWSKI ADAM BUDZYŃSKI WOJCIECH BIENIASZEWSKI Wydział Mechaniczny, Akademia Techniczno-Rolnicza, Bydgoszcz Ruch granulatu w rozdrabniaczu wielotarczowym Streszczenie: W pracy usystematyzowano
Bardziej szczegółowoS Y L A B U S P R Z E D M I O T U
"Z A T W I E R D Z A M" Dziekan Wydziału Mechatroniki i Lotnictwa prof. dr hab. inż. Radosław TRĘBIŃSKI Warszawa, dnia... NAZWA PRZEDMIOTU: S Y L A B U S P R Z E D M I O T U KOMPUTEROWE WSPOMAGANIE WYTWARZANIA
Bardziej szczegółowoBadania operacyjne. Ćwiczenia 1. Wprowadzenie. Filip Tużnik, Warszawa 2017
Badania operacyjne Ćwiczenia 1 Wprowadzenie Plan zajęć Sprawy organizacyjne (zaliczenie, nieobecności) Literatura przedmiotu Proces podejmowania decyzji Problemy decyzyjne w zarządzaniu Badania operacyjne
Bardziej szczegółowoINSTRUKCJA DO ĆWICZENIA NR 1
L01 ---2014/10/17 ---10:52---page1---#1 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów
Bardziej szczegółowoTechniki CAx. dr inż. Michał Michna. Politechnika Gdańska
Techniki CAx dr inż. Michał Michna 1 Sterowanie CAP Planowanie PPC Sterowanie zleceniami Kosztorysowanie Projektowanie CAD/CAM CAD Klasyfikacja systemów Cax Y-CIM model Planowanie produkcji Konstruowanie
Bardziej szczegółowoSYLABUS/KARTA PRZEDMIOTU
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W GŁOGOWIE SYLABUS/KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU Systemy produkcyjne komputerowo zintegrowane. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny 3. STUDIA
Bardziej szczegółowoD. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne [1]
D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne [1] Co to są badania operacyjne? Termin "badanie operacji" (Operations' Research) powstał podczas II wojny światowej i przetrwał do dzisiaj. W terminologii
Bardziej szczegółowoWARIANTOWANIE SPOSOBU WYKONANIA POWIERZCHNI ELEMENTARNYCH
Z E S Z Y T Y N A U K O W E P O L I T E C H N I K I P O Z N AŃSKIEJ Nr 6 Budowa Maszyn i Zarządzanie Produkcją 2007 KRZYSZTOF ŻYWICKI, EDWARD PAJĄK WARIANTOWANIE SPOSOBU WYKONANIA POWIERZCHNI ELEMENTARNYCH
Bardziej szczegółowoSPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD
Dr inż. Jacek WARCHULSKI Dr inż. Marcin WARCHULSKI Mgr inż. Witold BUŻANTOWICZ Wojskowa Akademia Techniczna SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD Streszczenie: W referacie przedstawiono możliwości
Bardziej szczegółowoTECHNOLOGIA MASZYN. Wykład dr inż. A. Kampa
TECHNOLOGIA MASZYN Wykład dr inż. A. Kampa Technologia - nauka o procesach wytwarzania lub przetwarzania, półwyrobów i wyrobów. - technologia maszyn, obejmuje metody kształtowania materiałów, połączone
Bardziej szczegółowoNIETYPOWE WŁASNOŚCI PERMUTACYJNEGO PROBLEMU PRZEPŁYWOWEGO Z OGRANICZENIEM BEZ PRZESTOJÓW
NIETYPOWE WŁASNOŚCI PERMUTACYJNEGO PROBLEMU PRZEPŁYWOWEGO Z OGRANICZENIEM BEZ PRZESTOJÓW Mariusz MAKUCHOWSKI Streszczenie: W pracy rozważa się permutacyjny problem przepływowy z kryterium będącym momentem
Bardziej szczegółowoSYMULACJA PROCESU OBRÓBKI NA PODSTAWIE MODELU OBRABIARKI UTWORZONEGO W PROGRAMIE NX
W Y B R A N E P R O B L E M Y I NY N I E R S K I E N U M E R 2 I N S T Y T U T A U T O M A T Y Z A C J I P R O C E S Ó W T E C H N O L O G I C Z N Y C H I Z I N T E G R O W A N Y C H S Y S T E M Ó W W
Bardziej szczegółowoZASTOSOWANIE TECHNOLOGII WIRTUALNEJ RZECZYWISTOŚCI W PROJEKTOWANIU MASZYN
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 37, s. 141-146, Gliwice 2009 ZASTOSOWANIE TECHNOLOGII WIRTUALNEJ RZECZYWISTOŚCI W PROJEKTOWANIU MASZYN KRZYSZTOF HERBUŚ, JERZY ŚWIDER Instytut Automatyzacji Procesów
Bardziej szczegółowoWPŁYW USTALENIA I MOCOWANIA KORPUSÓW PRZEKŁADNI TECHNOLOGICZNIE PODOBNYCH NA KSZTAŁT OTWORÓW POD ŁOŻYSKA
WPŁYW USTALENIA I MOCOWANIA KORPUSÓW PRZEKŁADNI TECHNOLOGICZNIE PODOBNYCH NA KSZTAŁT OTWORÓW POD ŁOŻYSKA Ryszard WOJCIK 1, Norbert KEPCZAK 1 1. WPROWADZENIE Procesy symulacyjne pozwalają prześledzić zachowanie
Bardziej szczegółowotechnologicznych Wzornictwo przemysłowe I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Komputerowe wspomaganie procesów Nazwa modułu technologicznych Nazwa modułu w języku angielskim Computer Aided Technological Processes Obowiązuje od roku akademickiego
Bardziej szczegółowoAnaliza ilościowa w przetwarzaniu równoległym
Komputery i Systemy Równoległe Jędrzej Ułasiewicz 1 Analiza ilościowa w przetwarzaniu równoległym 10. Analiza ilościowa w przetwarzaniu równoległym...2 10.1 Kryteria efektywności przetwarzania równoległego...2
Bardziej szczegółowoSterowanie wewnątrzkomórkowe i zewnątrzkomórkowe, zarządzanie zdolnością produkcyjną prof. PŁ dr hab. inż. A. Szymonik
Sterowanie wewnątrzkomórkowe i zewnątrzkomórkowe, zarządzanie zdolnością produkcyjną prof. PŁ dr hab. inż. A. Szymonik www.gen-prof.pl Łódź 2016/2017 def. Sterowanie to: 1. Proces polegający na wykorzystywaniu
Bardziej szczegółowoSkalowalność obliczeń równoległych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1
Skalowalność obliczeń równoległych Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Skalowalność Przy rozważaniu wydajności przetwarzania (obliczeń, komunikacji itp.) często pojawia się pojęcie skalowalności
Bardziej szczegółowoSterowanie wykonaniem produkcji
STEROWANIE WYKONANIEM PRODUKCJI (Production Activity Control - PAC) Sterowanie wykonaniem produkcji (SWP) stanowi najniŝszy, wykonawczy poziom systemu zarządzania produkcją, łączący wyŝsze poziomy operatywnego
Bardziej szczegółowoOPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie przydziału dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Zagadnienie przydziału 1 Można wyodrębnić kilka grup problemów, których zadaniem jest alokacja szeroko
Bardziej szczegółowoOptymalizacja produkcji oraz lean w przemyśle wydobywczym. Dr inż. Maria Rosienkiewicz Mgr inż. Joanna Helman
Optymalizacja produkcji oraz lean w przemyśle wydobywczym Dr inż. Maria Rosienkiewicz Mgr inż. Joanna Helman Agenda 1. Oferta dla przemysłu 2. Oferta w ramach Lean Mining 3. Potencjalne korzyści 4. Kierunki
Bardziej szczegółowoInnovation Centre. NICe. nikken-world.com
Innovation Centre e u r o p e NICe nikken-world.com NIKKEN Filozofia Codziennych Badań W NIKKEN dążymy do przesuwania granic zaawansowanej produkcji i wierzymy, że odzwierciedleniem tego są najwyższej
Bardziej szczegółowoModelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka
Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej
Bardziej szczegółowo7. OPTYMALIZACJA PARAMETRÓW SKRAWANIA. 7.1 Cel ćwiczenia. 7.2 Wprowadzenie
7. OPTYMALIZACJA PAAMETÓW SKAWANIA 7.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z wyznaczaniem optymalnych parametrów skrawania metodą programowania liniowego na przykładzie toczenia. 7.2
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: TECHNOLOGIA BUDOWY MASZYN I MONTAŻU PRINCIPLES OF MACHINES BUILDING TECHNOLOGY AND ASSEMBLY Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: projektowanie systemów
Bardziej szczegółowowww.streamsoft.pl Katalog rozwiązań informatycznych dla firm produkcyjnych
www.streamsoft.pl Katalog rozwiązań informatycznych dla firm produkcyjnych Obserwować, poszukiwać, zmieniać produkcję w celu uzyskania największej efektywności. Jednym słowem być jak Taiichi Ohno, dyrektor
Bardziej szczegółowoKatalog rozwiązań informatycznych dla firm produkcyjnych
Katalog rozwiązań informatycznych dla firm produkcyjnych www.streamsoft.pl Obserwować, poszukiwać, zmieniać produkcję w celu uzyskania największej efektywności. Jednym słowem być jak Taiichi Ohno, dyrektor
Bardziej szczegółowoMetody planowania i sterowania produkcją BUDOWA HARMONOGRAMU, CYKL PRODUKCYJNY, DŁUGOTRWAŁOŚĆ CYKLU PRODUKCYJNEGO.
Metody planowania i sterowania produkcją BUDOWA HARMONOGRAMU, CYKL PRODUKCYJNY, DŁUGOTRWAŁOŚĆ CYKLU PRODUKCYJNEGO. Proces produkcyjny. Proces produkcyjny wyrobu można zdefiniować jako zbiór operacji produkcyjnych
Bardziej szczegółowoKomputerowe wspomaganie projektowania- CAT-01
Komputerowe wspomaganie projektowania- CAT-01 Celem szkolenia jest praktyczne zapoznanie uczestników z podstawami metodyki projektowania 3D w programie CATIA V5 Interfejs użytkownika Modelowanie parametryczne
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj zajęć: wykład, laboratorium, projekt I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE
Bardziej szczegółowo