Program wycena masowa -OPARTA O METODĘ NAJWIĘKSZEJ ZALEŻNOŚCI PROF. Z. ADAMCZEWSKIEGO-
|
|
- Edyta Krajewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Program wycena masowa -OPARTA O METODĘ NAJWIĘKSZEJ ZALEŻNOŚCI PROF. Z. ADAMCZEWSKIEGO-
2 Programem tym możemy wycenić 200 nieruchomości naraz stosując jednolitość i obiektywność porówań. Tworzymy bazę nieruchomości reprezentatywnych, określamy trend i wagi i szacujemy 200 nieruchomości Ta aplikacja jest kierowana do AMBITNYCH RZECZOZNAWCÓW, którzy mając rzetelną informację prowadzą proces wyceny nieruchomości w oparciu o przesłanki naukowe i wiedzę.
3 Arkusz sterowania widok w programie.
4 Arkusz sterowania opis funkcji Najpierw określimy bazę nieruchomości reprezentatywnych wybierając cechy rynkowe opisujące te nieruchomości i oceny tych cech; Określimy trend cenowy (3 metody) i wagi cech rynkowych (3 metody) zawsze możemy zastosować własny trend i własne wagi Następnie utworzymy bazę nieruchomości reprezentatywnych (bazę do porównań) i tymi samymi ocenami opiszemy nieruchomości szacowane Możemy w przypadku dużych baz wybrać nieruchomości reprezentatywne stosując kryterium odchylenia ceny transakcyjnej od średniej przy zadanym poziomie ufności, czyli tzw. korekcję gaussa.
5 Jedyna taka aplikacja w Polsce!!! Aplikacja łączy w sobie prostotę obsługi, rzetelną wiedzę w oparciu o najnowocześniejsze przesłanki naukowe Trend wyliczany jest 3 metodami Wagi cech rynkowych liczymy 3 metodami Są obliczone podstawowe statystyki i przedziały ufności oraz dopuszczalne błędy.
6 Tak deklarujemy cechy rynkowe i ich oceny.
7 Każdą nieruchomość możemy opisać stosując.aż 21 cech rynkowych! 15 cech rynkowych skokowych (wybierając po 15 ocen opisujących te cechy ) 3 cechy rynkowe ciągłe procentowe 3 cechy rynkowe ciągłe wartościowe RAZEM: 21 cech cech rynkowych!!!
8 Przygotowujemy bazę nieruchomości reprezentatywnych (bazę do porównań)
9 Do wyceny z 21 cech rynkowych wybieramy tylko te, które nas interesują.
10 Trend obliczymy 3 sposobami Metodą najmniejszych kwadratów Metodą analizy szeregów czasowych Metodą ceteris paribus
11 Metoda najmniejszych kwadratów
12 Metoda analizy szeregów czasowych
13 Metoda ceteris paribus
14 Możemy wykreślić średnią w/w metod oraz porównanie tych metod
15 Ostatecznie możemy zaproponować własny trend i podać podstawowe statystyki. L.p. Parametr Wartość 1 Trend roczny metodą najmniejszych kwadratów (MNK) 7,95% 2 Trend roczny metodą szeregów czasowych (SzCz) 0,07% 3 Trend roczny metodą ceteris pertibus (CP) 0,82% 4 Trend roczny - średnia metod: MNK; SzCz; CP 2,95% 5 Roczny trend ustalony przez Rzeczoznawcę -5,00% 6 Data wyceny (aktualizacji trendem) 24 maj 13 7 Aktualizacja trendem rocznym [%/rok]: Ocena eksp. -5,00% Statystyki dotyczące trendu L.p. Parametr Wartość 1 Współczynnik determinacji r 2 0,011 2 Poziom istotności α 5,0% 3 Odchylenie standardowe populacji [zł/m2] 288,587 4 Przedziały ufności dla średniego trendu rocznego ±[%/rok] 3,58% 5 Średni błąd procentowy MAPE [%] - Met. MNK 9,22% 6 Średni błąd procentowy MAPE [%] - Met. SzCz 9,21% 7 Średni błąd procentowy MAPE [%] - Met. CP 9,21% 8 Średni błąd procentowy MAPE [%] - średnia 3metod 9,21% 9 Średni błąd procentowy MAPE [%] - trendu własnego 9,27%
16 Wagi liczymy 3 metodami. Metodą korelacji liniowej Metodą najmniejszych kwadratów Metodą ceteris paribus
17 Metoda korelacji liniowej
18 Metoda najmniejszych kwadratów
19 Metoda ceteris paribus
20 Możemy wykreślić średnie wagi z w/w 3 metod oraz obejrzeć wykres zbiorczy.
21 Ostatecznie możemy zaproponować własne wartości wag oraz wydrukować podstawowe statystyki.. Parametr / waga cechy Lokalizacja Stan techniczny budynku Powierzchnia Standard Funkcjonalność Wagi - metoda korelacji liniowej (MK) 3,11% 15,43% 0,97% 62,16% 18,33% Wagi - metoda najmniejszych kwadratów (MNK) 7,62% 28,61% 3,82% 40,27% 19,68% Wagi - metoda ceteris partibus (CP) 17,24% 10,07% 17,54% 37,56% 17,59% Wagi - średnia metod: MK, MNK, CP 9,32% 18,04% 7,44% 46,66% 18,53% Wagi ustalone przez Rzeczoznawcę Poziom ufności (istotności) α 5,00% wpisać w [%] Przedział ufności wag - metoda MK 3,11±3,98 [%] 15,43±6,65 [%] 0,97±2,14 [%] 62,16±12,35 [%] 18,33±9,21 [%] Przedział ufności wag - metoda MNK 7,62±9,76 [%] 28,61±12,34 [%] 3,82±8,45 [%] 40,27±8 [%] 19,68±9,89 [%] Przedział ufności wag - metoda CP 17,24±22,09 [%] 10,07±4,34 [%] 17,54±38,78 [%] 37,56±7,46 [%] 17,59±8,84 [%] Przedział ufności wag - średnia 3 metod 9,32±11,94 [%] 18,04±7,78 [%] 7,44±16,45 [%] 46,66±9,27 [%] 18,53±9,31 [%] Przedział ufności wag - metoda ekspercka 0±0 [%] 0±0 [%] 0±0 [%] 0±0 [%] 0±0 [%]
22 Gdy już określimy wagi cech rynkowych i trend cenowy według którego są aktualizowane ceny na datę wyceny to wpisujemy dane nieruchomości szacowanych..
23 W efekcie otrzymujemy wyniki najpierw wynik opisujący przyjęty model matematyczny.
24 Wyniki określające wartości nieruchomości szacowanych.
25 Obliczenia prowadzone są w oparciu o najnowocześniejszą wiedzę. pełny opis stosowanych metod.
26 Oraz instrukcja obsługi aplikacji napisana w takiej formie, że nawet osoba mało wprawna w Excelu sobie poradzi
27 Prowadząc proces wyceny mamy gotowe narzędzie do podjęcia poprawnych decyzji w oparciu o podstawy naukowe Parametry wykresu skumulowanego L.p Parametr Wartość 1 Minimalna jedn.cena aktualizowana Cmin 1 773,12 2 Maksymalna jedn. cena aktualizowana C max 2 804,14 3 Średnia jedn. cena aktualizowana Cśr (μ) 2 315,34 4 Mediana jedn.cen aktualizowanych M 2 295,08 5 Dominanta jedn. cen aktualizowanych D 2 176,00 6 Odchylenie standardowe jedn.cen aktualizowanych σ 262,87 7 Skośność A s [% ] 19,89% 8 Współ. asymetrii dominanty A sd =[(μ-d)/σ] [% ] 53,01% 9 Współ. asymetrii mediany A sm =[(μ-m)/σ] [% ] 7,71% 10 Liczba przedziałów klasowych 6 11 Rozpiętość przedziału klasowego 207,00
28 Jak kupić aplikację? Dokonać przedpłaty brutto na konto: Wysłać do naszej firmy na adres mailowy potwierdzenie w PDF złożonej dyspozycji bankowej +podać wersję Excela zainstalowaną u Państwa; Nasza firma po otrzymaniu powyższego wysyła program + hasło dostępu do Zamawiającego mailem; Nasza firma wysyła umowę licencyjną + rachunek w oryginale na podany adres Zamawiającego pocztą; Nie wolno zapomnieć o podaniu Nazwy Zamawiającego, adresu i telefonów Zamawiającego.
-materiały reklamowe- PROGRAM WYCENA NIERUCHOMOŚCI W PODEJŚCIU PORÓWNAWCZYM METODAMI NUMERYCZNYMI
-materiały reklamowe- PROGRAM WYCENA NIERUCHOMOŚCI W PODEJŚCIU PORÓWNAWCZYM METODAMI NUMERYCZNYMI ADRESACI APLIKACJI. To nie jest aplikacja dla wszystkich. Ta aplikacja jest kierowana do AMBITNYCH RZECZOZNAWCÓW,
AMBITNYCH RZECZOZNAWCÓW
ADRESACI APLIKACJI. TO NIE JEST APLIKACJA DLA WSZYSTKICH. TA APLIKACJA JEST KIEROWANA DO AMBITNYCH RZECZOZNAWCÓW, KTÓRZY MAJĄC RZETELNĄ INFORMACJĘ PROWADZĄ PROCES WYCENY NIERUCHOMOŚCI W OPARCIU O PRZESŁANKI
AMBITNYCH RZECZOZNAWCÓW
ADRESACI APLIKACJI. TO NIE JEST APLIKACJA DLA WSZYSTKICH. TA APLIKACJA JEST KIEROWANA DO AMBITNYCH RZECZOZNAWCÓW, KTÓRZY MAJĄC RZETELNĄ INFORMACJĘ PROWADZĄ PROCES WYCENY NIERUCHOMOŚCI W OPARCIU O PRZESŁANKI
Wycena nieruchomości za pomocą wyboru wielokryterialnego w warunkach niepewności rozmytej oraz klasycznie: metodą pp i kcś
Wycena nieruchomości za pomocą wyboru wielokryterialnego w warunkach niepewności rozmytej oraz klasycznie: metodą pp i kcś Materiały reklamowe ZAWAM-Marek Zawadzki Wybór wielokryterialny jako jadna z metod
Wycena nieruchomości w podejściu porównawczym - complex. Materiały reklamowe ZAWAM-Marek Zawadzki
Wycena nieruchomości w podejściu porównawczym - complex Materiały reklamowe ZAWAM-Marek Zawadzki Mimo skomplikowania metody szacowania nieruchomości program jest banalny w swojej obsłudze. Na początku
BIURO WYCEN NIERUCHOMOŚCI I USŁUG Z ZAKRESU BUDOWNICTWA WIESŁAW SZPAK Uherce Mineralne 174, tel. fax , kom.
BIURO WYCEN NIERUCHOMOŚCI I USŁUG Z ZAKRESU BUDOWNICTWA WIESŁAW SZPAK 38-623 Uherce Mineralne 174, tel. fax 13 4699180, kom. 601631496 Sygn. akt KM 807/17 Egz. Nr OPERAT SZACUNKOWY Z WYCENY NIERUCHOMOŚCI
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
BIURO WYCEN NIERUCHOMOŚCI I USŁUG Z ZAKRESU BUDOWNICTWA WIESŁAW SZPAK Uherce Mineralne 174, tel. fax , kom.
BIURO WYCEN NIERUCHOMOŚCI I USŁUG Z ZAKRESU BUDOWNICTWA WIESŁAW SZPAK 38-623 Uherce Mineralne 174, tel. fax 13 4699180, kom. 601631496 Sygn. akt KM 687/17 Egz. Nr OPERAT SZACUNKOWY z wyceny lokalu mieszkalnego
BIURO WYCEN NIERUCHOMOŚCI I USŁUG Z ZAKRESU BUDOWNICTWA WIESŁAW SZPAK Uherce Mineralne 174, tel. fax , kom.
BIURO WYCEN NIERUCHOMOŚCI I USŁUG Z ZAKRESU BUDOWNICTWA WIESŁAW SZPAK 38-623 Uherce Mineralne 174, tel. fax 13 4699180, kom. 601631496 Sygn. akt KM 100/94 Egz. Nr OPERAT SZACUNKOWY Z WYCENY NIERUCHOMOŚCI
5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
Analiza rynku, wybrane elementy przydatne. majątkowego
2010-20112011 Analiza rynku, wybrane elementy przydatne w czynnościach rzeczoznawcy majątkowego Rynek lokalny rynek miasta i gminy Łódź na prawach powiatu. Łódź to miasto liczące ok 745 tysięcy mieszkańców
Analiza rynku nieruchomości gruntowych w gminie Koszyce, powiat proszowicki, woj. małopolskie czerwiec 2013
Analiza rynku nieruchomości gruntowych w gminie Koszyce, powiat proszowicki, woj. małopolskie czerwiec 2013 W gminie Koszyce w ostatnich latach [od lipca 2010 roku] odnotowano 118 transakcje gruntami [w
WYKŁAD 2: ANALIZA RYNKU W WYCENIE. Mariusz Dacko
WYKŁAD 2: ANALIZA RYNKU W WYCENIE Mariusz Dacko Analiza rynku: Rozpoznanie mechanizmu rynku, jego struktury, stanu i rozwoju jego elementów Przestrzenny zakres badania rynku. Pojęcie rynku lokalnego. Nieruchomość
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
INFORMATYKA W CHEMII Dr Piotr Szczepański
INFORMATYKA W CHEMII Dr Piotr Szczepański Katedra Chemii Fizycznej i Fizykochemii Polimerów WPROWADZENIE DO STATYSTYCZNEJ OCENY WYNIKÓW DOŚWIADCZEŃ 1. BŁĄD I STATYSTYKA błąd systematyczny, błąd przypadkowy,
4. Średnia i autoregresja zmiennej prognozowanej
4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)
Laboratorium 3 - statystyka opisowa
dla szeregu rozdzielczego Laboratorium 3 - statystyka opisowa Agnieszka Mensfelt 11 lutego 2019 dla szeregu rozdzielczego Statystyka opisowa dla szeregu rozdzielczego Przykład wyniki maratonu Wyniki 18.
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Staże Ośrodka RENOWATOR
Staże Ośrodka RENOWATOR Badanie zależności ceny nieruchomości od położenia i innych cech Analiza Beata Kalinowska-Rybka W listopadzie 26r zbierałam informacje dotyczące nieruchomości, o następującej postaci:
Estymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
Wykład 5: Statystyki opisowe (część 2)
Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich
Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:
Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności
Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
MINISTER INWESTYCJI I ROZWOJU 1)
projekt z dnia 22 lutego 2019 r. MINISTER INWESTYCJI I ROZWOJU 1) Warszawa, dnia STANDARD ZAWODOWY RZECZOZNAWCÓW MAJĄTKOWYCH NR 2 WYCENA NIERUCHOMOŚCI PRZY ZASTOSOWANIU PODEJŚCIA PORÓWNAWCZEGO Na podstawie
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie.
STATISTICA INSTRUKCJA - 1 I. Wprowadzanie danych Podstawowe / Nowy / Arkusz Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
Metody Statystyczne. Metody Statystyczne.
gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja
Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014 WydziałPrawa, Administracji i Stosunków Miedzynarodowych
Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych
Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych Sebastian Kokot XXI Krajowa Konferencja Rzeczoznawców Majątkowych, Międzyzdroje 2012 Rzetelnie wykonana analiza rynku nieruchomości
BIURO WYCEN NIERUCHOMOŚCI I USŁUG Z ZAKRESU BUDOWNICTWA WIESŁAW SZPAK Uherce Mineralne 174, tel. fax (13) , GSM
BIURO WYCEN NIERUCHOMOŚCI I USŁUG Z ZAKRESU BUDOWNICTWA WIESŁAW SZPAK 38-623 Uherce Mineralne 174, tel. fax (13) 4699180, GSM 601631496 Sygn. akt KM 137/99 Egz. Nr OPERAT SZACUNKOWY z wyceny nieruchomości
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
BIURO WYCEN NIERUCHOMOŚCI I USŁUG Z ZAKRESU BUDOWNICTWA WIESŁAW SZPAK Uherce Mineralne 174, tel. fax , kom.
BIURO WYCEN NIERUCHOMOŚCI I USŁUG Z ZAKRESU BUDOWNICTWA WIESŁAW SZPAK 38-623 Uherce Mineralne 174, tel. fax 13 4699180, kom. 601631496 Sygn. akt KM 117/18 Egz. Nr OPERAT SZACUNKOWY z wyceny nieruchomości
Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
Polskie prawo nakazuje stosowanie metod ekonometrycznych w wycenie konsekwencje art. 157 ugn.
Krzysztof Głębicki, Lucyna Michalec Polskie prawo nakazuje stosowanie metod ekonometrycznych w wycenie konsekwencje art. 157 ugn. Rozdział I Dlaczego w wycenie nie należy stosować metody regresji? Do napisania
X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9
Zadanie W celu sprawdzenia, czy pipeta jest obarczona błędem systematycznym stałym lub zmiennym wykonano szereg pomiarów przy różnych ustawieniach pipety. Wyznacz równanie regresji liniowej, które pozwoli
RZECZOZNAWCA, Aleksandra Radziejowska. Katedra Geomechaniki, Budownictwa i Geotechniki. A1 312
RZECZOZNAWCA, operat szacunkowy wybrana metoda obliczania Aleksandra Radziejowska Katedra Geomechaniki, Budownictwa i Geotechniki aradziej@agh.edu.pl, A1 312 n.h.m. Operat szacunkowy DOCHODOWE MIESZANE
Statystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33
Statystyka Wykład 4 Magdalena Alama-Bućko 19 marca 2018 Magdalena Alama-Bućko Statystyka 19 marca 2018 1 / 33 Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności (rozproszenia,
czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90
Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 czerwiec 2013 Zadanie 1 Poniższe tabele przestawiają dane dotyczące umieralności dzieci
Zawartość. Zawartość
Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami
Wykład 9 Wnioskowanie o średnich
Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i
Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
Literatura STATYSTYKA OPISOWA A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2011/2012 Wykład 2 Statystyka Do tej pory było: Wiadomości praktyczne o przedmiocie Podstawowe
Analiza Statystyczna
Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza
ANALIZA STAWEK CZYSZNU LOKALI UŻYTKOWYCH W POZNANIU W II POŁOWIE 2008R.
ANALIZA STAWEK CZYSZNU LOKALI UŻYTKOWYCH W POZNANIU W II POŁOWIE 2008R. Badanie stawek czynszów lokali użytkowych uzyskiwanych w obrocie wolnorynkowym przeprowadzono na podstawie zebranych danych ofertowych.
1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej:
Metoda analizy macierzy współczynników korelacji Idea metody sprowadza się do wyboru takich zmiennych objaśniających, które są silnie skorelowane ze zmienną objaśnianą i równocześnie słabo skorelowane
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 01/01 Wydział Prawa, Administracji i Stosunków Miedzynarodowych Kierunek
Analiza zależności cech ilościowych regresja liniowa (Wykład 13)
Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny
Statystyka opisowa w wycenie nieruchomości Część I - wyznaczanie miar zbioru danych
dr Agnieszka Bitner Rzeczoznawca majątkowy Katedra Geodezji Rolnej, Katastru i Fotogrametrii Uniwersytet Rolniczy w Krakowie ul. Balicka 253c 30-198 Kraków, e-mail: rmbitner@cyf-kr.edu.pl WPROWADZENIE
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres
Miary statystyczne w badaniach pedagogicznych
Miary statystyczne w badaniach pedagogicznych Szeregi statystyczne Szczegółowy - gdzie materiał uporządkowany jest rosnąco lub malejąco Rozdzielczy - gdzie poszczególnym wariantom zmiennej przyporządkowane
Statystyka. Wykład 3. Magdalena Alama-Bućko. 6 marca Magdalena Alama-Bućko Statystyka 6 marca / 28
Statystyka Wykład 3 Magdalena Alama-Bućko 6 marca 2017 Magdalena Alama-Bućko Statystyka 6 marca 2017 1 / 28 Szeregi rozdzielcze przedziałowe - kwartyle - przypomnienie Po ustaleniu przedziału, w którym
Analiza metod wyceny nieruchomości w podejściu porównawczym w aspekcie zabezpieczenia wierzytelności kredytowych
RYNEK FINANSOWANIA NIERUCHOMOŚCI zarządzanie ryzykiem wierzytelności hipotecznych Analiza metod wyceny nieruchomości w podejściu porównawczym w aspekcie zabezpieczenia wierzytelności kredytowych 1. Wprowadzenie
Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34
Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO
Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 24 60-965 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl
STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.
STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z
Statystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt
Statystyka matematyczna dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt Zasady zaliczenia przedmiotu: część wykładowa Maksymalna liczba punktów do zdobycia 40. Egzamin będzie
Symulacyjne metody wyceny opcji amerykańskich
Metody wyceny Piotr Małecki promotor: dr hab. Rafał Weron Instytut Matematyki i Informatyki Politechniki Wrocławskiej Wrocław, 0 lipca 009 Metody wyceny Drzewko S 0 S t S t S 3 t S t St St 3 S t St St
Pozyskiwanie wiedzy z danych
Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm.
2 Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. Nr pomiaru T[s] 1 2,21 2 2,23 3 2,19 4 2,22 5 2,25 6 2,19 7 2,23 8 2,24 9 2,18 10 2,16 Wyniki pomiarów okresu drgań dla wahadła
Analiza metod wyceny nieruchomości w podejściu porównawczym w aspekcie zabezpieczenia wierzytelności kredytowych
Analiza metod wyceny nieruchomości w podejściu porównawczym w aspekcie zabezpieczenia wierzytelności kredytowych 1. Wprowadzenie Prof. zw. dr hab. inż. Józef Czaja Dr Zbigniew Krysiak Robert Nowak Zgodnie
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej
LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;
Próba własności i parametry
Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu
Zajęcia 1. Statystyki opisowe
Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,
Estymacja parametro w 1
Estymacja parametro w 1 1 Estymacja punktowa: średniej, odchylenia standardowego i frakcji µ - średnia populacji h średnia z próby jest estymatorem średniej populacji = - standardowy błąd estymacji średniej
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
ANALIZA RYNKU NIERUCHOMOŚCI PRZY ZASTOSOWANIU PROGRAMU GRETL
ANALIZA RYNKU NIERUCHOMOŚCI PRZY ZASTOSOWANIU PROGRAMU GRETL Joanna B. Waluk-Pacholska Jak przy pomocy ogólnie dostępnego oprogramowania przeprowadzić analizę rynku nieruchomości i w jaki sposób określić
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie
NOTA INTERPETACYJNA ZASTOSOWANIE PODEJŚCIA PORÓWNAWCZEGO W WYCENIE NIERUCHOMOŚCI
POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) NOTA INTERPETACYJNA ZASTOSOWANIE PODEJŚCIA PORÓWNAWCZEGO W WYCENIE NIERUCHOMOŚCI 1. WPROWADZENIE 1.1. Celem niniejszej noty jest przedstawienie uzgodnionych w środowisku
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW)
POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) NOTA INTERPETACYJNA NR 1 NI 1 ZASTOSOWANIE PODEJŚCIA PORÓWNAWCZEGO W WYCENIE NIERUCHOMOŚCI 1. WPROWADZENIE...2 2. PRZEDMIOT I ZAKRES STOSOWANIA NOTY...2 3. ZAŁOśENIA
1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel:
Wariancja z populacji: Podstawowe miary rozproszenia: 1 1 s x x x x k 2 2 k 2 2 i i n i1 n i1 Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: 1 k 2 s xi x n 1 i1 2 Przykład 38,
Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna.
Podstawy Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Funkcja informacyjna umożliwia pełny i obiektywny obraz badanych zjawisk Funkcja analityczna umożliwia określenie czynników
ŁÓDZKI RYNEK NIERUCHOMOŚCI
Baza Danych o Rynku Nieruchomości pod patronatem Łódzkiego Stowarzyszenia Rzeczoznawców Majątkowych ŁÓDZKI RYNEK NIERUCHOMOŚCI 2011 2012 I. NIERUCHOMOŚCI LOKALOWE MIESZKALNE W ŁODZI II. NIERUCHOMOŚCI GRUNTOWE
Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41
Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna
WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS
WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS Nazwa przedmiotu: Statystyka opisowa Profil 1 : ogólnoakademicki Cel przedmiotu: Zapoznanie studentów
1.1 Wstęp Literatura... 1
Spis treści Spis treści 1 Wstęp 1 1.1 Wstęp................................ 1 1.2 Literatura.............................. 1 2 Elementy rachunku prawdopodobieństwa 2 2.1 Podstawy..............................
Informacja sygnalna. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej II kwartał 2017 r.
Sierpień 217 r. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej II kwartał 217 r. NBP Oddział Okręgowy w Katowicach Katowice, 217 r. Synteza Synteza Informację
Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25
Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane
Teoria Estymacji. Do Powyżej
Teoria Estymacji Zad.1. W pewnym przedsiębiorstwie wylosowano niezależnie próbę 25 pracowników. Staż pracy (w latach) tych pracowników w 1996 roku był następujący: 37; 34; 0*; 5; 17; 17; 0*; 2; 24; 33;
Podstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na
Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony zbiór jednostek, które
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami
( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy
Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.
K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.
Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące
-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak
Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.