PRACOWNIA Z BIOFIZYKI DLA ZAAWANSOWANYCH
|
|
- Lidia Zakrzewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 PRACOWNIA Z BIOFIZYKI DLA ZAAWANSOWANYCH Ćwiczenia laboratoryjne dla studentów III roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Wyznaczenie parametrów dynamiki rotacyjnej białka, na podstawie zaniku anizotropii fluorescencji wewnętrznej 1
2 Wyznaczenie parametrów dynamiki rotacyjnej białka, na podstawie zaniku anizotropii fluorescencji wewnętrznej I. Wstęp Absorpcja fotonów przez makrocząsteczki biologiczne (np., kwasy nukleinowe, białka, chloroplasty) w zakresie długości fali nm (bliskiego UV) lub powyżej 400 nm (światła widzialnego) może być wywołana przez sprzężone wiązania wielokrotne w zasadach kwasów nukleinowych, aminokwasach aromatycznych (tryptofan, tyrozyna i fenyloalanina - absorpcja białek w zakresie bliskiego UV), oraz barwnikach takie jak chlorofil, karoten - absorpcja chloroplastów w zakresie widzialnym. Stosunkowo niska energia wzbudzenia elektronowego w tych cząsteczkach jest związana z obecnością zdelokalizowanych wiązań typu π, które są przyczyną także płaskiego charakteru tych cząsteczek. Cząsteczki powiązane takim układem wiązań zachowują płaską strukturę, orbitale p prostopadłe do płaszczyzny cząsteczki mogą się nakładać i tworzyć wielocentrowe czyli zdelokalizowane orbitale cząsteczkowe tzw. orbitale π. W ogólności możemy mówić o stanach elektronowooscylacyjno-rotacyjnych cząsteczek, przy czym w środowisku wodnym w laboratorium lub w środowisku biologicznych wewnątrz żywych komórek lub tkanek najważniejsze są stany elektronowo-oscylacyjne. Ponadto w temperaturze pokojowej cząsteczki te znajdują się w podstawowym stanie oscylacyjnym podstawowego stanu elektronowego. Absorpcja fotonu o energii równej różnicy miedzy dozwolonymi stanami elektronowymi powoduje przejście cząsteczki ze stanu podstawowego do wzbudzonego stanu elektronowego, natomiast przejście odwrotne jest realizowane poprzez emisję fotonów zwaną fluorescencją. Zarówno po absorpcji jak i po emisji kwantu światła cząsteczka może znaleźć się w podstawowym lub wzbudzonym stanie oscylacyjnym. Dezaktywacja bezpromienista stanu oscylacyjnego odbywa się bardzo szybko i emisja fotonu odbywa się z podstawowego stanu oscylacyjnego. Absorpcja i emisja zależą od właściwości fizycznych badanej cząsteczki i jej oddziaływania z innymi cząsteczkami (otoczeniem), zarówno w stanie podstawowym jak i wzbudzonym. 2
3 Wybór spektroskopii emisyjnej jako podstawowego narzędzia badawczego wynika m.in. z następujących obserwacji. Po pierwsze, chociaż metody spektroskopii emisyjnej stanów elektronowych cząsteczek biologicznych i ich kompleksów nie udzielają tak precyzyjnej informacji o strukturze jak krystalografia lub spektroskopia wielowymiarowego magnetycznego rezonansu magnetycznego (NMR), to można je uznać za komplementarne, a nawet posiadające większe możliwości. Dostarczają bowiem informacji o strukturze, oddziaływaniach i dynamice układów cząsteczkowych w roztworze, tj. w warunkach zbliżonych do takich jakie są w żywych komórkach i tkankach. W przypadku białek (enzymów) możemy to sprawdzić m.in. na podstawie pomiaru ich aktywności katalitycznej wobec typowych ligandów (substratów, inhibitorów) oraz na podstawie wpływu oddziaływania białek z ligandami na emisję znaczników emisyjnych przyczepionych kowalencyjnie do białek i ligandów. Dyfuzja Przemieszczanie się lub obrót cząsteczek i makrocząsteczek w roztworze przy braku sił zewnętrznych jest wywołane dyfuzją, odpowiednio translacyjną lub rotacyjną. Nieustanne chaotyczne ruchy, nazywane ruchami Browna, powoduje energia cieplna. Do opisu procesu dyfuzji rotacyjnej wykorzystywany jest współczynnik dyfuzji rotacyjnej (D R ) oraz zależność D R = 1/(6Θ R ), gdzie: Θ R czas korelacji rotacyjnej. Dyfuzja rotacyjna jest odpowiedzialna za depolaryzację fluorescencji białka poprzez zanik jej anizotropii opisany zależnością wielowykładniczą r(t) = Σ r oi exp(-t/θ Ri ) Badania dyfuzji rotacyjnej, najczęściej oparte o czasowo-rozdzielcze zaniki anizotropii fluorescencji, przyczyniają się do pogłębienia wiedzy o dynamice molekularnej makrocząsteczek biologicznych (białek). Czasowo-rozdzielcze zaniki anizotropii r(t) wyznacza się z równania r(t) = (F vv (t) - gf vh (t))/(f vv (t) + 2gF vh (t)), g = F hv /F vh, 3
4 gdzie F vv (t) i F vh (t) natężenie emisji fluorescencji dla wertykalnej (v) i horyzontalnej (h) obserwacji przy wertykalnym wzbudzeniu; F hv (t) i F hh (t) natężenie emisji fluorescencji dla wertykalnej i horyzontalnej obserwacji przy horyzontalnym wzbudzeniu. Jako przykład warto omówić pomiary dyfuzji rotacyjnej wykonane dla dehydrogenazy alkoholowej LADH (MW = 2 x 40000) z wątroby konia (Rys. 1), gdzie przewidywana wartość czasu korelacji rotacyjnej Θ R wynosi 31 ns. Anizotropia fluorescencji LADH, λexc = 300 nm, zanika od r(t = 0) = 0.22 z czasem charakterystycznym korelacji rotacyjnej θ R = 33 ns. Białko tego enzymu zawiera dwie reszty tryptofanowe Trp-15 (eksponowaną) i Trp-314 (zanurzoną). Poza składnikiem długożyciowym reprezentującym dynamikę (makro-rotację) całego białka obecny jest także składnik krótkożyciowy reprezentujący mikro-rotację tych dwóch sond tryptofanowych. mikro-rotacja sond makro-rotacja białka Rys. 1 Dynamika zaniku anizotropii fluorescencji dehydrogenazy alkoholowej (LADH) z wątroby konia 4
5 Parametry hydrodynamiczne a kształt cząsteczki Współczynnik dyfuzji D R zależy od współczynnika tarcia obotowego f o, który z kolei pozostaje w ścisłym związku z kształtem poruszającej się cząsteczki. W przypadku gdy cząsteczka jest kulą o promieniu R k współczynnik tarcia f o opisuje wzór Stokesa f o = 6πηR k = 6πη(3Mv s /(4π)) 1/3 gdzie η - lepkość, M masa cząsteczkowa, v s objętość specyficzna. Ze względu na to, że siła tarcia zależy od pola powierzchni badanej cząsteczki, a sfera ma najmniejszą powierzchnię spośród wszystkich brył geometrycznych o tej samej objętości, współczynniki tarcia cząsteczek sferycznych są zawsze mniejsze niż niesferycznych. Kształt większości makrocząsteczek biologicznych odbiega od kształtu idealnej kuli. Można jednak zmodyfikować wzór tak by opisywał współczynnik tarcia f cząsteczek o kształcie spłaszczonej lub wydłużonej elipsoidy obrotowej (Rys. 2). Rys. 2 Elipsoidy obrotowe powstające poprzez obrót elipsy wokół osi małej (elipsoida spłaszczona, A) lub powstające poprzez obrót elipsy wokół osi wielkiej (elipsoida wydłużona, B) Długości dwóch osi symetrii wielkiej (2a) i małej (2b) są parametrami charakteryzującymi elipsoidę obrotową. Wartości stosunku f/f o w zależności od wartości stosunku a/b (Rys. 2) dla elipsoid wydłużonych i spłaszczonych zostały po raz pierwszy obliczone przez Perrina i są dostępne w formie tabel. Na przykład dla wartości stosunku a/b = 5 stosunek f/f o wynosi 1.25 lub 1.22, odpowiednio dla elipsoidy wydłużonej i spłaszczonej. Wartość stosunku f/f o jest 5
6 więc miarą stopnia asymetrii badanej makrocząsteczki, tj. stopnia w jakim jej kształt odbiega od kształtu sferycznego. Wielkość czasu korelacji rotacyjnej można wyrazić za pomocą masy cząsteczkowej, objętości całkowitej i specyficznej makrocząsteczek biologicznych oraz lepkości i temperatury ośrodka Θ R = (1/6D R ) = ηv C /(RT) = ηmv s /(RT), gdzie D R współczynnik dyfuzji rotacyjnej [s-1], η lepkość [kg m -1 s -1 ], V C - objętość całkowita rotującego białka [m 3 ], T temperatura [K], R - stała gazowa (8.314 J.K -1 mol -1 ), M - masa cząsteczkowa, v s objętość specyficzna białka [m 3 mol -1, m 3 g -1 lub mlg -1 ]. Wysoki stopień skomplikowania białek (enzymów) oraz niski poziom wiedzy (bio)fizycznej o podstawowych oddziaływaniach fizycznych (np. wewnątrz- i między-cząsteczkowych oddziaływaniach elektrostatycznych) jest najczęstszym źródłem wielu konkurencyjnych i wzajemnie wykluczających się modeli rozpoznawania się enzymów i ligandów (substratów, inhibitorów) jak również nieścisłych i sprzecznych modeli reakcji enzymatycznych. Pracownia dotyczy zbadania zaniku anizotropii białka jednotryptofanowego, albuminy surowicy ludzkiej (HSA), określenia czasu korelacji rotacyjnej (Θ R ) i parametrów hydrodynamicznych białka, tj. współczynników dyfuzji rotacyjnej (D R ) oraz jego objętości całkowitej i specyficznej. Podjęte będą także próby uogólnienia obserwacji na wszystkie enzymy danej wielkości. Projekt pracowni przewiduje także wprowadzenie do metodologii pracy z makrocząsteczkami biologicznymi (białkami) i zapoznanie się z nowoczesnymi technikami spektroskopii fluorescencyjnej wysokiej rozdzielczości czasowej. W badaniach tych uwzględniony będzie wpływ temperatury i lepkości środowiska wodnego na zanik anizotropii fluorescencji białka oraz wielkość czasu korelacji rotacyjnej, współczynników dyfuzji rotacyjnej i objętość białka. II. Wymagania przy kolokwium wstępnym Warunkiem przystąpienia do części eksperymentalnej ćwiczenia jest zaliczenie kolokwium wstępnego. Wybór sposobu przeprowadzenia kolokwium wstępnego tj forma pisemna czy ustna, pytania otwarte czy zamknięte należy do prowadzącego ćwiczenie. 1. Materiał z zakresu spektroskopii molekularnej absorpcyjnej i emisyjnej oraz zastosowania spektroskopii do badania właściwości molekuł obowiązujący w czasie kolokwium wstępnego jest zawarty np. w książkach: Kęckiego Podstawy spektroskopii molekularnej, Barrowa, Wstęp do spektroskopii molekularnej 6
7 Kowalczyka Fizyka cząsteczek JR Lakowicz, Principles of Fluorescence Spectroscopy 2. Materiał z zakresu budowy badanych molekuł i ich roli biologicznej obowiązujący w czasie kolokwium wstępnego jest zawarty np. w książkach: Fishera i Arnolda Chemia dla biologów, krótkie wykłady Hamesa i Hoopera Biochemia, krótkie wykłady Z książek tych (lub innych podanych na końcu opisu w sekcji Literatura) należy przeczytać tylko tyle, aby być przygotowanym do omówienia poniższych zagadnień: 1. Podstawowe definicje związane z promieniowaniem elektromagnetycznym i pomiarami spektroskopowymi oraz stanami elektronowo-oscylacyjnymi cząsteczek. 2. Pomiar absorpcji promieniowania elektromagnetycznego -schematyczne przedstawienie zasady pomiarów absorpcji (spektrofotometr jedno- i dwuwiązkowy) -co rozumiemy pod pojęciem widmo absorpcyjne? -ilościowy opis absorpcji (parametry pasma spektralnego) -czynniki determinujące kształt i szerokość konturu pasma absorpcyjnego 3. Absorpcyjne widmo elektronowe ze strukturą oscylacyjną i prawo Lamberta-Beera. 4. Metoda pomiaru widm emisji i wzbudzenia fluorescencji oraz zaniku anizotropii fluorescencji i jej zależność od czasu: -czas korelacji rotacyjnej; -definicja współczynnika dyfuzji rotacyjnej; -zależność czasu korelacji rotacyjnej od masy cząsteczkowej, objętości, lepkości i temperatury; III. Badane obiekty: W ćwiczeniu rejestruje się i analizuje absorpcyjne widma elektronowe roztworów wodnych składników białek czyli wybranych aminokwasów oraz widmo białka (albuminy surowicy ludzkiej). Badane w ćwiczeniu związki to: Wybrane aminokwasy aromatyczne fenyloalanina, tryptofan, tyrozyna Białko (np. albumina surowicy ludzkiej) IV. Przebieg ćwiczenia: Studenci otrzymują przygotowane wcześniej roztwory wodne badanych związków (w buforze o ph 7.0). Stężenie roztworów jest znane i odpowiednie do rejestracji widm przy użyciu dostępnych spektrofotometrów. Wszystkie widma będą rejestrowane dla roztworów umieszczonych w kuwetach kwarcowych o długości drogi optycznej 1 cm. Objętość badanego roztworu w kuwecie powinna być równa 2 ml. Ćwiczenie wykonywane jest na spektrofotometrze dwuwiązkowym pracującym w zakresie promieniowania UV-VIS (Varian 50Bio) oraz na spektrofluorymetrze wysokiej rozdzielczości czasowej Chronos (ISS). 7
8 Wykonanie ćwiczenia: 1. Zapoznanie się ze spektrometrem absorpcyjnym pracującym w zakresie promieniowania UV-VIS oraz spektrofluorymetrem wysokiej rozdzielczości czasowej Chronos (ISS). 2. Sprawdzenie przepuszczalności stosowanego 20mM buforu hepes (ph 7) i kuwet kwarcowych czyli rejestracja ich widm w zakresie nm. 3. Rejestracja widm absorpcyjnych roztworów tyrozyny, tryptofanu i HSA w zakresie nm (zdolność rozdzielcza spektrofotometru 1 nm). 4. Rejestracja wszystkich zaników anizotropii albuminy surowicy ludzkiej w roztworze wodnym w którym lepkość zmniejszała się przy wzroście temperatury, jeżeli lepkość ta dla poszczególnych temperatur wynosi η = kg m -1 s -1 (T = 15.4 o C), η = 10-3 kg. s -1. m -1 s -1 (25 o C) i η = kg m -1 s -1 (T = 44.4 o C). 5. (Stałe fizyczne: N A = x mol -1, R = J K -1 mol -1, k B = 1.38 x J. K -1 ) 6. Po rejestracji wszystkich widm pliki należy przesłać na własne konto pocztowe lub przegrać na własny pendrive. W przypadku plików rejestrowanych przez niektóre spektrofotometry konieczna jest konwersja plików do formaty tekstowego. V. Raport z wykonanego ćwiczenia W opisie ćwiczenia należy uwzględnić Wstęp, w którym mogą być omówione ogólne zagadnienia spektroskopii absorpcyjnej i emisyjnej, mające związek z wykonywanym zadaniem, oraz Materiały i metody, w których należy przedstawić stosowaną aparaturę, badane związki i warunki pomiarów. Następnie, w części Wyniki i Dyskusja należy przedstawić, opisać i zinterpretować zarejestrowane widma absorpcji, zaniki anizotropii i wykonane obliczenia czasów korelacji rotacyjnej, współczynników dyfuzji oraz objętości całkowitej i specyficznej badanego białka. 1. Interpretacja widma kontrolnego kuwety i rozpuszczalnika (wody, buforu). Dlaczego musimy używać kuwety kwarcowej a nie szklanej? 2. Analiza zależności zarejestrowanych widm absorpcyjnych od budowy cząsteczek, tj. porównanie widm aminokwasów aromatycznych i widma białka. 3. Jakie są charakterystyczne długość fali absorpcji dla białek i ich składników? 4. Analiza zaniku anizotropii albuminy surowicy ludzkiej i wyznaczenie wartości czasów korelacji rotacyjnej, współczynników dyfuzji i objętości całkowitej i specyficznej. 8
9 VI. Literatura JR Lakowicz, Principles of Fluorescence Spectroscopy Z. Kęcki, Podstawy spektroskopii molekularnej G. Barrow, Wstęp do spektroskopii molekularnej Praca zbiorowa pod redakcją W. Zielińskiego i A. Rajcy Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych J. A. Barltrop i J. D. Coyle, Fotochemia, podstawy P. Kowalczyk Fizyka cząsteczek J. Sadlej Spektroskopia molekularna J. Fisher, J.R.P. Arnold Chemia dla biologów, krótkie wykłady B.D. Hames, N.M. Hooper Biochemia, krótkie wykłady A także, w razie potrzeb: H. Haken, H. C. Wolf, Fizyka molekularna z elementami chemii kwantowej H. A. Staab, Wstęp do teoretycznej chemii organicznej W. Kołos, Chemia kwantowa J. Simons, Fotochemia i spektroskopia L. A. Kazicyna i N. B. Kupletska, Metody spektroskopowe wyznaczania struktury związków organicznych 9
10 Tabela VII.1: Tabela współczynników ekstynkcji i mas molowych badanych związków Jeśli nie zaznaczono inaczej, współczynniki dotyczą formy neutralnej pierścienia aminokwasu i zaczerpnięto je z: R.M.C. Dawson, D. Elliott, W.H. Elliott, K.M. Jones (Eds.), Constituents of RNA and related compounds, and spectral data and pk values for purines, pyrimidines, nucleosides, and nucleotides, in: Data for Biochemical Research, Oxford University Press, Oxford, 1969, pp G. D. Fasman, Handbook of Biochemistry and Molecular Biology, Proteins, I, , CRC Press, 3 ed., 1976 Związek Długość fali [nm] Współczynnik ekstynkcji [M -1 cm -1 ] Tyrozyna a 10.1 b Tryptofan a * HSA 278 *Nie występuje jonizacja w obrębie pierścienia heterocyklicznego pk 10
PRACOWNIA CHEMII. Wygaszanie fluorescencji (Fiz4)
PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Wygaszanie fluorescencji
PRACOWNIA PODSTAW BIOFIZYKI
PRACOWNIA PODSTAW BIOFIZYKI Ćwiczenia laboratoryjne dla studentów III roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Badanie wygaszania fluorescencji SPQ przez jony chloru
SF5. Spektroskopia absorpcyjna i emisyjna cząsteczek organicznych
SF5 Spektroskopia absorpcyjna i emisyjna cząsteczek organicznych Każda cząsteczka ma charakterystyczny dla siebie układ poziomów energetycznych elektronowych, oscylacyjnych i rotacyjnych, przy czym tych
ZASADY ZALICZENIA PRZEDMIOTU MBS
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll
Spektroskopia molekularna. Ćwiczenie nr 1. Widma absorpcyjne błękitu tymolowego
Spektroskopia molekularna Ćwiczenie nr 1 Widma absorpcyjne błękitu tymolowego Doświadczenie to ma na celu zaznajomienie uczestników ćwiczeń ze sposobem wykonywania pomiarów metodą spektrofotometryczną
Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Spektroskopia (0310-CH-S2-016)
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Spektroskopia () 1. Informacje ogólne koordynator modułu prof. dr hab. Henryk Flakus rok akademicki 2013/2014
Ćwiczenie 1. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp. Część teoretyczna.
Ćwiczenie 1 Metodyka poprawnych i dokładnych pomiarów absorbancji, wyznaczenie małych wartości absorbancji. Czynniki wpływające na mierzone widma absorpcji i wartości absorbancji dla wybranych długości
ĆWICZENIE 3 LUMINOFORY ORAZ ZJAWISKA WYGASZANIA LUMINESCENCJI
Laboratorium specjalizacyjne Chemia sądowa ĆWICZENIE 3 LUMINOFORY ORAZ ZJAWISKA WYGASZANIA LUMINESCENCJI Zagadnienia: Podział luminoforów: fluorofory oraz fosfory Luminofory organiczne i nieorganiczne
ĆWICZENIE 3 LUMINOFORY ORGANICZNE I NIEORGANICZNE.
Laboratorium specjalizacyjne A ĆWICZENIE 3 LUMINOFORY ORGANICZNE I NIEORGANICZNE. Zagadnienia: Podział luminoforów: fluorofory oraz fosfory Luminofory organiczne i nieorganiczne Różnorodność stanów wzbudzonych
Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa
Podział technik analitycznych Techniki analityczne Techniki elektrochemiczne: pehametria, selektywne elektrody membranowe, polarografia i metody pokrewne (woltamperometria, chronowoltamperometria inwersyjna
JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?
Podstawowe miary masy i objętości stosowane przy oznaczaniu ilości kwasów nukleinowych : 1g (1) 1l (1) 1mg (1g x 10-3 ) 1ml (1l x 10-3 ) 1μg (1g x 10-6 ) 1μl (1l x 10-6 ) 1ng (1g x 10-9 ) 1pg (1g x 10-12
SKUTECZNOŚĆ IZOLACJI JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?
SKUTECZNOŚĆ IZOLACJI Wydajność izolacji- ilość otrzymanego kwasu nukleinowego Efektywność izolacji- jakość otrzymanego kwasu nukleinowego w stosunku do ilości Powtarzalność izolacji- zoptymalizowanie procedury
SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne
SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów
Badanie przejść fazowych w błonach biologicznych metodą pomiaru anizotropii fluorescencji 1. Wstęp
Badanie przejść fazowych w błonach biologicznych metodą pomiaru anizotropii fluorescencji 1. Wstęp Błony biologiczne pełnią kluczową rolę w podstawowych funkcjach i procesach życiowych komórek, takich
WYZNACZANIE ROZMIARÓW
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 6 WYZNACZANIE ROZMIARÓW MAKROCZĄSTECZEK I. WSTĘP TEORETYCZNY Procesy zachodzące między atomami lub cząsteczkami w skali molekularnej
PRACOWNIA CHEMII. Równowaga chemiczna (Fiz2)
PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Równowaga chemiczna (Fiz2)
PRACOWNIA PODSTAW BIOFIZYKI
PRACOWNIA PODSTAW BIOFIZYKI Ćwiczenia laboratoryjne dla studentów III roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Pomiary zaników fluorescencji wybranych barwników (PB16)
2. Metody, których podstawą są widma atomowe 32
Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola
PRACOWNIA PODSTAW BIOFIZYKI
PRACOWNIA PODSTAW BIOFIZYKI Ćwiczenia laboratoryjne dla studentów III roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Badanie powtórnego fałdowania białka zielonej fluorescencji
Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności
Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu
Spektroskopia molekularna. Spektroskopia w podczerwieni
Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące
EKSTRAHOWANIE KWASÓW NUKLEINOWYCH JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?
EKSTRAHOWANIE KWASÓW NUKLEINOWYCH Wytrącanie etanolem Rozpuszczenie kwasu nukleinowego w fazie wodnej (met. fenol/chloroform) Wiązanie ze złożem krzemionkowym za pomocą substancji chaotropowych: jodek
Spektroskopowe metody identyfikacji związków organicznych
Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego
spektropolarymetrami;
Ćwiczenie 12 Badanie własności uzyskanych białek: pomiary dichroizmu kołowego Niejednakowa absorpcja prawego i lewego, kołowo spolaryzowanego promieniowania nazywa się dichroizmem kołowym (ang. circular
Laboratorium Biofizyczne semestr zimowy 2015/2016
Bezpośredni opiekunowie laboratorium: dr Ewa Banachowicz dr Hanna JurgaNowak Laboratorium Biofizyczne semestr zimowy 2015/2016 Biofizyka molekularna I rok II stopnia Zebranie informacyjne dotyczące zajęć
BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ
KATEDRA BIOCHEMII Wydział Biologii i Ochrony Środowiska BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ ĆWICZENIE 2 Nukleotydy pirydynowe (NAD +, NADP + ) pełnią funkcję koenzymów dehydrogenaz przenosząc jony
Zakresy promieniowania. Światło o widzialne. długość fali, λ. podczerwień. ultrafiolet. Wektor pola elektrycznego. Wektor pola magnetycznego TV AM/FM
Światło o widzialne Zakresy promieniowania ultrafiolet podczerwień Wektor pola elektrycznego Wektor pola magnetycznego TV AM/FM długość fali, λ Podział fal elektromagnetycznych Promieniowanie X Fale wolnozmiennesieci
WYZNACZANIE ODLEGŁOŚCI KRYTYCZNEJ POMIĘDZY CZĄSTECZKAMI DONORA I AKCEPTORA W PROCESIE REZONANSOWEGO PRZENIESIENIA ENERGII (FRET)
Ćwiczenie 9 WYZNACZANIE ODLEGŁOŚCI KRYTYCZNEJ POMIĘDZY CZĄSTECZKAMI DONORA I AKCEPTORA W PROCESIE REZONANSOWEGO PRZENIESIENIA ENERGII (FRET) Zagadnienia: procesy dezaktywacji stanów elektronowo wzbudzonych
Program studiów II stopnia dla studentów kierunku chemia od roku akademickiego 2015/16
Program studiów II stopnia dla studentów kierunku chemia od roku akademickiego 2015/16 Semestr 1M Przedmioty minimum programowego na Wydziale Chemii UW L.p. Przedmiot Suma godzin Wykłady Ćwiczenia Prosem.
Badanie absorpcji światła molekuł wieloatomowych na przykładzie chlorofilu A i rodaminy 6G. Ćwiczenie 20
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 20 Badanie absorpcji światła molekuł wieloatomowych na przykładzie chlorofilu A i rodaminy 6G I. Zagadnienia
Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR
Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR 1. Wstęp Związki karbonylowe zawierające w położeniu co najmniej jeden atom wodoru mogą ulegać enolizacji przez przesunięcie protonu
PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR
PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 20 : Badanie absorpcji światła molekuł I. Zagadnienia do opracowania. 1. 2. 3. 4. 5. 6. 7. Promieniowanie
1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?
Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody
Tematyka ćwiczeń laboratoryjnych z Biofizyki dla studentów I roku Kierunku Lekarsko-Dentystycznego w Zabrzu w roku akademickim 2017/18
Tematyka ćwiczeń laboratoryjnych z Biofizyki dla studentów I roku Kierunku Lekarsko-Dentystycznego w Zabrzu w roku akademickim 2017/18 1. Podstawy fizyczne biospektroskopii. a) Wyznaczanie krzywych dyspersji
Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego
Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej
Ćwiczenie 31. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp
Ćwiczenie 31 Metodyka poprawnych i dokładnych pomiarów widm absorbancji w zakresie UV-VIS. Wpływ monochromatyczności promieniowania i innych parametrów pomiarowych na kształt widm absorpcji i wartości
ZASTOSOWANIE SPEKTROSKOPII NMR W MEDYCYNIE
ZASTOSOWANIE SPEKTROSKOPII NMR W MEDYCYNIE LITERATURA 1. K.H. Hausser, H.R. Kalbitzer, NMR in medicine and biology. Structure determination, tomography, in vivo spectroscopy. Springer Verlag. Wydanie polskie:
Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)
SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE
Repeta z wykładu nr 11. Detekcja światła. Fluorescencja. Eksperyment optyczny. Sebastian Maćkowski
Repeta z wykładu nr 11 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 CCD (urządzenie
Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie
Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,
Metody optyczne w medycynie
Metody optyczne w medycynie Podstawy oddziaływania światła z materią E i E t E t = E i e κ ( L) i( n 1)( L) c e c zmiana amplitudy (absorpcja) zmiana fazy (dyspersja) Tylko światło pochłonięte może wywołać
KREW: 1. Oznaczenie stężenia Hb. Metoda cyjanmethemoglobinowa: Zasada metody:
KREW: 1. Oznaczenie stężenia Hb Metoda cyjanmethemoglobinowa: Hemoglobina i niektóre jej pochodne są utleniane przez K3 [Fe(CN)6]do methemoglobiny, a następnie przekształcane pod wpływem KCN w trwały związek
Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS
Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS 1. Absorpcja i emisja światła w układzie dwupoziomowym. Absorpcję światła można opisać jako proces, w którym
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
1,2 1,2. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Brak
Zał. nr 4 do ZW 33/01 WYDZIAŁ Podstawowych Problemów Techniki KARTA PRZEDMIOTU Nazwa w języku polskim Podstawy Chemii Ogólnej Nazwa w języku angielskim General Chemistry Kierunek studiów (jeśli dotyczy):
CEL ĆWICZENIA: Zapoznanie się z przykładową procedurą odsalania oczyszczanych preparatów enzymatycznych w procesie klasycznej filtracji żelowej.
LABORATORIUM 3 Filtracja żelowa preparatu oksydazy polifenolowej (PPO) oczyszczanego w procesie wysalania siarczanem amonu z wykorzystaniem złoża Sephadex G-50 CEL ĆWICZENIA: Zapoznanie się z przykładową
Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR
Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Szczególnym i bardzo charakterystycznym rodzajem oddziaływań międzycząsteczkowych jest wiązanie wodorowe. Powstaje ono między molekułami,
ul. Żwirki i Wigury 93 02 89 Warszawa Prof. dr hab. Paweł Kowalczyk Zastępca Dyrektora Instytutu Fizyki Doświadczalnej Wydział Fizyki UW:
Warszawa, dn. 28.05.2010 Prof. dr hab. Ryszard Stolarski UNIWERSYTET WARSZAWSKI WYDZIAŁ FIZYKI Tel. 55 40772 Instytut Fizyki Doświadczalnej Fax: 55 40771 Zakład Biofizyki ul. Żwirki i Wigury 93 02 89 Warszawa
KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE
1 3 4 5 6 7 8 8.0 Kod przedmiotu Nazwa przedmiotu Jednostka Punkty ECTS Język wykładowy Poziom przedmiotu Symbole efektów kształcenia Symbole efektów dla obszaru kształcenia Symbole efektów kierunkowych
Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil
Spektroskopia Spotkanie pierwsze Prowadzący: Dr Barbara Gil Temat rozwaŝań Spektroskopia nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na
SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s]
SPEKTROFOTOMETRIA UV-Vis Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. Spektrofotometria w zakresie nadfioletu (UV) i promieniowania widzialnego (Vis) jest jedną
Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki.
Spis treści 1 Podstawowe definicje 11 Równanie ciągłości 12 Równanie Bernoulliego 13 Lepkość 131 Definicje 2 Roztwory wodne makrocząsteczek biologicznych 3 Rodzaje przepływów 4 Wyznaczania lepkości i oznaczanie
PRACOWNIA CHEMII. Reakcje fotochemiczne (Fiz3)
PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Reakcje fotochemiczne
PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ
PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ Kierowniczka pracowni: dr hab. Magdalena Pecul-Kudelska, (pok. 417), e-mail mpecul@chem.uw.edu.pl, tel 0228220211 wew 501; Spis ćwiczeń i osoby prowadzące 1.
Program studiów II stopnia dla studentów kierunku chemia od roku akademickiego 2016/2017. Semestr 1M
Program studiów II stopnia dla studentów kierunku chemia od roku akademickiego 2016/2017 Semestr 1M L.p. Przedmiot 1. Biochemia 60 30 E 30 Z 5 2. Chemia jądrowa 60 30 E 30 Z 5 Blok przedmiotów 3. kierunkowych
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
PRACOWNIA BIOFIZYKI DLA ZAAWANSOWANYCH
PRACOWNIA BIOFIZYKI DLA ZAAWANSOWANYCH Ćwiczenia laboratoryjne dla studentów III roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Absorpcyjne i emisyjne badanie tworzenia
Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM
Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM Ćwiczenie 1 Zastosowanie statystyki do oceny metod ilościowych Błąd gruby, systematyczny, przypadkowy, dokładność, precyzja, przedział
Ćwiczenie 3 ANALIZA JAKOŚCIOWA PALIW ZA POMOCĄ SPEKTROFOTOMETRII FTIR (Fourier Transform Infrared Spectroscopy)
POLITECHNIKA ŁÓDZKA WYDZIAŁ INśYNIERII PROCESOWEJ I OCHRONY ŚRODOWISKA KATEDRA TERMODYNAMIKI PROCESOWEJ K-106 LABORATORIUM KONWENCJONALNYCH ŹRÓDEŁ ENERGII I PROCESÓW SPALANIA Ćwiczenie 3 ANALIZA JAKOŚCIOWA
rodzaje luminescencji (czym wywołana?)
metody emisyjne luminescencja - świecenie atomów lub cząsteczek, które nie jest wywołane głównie przez wysoką temperaturę generalnie świecenie zimnych cząsteczek rodzaje luminescencji (czym wywołana?)
METODY SPEKTROSKOPOWE II. UV-VIS od teorii do praktyki Jakub Grynda Katedra Technologii Leków i Biochemii
METODY SPEKTROSKOPOWE II UV-VIS od teorii do praktyki Jakub Grynda Katedra Technologii Leków i Biochemii Pokój nr 1 w Chemii B Godziny konsultacji: Poniedziałek 11-13 E-mail: jakub.grynda@gmail.com PLAN
Eukariota - błony wewnątrzkomórkowe. Błony wewnętrzne stanowiące granice poszczególnych. przedziałów komórki i otaczające organelle komórkowe
Błona komórkowa (błona plazmatyczna, plazmolema) Występuje u wszystkich organizmów żywych (zarówno eukariota, jak i prokariota) Stanowią naturalną barierę między wnętrzem komórki a środowiskiem zewnętrznym
MIKROSKOP FLUORESCENCYJNY. POMIAR WYDAJNOŚCI KWANTOWEJ FLUORESCENCJI ANTRACENU, PERYLENU ORAZ 9,10-DIFENYLOANTRACENU W ROZTWORZE
Ćwiczenie 1 MIKROSKOP FLUORESCENCYJNY. POMIAR WYDAJNOŚCI KWANTOWEJ FLUORESCENCJI ANTRACENU, PERYLENU ORAZ 9,10-DIFENYLOANTRACENU W ROZTWORZE Zagadnienia: procesy dezaktywacji stanów wzbudzonych (diagram
Chemia bionieorganiczna / Rosette M. Roat-Malone ; red. nauk. Barbara Becker. Warszawa, Spis treści
Chemia bionieorganiczna / Rosette M. Roat-Malone ; red. nauk. Barbara Becker. Warszawa, 2010 Spis treści Przedmowa IX 1. WYBRANE ZAGADNIENIA CHEMII NIEORGANICZNEJ 1 1.1. Wprowadzenie 1 1.2. Niezbędne pierwiastki
ĆWICZENIE 2 WYZNACZANIE WYDAJNOŚCI KWANTOWYCH ORAZ CZASÓW ZANIKU LUMINESCENCJI ZWIĄZKÓW W ROZTWORZE ORAZ CIELE STAŁYM, CZ. II.
Laboratorium specjalizacyjne Chemia sądowa ĆWICZENIE 2 WYZNACZANIE WYDAJNOŚCI KWANTOWYCH ORAZ CZASÓW ZANIKU LUMINESCENCJI ZWIĄZKÓW W ROZTWORZE ORAZ CIELE STAŁYM, CZ. II. Zagadnienia: Zjawiska fosforescencji
Metody analizy białek - opis przedmiotu
Metody analizy białek - opis przedmiotu Informacje ogólne Nazwa przedmiotu Metody analizy białek Kod przedmiotu 13.9-WB-BMD-MAB-L-S14_pNadGenPEBES Wydział Kierunek Wydział Nauk Biologicznych Biologia /
KARTA PRZEDMIOTU. wykazuje umiejętności nabyte w trakcie ćwiczeń. 75 godziny 30 uczestnictwo w zajęciach 30. nakład
1 3 6 7 8 8.0 Kod przedmiotu Nazwa przedmiotu Jednostka Punkty ECTS Język wykładowy polski Poziom przedmiotu podstawowy K_W01 3 wiedza Symbole efektów kształcenia K_U01 3 umiejętności K_K01 11 kompetencje
IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni
IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,
ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE
ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE Cel ćwiczenia Poznanie podstawowej metody określania biochemicznych parametrów płynów ustrojowych oraz wymagań technicznych stawianych urządzeniu pomiarowemu.
Ćwiczenie 30. Zagadnienia: spektroskopia absorpcyjna w zakresie UV-VIS, prawa absorpcji, budowa i. Wstęp
Ćwiczenie 30 Metodyka poprawnych i dokładnych pomiarów absorbancji w zakresie UV- VS, wyznaczenie małych wartości absorbancji. Czynniki wpływające na mierzone widma absorpcji i wartości absorbancji dla
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
K05 Instrukcja wykonania ćwiczenia
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego K05 Instrukcja wykonania ćwiczenia Wyznaczanie punktu izoelektrycznego żelatyny metodą wiskozymetryczną Zakres zagadnień obowiązujących do ćwiczenia 1. Układy
Metody badań spektroskopowych
Metody badań spektroskopowych Program wykładu Wstęp A. Spektroskopia optyczna 1. Podstawy spektroskopii optycznej 1.1 Promieniowanie elektromagnetyczne 1.2 Kwantowanie energii 1.3 Emisja i absorpcja promieniowania
Opis modułu kształcenia / przedmiotu (sylabus)
Opis modułu kształcenia / przedmiotu (sylabus) Rok akademicki: 2016/2017 Grupa przedmiotów: podstawowe Numer katalogowy: Nazwa przedmiotu 1) : Tłumaczenie nazwy na jęz. angielski 3) : Kierunek studiów
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Brak
WYDZIAŁ Podstawowych Problemów Techniki KARTA PRZEDMIOTU Nazwa w języku polskim Podstawy chemii ogólnej Nazwa w języku angielskim General chemistry Język wykładowy polski Kierunek studiów Optyka Specjalność
POLITECHNIKA GDAŃSKA
PLITECHIKA GDAŃSKA WYDZIAŁ CHEMICZY KATEDRA TECHLGII CHEMICZEJ Ćwiczenia laboratoryjne CHEMIA I TECHLGIA MATERIAŁÓW BARWYCH SPEKTRFLURYMETRIA GDAŃSK RK 2011 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie
Spektroskopia Analiza rotacyjna widma cząsteczki N 2. Cel ćwiczenia: Wyznaczenie stałych rotacyjnych i odległości między atomami w cząsteczce N 2
Spektroskopia Analiza rotacyjna widma cząsteczki N 2 Cel ćwiczenia: Wyznaczenie stałych rotacyjnych i odległości między atomami w cząsteczce N 2 w stanach B 2 v=0 oraz X 2 v=0. System B 2 u - X 2 g cząsteczki
Dobór warunków dla poprawnego pomiaru widm emisji i wydajności kwantowych emisji
Dobór warunków dla poprawnego pomiaru widm emisji i wydajności kwantowych emisji Badania emisyjne są niezwykle cennym źródłem danych o właściwościach cząsteczek i kompleksów (różnego rodzaju), które one
Fizykochemiczne metody w kryminalistyce. Wykład 7
Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne
Wyznaczanie współczynników dyfuzji i sedymentacji wybranych białek metodą ultrawirowania analitycznego
Wyznaczanie współczynników dyfuzji i sedymentacji wybranych białek metodą ultrawirowania analitycznego dr Anna Modrak-Wójcik Spis treści 1 Wstęp 1.1 Dyfuzja i sedymentacja 1.2 Podstawy fizyczne ultrawirowania
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie stałej szybkości i rzędu reakcji metodą graficzną. opiekun mgr K.
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie stałej szybkości i rzędu reakcji metodą graficzną opiekun mgr K. Łudzik ćwiczenie nr 27 Zakres zagadnień obowiązujących do ćwiczenia 1. Zastosowanie
Sylabus - Identyfikacja Związków Organicznych
Sylabus - Identyfikacja Związków Organicznych 1. Metryczka Nazwa Wydziału: Program kształcenia (kierunek studiów, poziom i profil kształcenia, forma studiów, np. Zdrowie publiczne I stopnia profil praktyczny,
MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM
Ćwiczenie nr 16 MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Aparatura Zasilacze regulowane, cewki Helmholtza, multimetry cyfrowe, dynamometr torsyjny oraz pętle próbne z przewodnika. X Y 1 2 Rys. 1 Układ pomiarowy
Wyznaczanie energii dysocjacji molekuły jodu (I 2 )
S1 Wyznaczanie energii dysocjacji molekuły jodu (I 2 ) 1 Cel ćwiczenia Bezpośrednim celem ćwiczenia jest wyznaczenie energii dysocjacji molekuły I 2. W trakcie przygotowywania doświadczenia oraz realizacji
ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE Specjalność: Projektowanie molekularne i bioinformatyka. 3-letnie studia I stopnia (licencjackie)
ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE Specjalność: Projektowanie molekularne i bioinformatyka 3-letnie studia I stopnia (licencjackie) 1. OGÓLNA CHARAKTERYSTYKA STUDIÓW Projektowanie molekuł biologicznie
SPEKTROSKOPIA NMR. No. 0
No. 0 Spektroskopia magnetycznego rezonansu jądrowego, spektroskopia MRJ, spektroskopia NMR jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie. Spektroskopia ta polega
Pracownia Spektroskopii Molekularnej A Wydział Chemii Uniwersytetu Warszawskiego. Semestr zimowy 2010/2011. Widma fluorescencyjne chininy
Pracownia Spektroskopii Molekularnej A Wydział Chemii Uniwersytetu Warszawskiego. Semestr zimowy 2010/2011 Widma fluorescencyjne chininy Cel Celem ćwiczenia jest zapoznanie się ze zjawiskiem fluorescencji
Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej
Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB Tematyka Spektroskopia - podział i zastosowanie
Emisja spontaniczna i wymuszona
Fluorescencja Plan wykładu 1) Absorpcja, emisja wymuszona i emisja spontaniczna 2) Przesunięcie Stokesa 3) Prawo lustrzanego odbicia 4) Znaczniki fluorescencyjne 5) Fotowybielanie Emisja spontaniczna i
Badanie dynamiki białek jądrowych w żywych komórkach metodą mikroskopii konfokalnej
Badanie dynamiki białek jądrowych w żywych komórkach metodą mikroskopii konfokalnej PRAKTIKUM Z BIOLOGII KOMÓRKI () ćwiczenie prowadzone we współpracy z Pracownią Biofizyki Komórki Badanie dynamiki białek
RÓWNOWAGI REAKCJI KOMPLEKSOWANIA
POLITECHNIK POZNŃSK ZKŁD CHEMII FIZYCZNEJ ĆWICZENI PRCOWNI CHEMII FIZYCZNEJ RÓWNOWGI REKCJI KOMPLEKSOWNI WSTĘP Ważną grupę reakcji chemicznych wykorzystywanych w chemii fizycznej i analitycznej stanowią
Ćw. 11 wersja testowa Wyznaczanie odległości krytycznej R 0 rezonansowego przeniesienia energii (FRET)
Ćw. 11 wersja testowa Wyznaczanie odległości krytycznej R 0 rezonansowego przeniesienia energii (FRET) Wstęp W wyniku absorpcji promieniowania elektromagnetycznego o odpowiedniej długości fali (najczęściej
Biofizyka SYLABUS A. Informacje ogólne
Biofizyka A. Informacje ogólne Elementy sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Rodzaj Rok studiów /semestr Wymagania wstępne
Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM
Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Światło słoneczne jest mieszaniną fal o różnej długości i różnego natężenia. Tylko część promieniowania elektromagnetycznego
METODY SPEKTRALNE. dr hab. Włodzimierz Gałęzowski Wydział Chemii UAM Zakład Chemii Ogólnej (61)
METODY SPEKTRALNE dr hab. Włodzimierz Gałęzowski Wydział Chemii UAM Zakład Chemii Ogólnej (61) 829 1484 wlodgal@amu.edu.pl materiał wymagany na egzaminie: wykłady ćwiczenia wiadomości z kursu Analizy Instrumentalnej
Laboratorium 5. Wpływ temperatury na aktywność enzymów. Inaktywacja termiczna
Laboratorium 5 Wpływ temperatury na aktywność enzymów. Inaktywacja termiczna Prowadzący: dr inż. Karolina Labus 1. CZĘŚĆ TEORETYCZNA Szybkość reakcji enzymatycznej zależy przede wszystkim od stężenia substratu
Rozmycie pasma spektralnego
Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości
Instrukcja do ćwiczeń laboratoryjnych
UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 3 OZNACZANIE CHLORKÓW METODĄ SPEKTROFOTOMETRYCZNĄ Z TIOCYJANIANEM RTĘCI(II)