KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
|
|
- Edward Urbaniak
- 7 lat temu
- Przeglądów:
Transkrypt
1 KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Joint Photographic Expert Group ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et Télégraphie Standard ISO - 11 WYKŁAD 13 Zastosowanie algorytmu - kompresja cyfrowych obrazów w fotograficznych Założenia: obraz monochromatyczny tablica liczb całkowitych opisujących jasność punktów obrazu obraz barwny tablice liczb całkowitych (zazwyczaj trzy) opisujące obraz w języku j przyjętego modelu barw n.p. dla modelu RGB trzy tablice określaj lające zawartości trzech barw podstawowych 1
2 Algorytm kodowania obrazu 1. Konwersja obrazu do modelu YIQ (obrazy barwne) 2. Podział obrazu na bloki 3. Obliczenie transformaty kosinusowej dla bloków 4. Kwantyzacja współczynnik czynników w transformaty 5. Konwersja tablicy współczynnik czynników w do postaci wektora 6. Kodowanie wektora współczynnik czynników 1. Konwersja obrazu do modelu YIQ Przykładowo, dla modelu RGB obraz opisany jest przy pomocy trzech tablic [ r ], G = [ g ], B [ b ] R = = Konwersja polega na opisaniu obrazu przy pomocy trzech nowych tablic Y, I, Q, Q których elementy oblicza się według zależno ności y i q = r g b 2
3 Po wykonaniu konwersji obraz jest opisany przy pomocy trzech nowych tablic [ y ], I = [ i ], Q [ q ] Y = = Tablica Y określa tak zwaną Q chrominancję. 2. Podział obrazu na bloki luminancję,, natomiast I i Tablice Y, I i Q po przeskalowaniu tak, że e ich elementy stają się liczbami całkowitymi dzieli się na bloki (mniejsze tablice) o rozmiarze 8x8, opisane funkcją. f ( x, y ) x = 0,1,...,7 y = 0,1,...,7 3. Obliczanie transformaty kosinusowej (DCT) dla bloków f(x,y) F(u,v) F(u,v) C(u)C(v ) 4 = 7 7 x= 0 y= 0 f ( 2x+ 1 2y + 1 x, y)cos up cos vp F(u,v) f(x,y) f ( x, y ) = u= 0 v = 0 C( u )C( v )F( u,v 2x y + 1 )cos up cos vp gdzie C( u ) 1 / = 1 2 dla dla u = 0 u 0 i 1 / C( v ) = 1 2 dla dla v = 0 v 0 3
4 Fragment obrazu płaszczyzna Blok obrazu wejściowego f(x,y) F(u,v) Blok jako funkcja Transformata DCT funkcji Fragment obrazu szachownica Blok obrazu wejściowego Blok jako funkcja f(x,y) F(u,v) Transformata DCT funkcji 4
5 Fragment obrazu fotograficznego Blok obrazu wejściowego f(x,y) F(u,v) Blok jako funkcja Transformata DCT funkcji Funkcja i transformata dla obrazu fotograficznego f(x,y) = F(u,v) = * 1.0e+003 5
6 4. Kwantyzacja współczynnik czynników w transformaty F(u,v) F Q (u,v) F(u,v) F Q (u,v) = Integer Round Q(u,v) Q(u,v ) = Q(u,v ) = dla luminancji Y lub obrazów w szarych dla chrominancji I i Q Funkcja i skwantowana transformata dla obrazu fotograficznego f(x,y) = F Q (u,v) =
7 Odwrócenie wykonanych operacji (dekodowanie) Integer Round (DCT -1 ( F Q (u,v)*q(u,v) )) f * (x,y) Dla obrazu fotograficznego f(x,y)= f*(x,y)= Kodowanie i dekodowanie (przykłady) Dla obrazu fotograficznego przed kompresją f(x,y) po kompresji i dekompresji f * (x,y) Dla obrazu szachownica przed kompresją f(x,y) po kompresji i dekompresji f * (x,y) 7
8 5. Konwersja tablicy współczynnik czynników w do postaci wektora F Q (u,v) [DC, AC 1, AC 2,..., AC ] Algorytm zig-zag zag (A. G. Tescher 1978) F Q (u,v) = [DC, AC 1,...,AC 63 ] = [75, 2, 18, -1, 5, -2, -2, 2, 10, 1, -2, 0, 1, 1, 0, 0, 0, -2, -3, -3, 1, 0, 0,..., 0] 6. Kodowanie wektora współczynnik czynników wektor - [DC, AC 1, AC 2,..., AC ] kodowanie DC dla bloków w obrazu (tablicy bloków) kodowanie AC 1, AC 2,..., AC 63 dla bloku Kodowanie entropne - długość słowa kodowego odpowiadającego kodowanemu elementowi (symbolowi) jest różna r dla różnych r elementów. Elementy, które statystycznie występuj pują częś ęściej mają krótsze słowa s kodowe. 8
9 6.1. Kodowanie DC (składowej stałej) Obraz został podzielony na bloki 8x8. DC 0 DC 1 DC 2 blok 0 blok 1 blok 2 DC k DC blok k blok k+1 DC 2k DC 2k blok 2k DC i - składowa stała a dla bloku i, i = 0, 1,..., m m - liczba bloków w obrazu Do kodowania składowej stałej stosuje się algorytm DPCM. Algorytm kodowania składowej stałej DC Buduje się wektor DC = [DC 0, DC 1, DC 2,..., DC k, DC k+1,..., DC m ]. Wylicza się wektor Δ = [Δ[ 0, Δ 1,..., Δ i,..., Δ m ] ze wzoru Δ 0 = DC 0 Δ i = DC i - DC i-1 i = 1,2,...,m Elementy wektora Δ = [Δ[ 0, Δ 1,..., Δ i,..., Δ m ] koduje się przy pomocy tabeli kodu Huffmana 9
10 6.2. Kodowanie [AC 1, AC 2,...,AC 63 Przykładowa postać wektora: 63 ] [ AC 1,...,AC 63 ] = [2, 18, -1, 5, -2, -2, 2, 10, 1, -2, 0, 1, 1, 0, 0, 0, -2, -3, -3, 1, 0, 0,..., 0] Wektor zawiera elementy niezerowe, przedzielone niekiedy ciągami zer. [..., AC i-1, 0,..., 0, AC i, 0,..., 0, AC i+1, 0,... ] Ciąg g elementów w koduje się przy pomocy następuj pującej struktury.... Symbol-1 Symbol-2 Symbol-1 Symbol-2... AC i = Symbol-1 Symbol-2 Symbol-1 Symbol-2 = (Runlength( Runlength, Size) = (Amplitude( Amplitude) Runlength liczba zer pomiędzy AC i i poprzednim niezerowym AC i-1 (kodowana jako liczba binarna) Size liczba określaj lająca zakres AC i Amplitude liczba wyrażajaca ajaca wartość AC i Do kodowania AC i używa się kodu Huffmana. 10
11 Algorytm kodowania AC i : 1. Obliczana jest liczba S przy pomocy wzoru S = Integer Round [log 2 ( abs(ac i ) ) +1] 2. Dla liczby S znajdowane jest słowo s kodu Huffmana określaj lające kod Size np.. według następuj pującej tabeli: S kod Size S kod Size Następnie wyliczany jest kod Amplitude zgodnie z kolejną tabelą: s współczynnik AC i 0-1, 1-3, -2, 2, 3-7,,-4, 4,,7-15,,-8, 8,,15 itd. kod Amplitude --- 0, 1 00, 01, 10, ,,, 011, 100,, ,,, 0111, 1000,,, 1111 itd. Przykład: AC i = 12 to: S = 4, Size = 101, Amplitude = 1100, czyli razem kod AC i =
12 7. Podsumowanie Koder JPEG (uproszczony) Bloki 8x8 danych źródłowych DCT Koder bitowy Kwanty- zator Dane skompreso- wane Tablice kwantyzacji Tablice kodu Huffmana Dekoder JPEG (uproszczony) Dane skompreso- wane Deko- der bitowy Dekwan- tyzator DCT -1 Bloki 8x8 danych odtworzonych Tablice kodu Huffmana Tablice kwantyzacji 12
13 8. Przykład Obraz testowy 256 x 256 x 8 = bitów = 64kB Obraz w formacie BMP ( B) Kompresja JPEG - porównanie obrazów w po kompresji Duża a kompresja ( B) Średnia kompresja ( B) Mała a kompresja( B) 13
14 Kompresja JPEG - porównanie szczegółów Obraz oryginalny ( B) Duża a kompresja ( B) 14
Kompresja obrazów w statycznych - algorytm JPEG
Kompresja obrazów w statycznych - algorytm JPEG Joint Photographic Expert Group - 986 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et Télégraphie Standard
Założenia i obszar zastosowań. JPEG - algorytm kodowania obrazu. Geneza algorytmu KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
Założenia i obszar zastosowań KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Plan wykładu: Geneza algorytmu Założenia i obszar zastosowań JPEG kroki algorytmu kodowania obrazu Założenia: Obraz monochromatyczny
Kompresja sekwencji obrazów - algorytm MPEG-2
Kompresja sekwencji obrazów - algorytm MPEG- Moving Pictures Experts Group (MPEG) - 988 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et TélégraphieT
Inżynieria obrazów cyfrowych. Ćwiczenie 5. Kompresja JPEG
Doc. dr inż. Jacek Jarnicki Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej jacek.jarnicki@pwr.wroc.pl Inżynieria obrazów cyfrowych Ćwiczenie 5 Kompresja JPEG Zadaniem ćwiczenia jest
Według raportu ISO z 1988 roku algorytm JPEG składa się z następujących kroków: 0.5, = V i, j. /Q i, j
Kompresja transformacyjna. Opis standardu JPEG. Algorytm JPEG powstał w wyniku prac prowadzonych przez grupę ekspertów (ang. Joint Photographic Expert Group). Prace te zakończyły się w 1991 roku, kiedy
Kompresja sekwencji obrazów
Kompresja sekwencji obrazów - algorytm MPEG-2 Moving Pictures Experts Group (MPEG) - 1988 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie T et TélégraphieT
Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG
Kodowanie transformacyjne Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Zasada Zasada podstawowa: na danych wykonujemy transformacje która: Likwiduje korelacje Skupia energię w kilku komponentach
Joint Photographic Experts Group
Joint Photographic Experts Group Artur Drozd Uniwersytet Jagielloński 14 maja 2010 1 Co to jest JPEG? Dlaczego powstał? 2 Transformata Fouriera 3 Dyskretna transformata kosinusowa (DCT-II) 4 Kodowanie
Wybrane metody kompresji obrazów
Wybrane metody kompresji obrazów Celem kodowania kompresyjnego obrazu jest redukcja ilości informacji w nim zawartej. Redukcja ta polega na usuwaniu informacji nadmiarowej w obrazie, tzw. redundancji.
Krótki przegląd pierwszych standardów kompresji obrazów
Krótki przegląd pierwszych standardów kompresji obrazów Najstarszymi (980 rok) i szeroko stosowanymi obecnie standardami kompresji obrazów cyfrowych są międzynarodowe standardy kodowania cyfrowych faksów,
Cyfrowe przetwarzanie i kompresja danych. dr inż.. Wojciech Zając
Cyfrowe przetwarzanie i kompresja danych dr inż.. Wojciech Zając Wykład 7. Standardy kompresji obrazów nieruchomych Obraz cyfrowy co to takiego? OBRAZ ANALOGOWY OBRAZ CYFROWY PRÓBKOWANY 8x8 Kompresja danych
Przetwarzanie obrazu cyfrowego
Kompresja Kompresja Obrazu Po co kompresja Podstawowe pojęcia RLE LZ78 LZW Huffman JPEG Po co kompresja Obraz FullHD 1920x1080 w kolorze RGB to 49766400 bity danych (5,94 MiB) Przeciętne zdjęcie 18Mpixel
Klasyfikacja metod kompresji
dr inż. Piotr Odya Klasyfikacja metod kompresji Metody bezstratne Zakodowany strumień danych po dekompresji jest identyczny z oryginalnymi danymi przed kompresją, Metody stratne W wyniku kompresji część
Klasyfikacja metod kompresji
dr inż. Piotr Odya Klasyfikacja metod kompresji Metody bezstratne Zakodowany strumień danych po dekompresji jest identyczny z oryginalnymi danymi przed kompresją, Metody stratne W wyniku kompresji część
Kompresja Kodowanie arytmetyczne. Dariusz Sobczuk
Kompresja Kodowanie arytmetyczne Dariusz Sobczuk Kodowanie arytmetyczne (lata 1960-te) Pierwsze prace w tym kierunku sięgają początków lat 60-tych XX wieku Pierwszy algorytm Eliasa nie został opublikowany
Kodowanie transformujace. Kompresja danych. Tomasz Jurdziński. Wykład 11: Transformaty i JPEG
Tomasz Wykład 11: Transformaty i JPEG Idea kodowania transformujacego Etapy kodowania 1 Wektor danych x 0,...,x N 1 przekształcamy (odwracalnie!) na wektor c 0,...,c N 1, tak aby: energia była skoncentrowana
Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2.
Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Technika obrazu 24 W.3. Normalizacja w zakresie obrazu cyfrowego
Kody Tunstalla. Kodowanie arytmetyczne
Kody Tunstalla. Kodowanie arytmetyczne Kodowanie i kompresja informacji - Wykład 3 8 marca 2010 Kody Tunstalla Wszystkie słowa kodowe maja ta sama długość ale jeden kod może kodować różna liczbę liter
Micha Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (2)
Micha Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (2) Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna
Przetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 8 Transformaty i kodowanie cz. 2 Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS
Kodowanie podpasmowe. Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania
Kodowanie podpasmowe Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania Zasada ogólna Rozkład sygnału źródłowego na części składowe (jak w kodowaniu transformacyjnym) Wada kodowania
Python: JPEG. Zadanie. 1. Wczytanie obrazka
Python: JPEG Witajcie! Jest to kolejny z serii tutoriali uczący Pythona, a w przyszłości być może nawet Cythona i Numby Jeśli chcesz nauczyć się nowych, zaawansowanych konstrukcji to spróbuj rozwiązać
Kompresja video (MPEG)
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 8, strona 1. Kompresja video (MEG) Zasadniczy schemat kompresora video Typy ramek przy kompresji czasowej Analiza ramek przez syntezę Sposób detekcji
Kompresja danych DKDA (7)
Kompresja danych DKDA (7) Marcin Gogolewski marcing@wmi.amu.edu.pl Uniwersytet im. Adama Mickiewicza w Poznaniu Poznań, 22 listopada 2016 1 Kwantyzacja skalarna Wprowadzenie Analiza jakości Typy kwantyzatorów
Transformaty. Kodowanie transformujace
Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9,
1 Kody Tunstalla Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9, 14.04.2005 Inne podejście: słowa kodowe mają ustaloną długość, lecz mogą kodować ciągi liter z alfabetu wejściowego o różnej
dr inż. Piotr Odya Wprowadzenie
dr inż. Piotr Odya Wprowadzenie Dane multimedialne to przede wszystkim duże strumienie danych liczone w MB a coraz częściej w GB; Mimo dynamicznego rozwoju technologii pamięci i coraz szybszych transferów
Temat: Algorytm kompresji plików metodą Huffmana
Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik
Zastosowanie kompresji w kryptografii Piotr Piotrowski
Zastosowanie kompresji w kryptografii Piotr Piotrowski 1 Plan prezentacji I. Wstęp II. Kryteria oceny algorytmów III. Główne klasy algorytmów IV. Przykłady algorytmów selektywnego szyfrowania V. Podsumowanie
Kwantyzacja wektorowa. Kodowanie różnicowe.
Kwantyzacja wektorowa. Kodowanie różnicowe. Kodowanie i kompresja informacji - Wykład 7 12 kwietnia 2010 Kwantyzacja wektorowa wprowadzenie Zamiast kwantyzować pojedyncze elementy kwantyzujemy całe bloki
Obraz jako funkcja Przekształcenia geometryczne
Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych
Transformata Fouriera
Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli
Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne
Załóżmy, że mamy źródło S, które generuje symbole ze zbioru S={x, x 2,..., x N } z prawdopodobieństwem P={p, p 2,..., p N }, symbolom tym odpowiadają kody P={c, c 2,..., c N }. fektywność danego sposobu
Wykład II. Reprezentacja danych w technice cyfrowej. Studia Podyplomowe INFORMATYKA Podstawy Informatyki
Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład II Reprezentacja danych w technice cyfrowej 1 III. Reprezentacja danych w komputerze Rodzaje danych w technice cyfrowej 010010101010 001010111010
Zastosowania grafiki komputerowej
dr inż. Piotr Suchomski dr inż. Piotr Odya Zastosowania grafiki komputerowej Interfejsy użytkownika; Graficzna prezentacja danych; Kartografia; Obrazy medyczne; Kreślenie i projektowanie wspomagane komputerowo
FORMATY GRAFICZNE. Dobra ilustracja przychodzi w małym pliku. David Siegel, Tworzenie stron WWW. 1. Rodzaje plików graficznych
FORMATY GRAFICZNE Dobra ilustracja przychodzi w małym pliku. David Siegel, Tworzenie stron WWW 1. Rodzaje plików graficznych 1. Mapy bitowe reprezentują obraz jako prostokątną tablicę pikseli (np. standardy
Program wykładu. 1. Systemy rejestracji obrazów technologie CCD, CMOS
Program wykładu 1. Systemy rejestracji obrazów technologie CCD, CMOS 2. Cyfrowe metody obróbki obrazów ruchomych, metody cyfrowego polepszania obrazów 3. Metody kompresji i zapisu obrazów cyfrowych (MPEG1
Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do pracowni specjalistycznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do pracowni specjalistycznej Temat ćwiczenia: Badanie własności koderów PCM zastosowanych do sygnałów
Grafika Komputerowa Wykład 1. Wstęp do grafiki komputerowej Obraz rastrowy i wektorowy. mgr inż. Michał Chwesiuk 1/22
Wykład 1 Wstęp do grafiki komputerowej rastrowy i wektorowy mgr inż. 1/22 O mnie mgr inż. michalchwesiuk@gmail.com http://mchwesiuk.pl Materiały, wykłady, informacje Doktorant na Wydziale Informatyki Uniwersytetu
Poradnik Kompresja JPEG 10-07-2009r sekwencyjnej kompresji bazowej JPEG YCbCr RLE Baseline Optimized
Poradnik Kompresja JPEG 10-07-2009r Najłatwiej zrozumieć kompresję JPG, jeśli wyjaśni się ją krok po kroku tak jak robi to enkoder (kroki dekodera są odwrotne do kroków enkodera) Schemat sekwencyjnej kompresji
Sygnał a informacja. Nośnikiem informacji mogą być: liczby, słowa, dźwięki, obrazy, zapachy, prąd itp. czyli różnorakie sygnały.
Sygnał a informacja Informacją nazywamy obiekt abstarkcyjny, który może być przechowywany, przesyłany, przetwarzany i wykorzystywany y y y w określonum celu. Zatem informacja to każdy czynnik zmnejszający
Kodowanie Huffmana. Platforma programistyczna.net; materiały do laboratorium 2014/15 Marcin Wilczewski
Kodowanie Huffmana Platforma programistyczna.net; materiały do laboratorium 24/5 Marcin Wilczewski Algorytm Huffmana (David Huffman, 952) Algorytm Huffmana jest popularnym algorytmem generującym optymalny
FFT i dyskretny splot. Aplikacje w DSP
i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata
Podstawowe pojęcia. Teoria informacji
Kodowanie i kompresja informacji - Wykład 1 22 luty 2010 Literatura K. Sayood, Kompresja danych - wprowadzenie, READ ME 2002 (ISBN 83-7243-094-2) Literatura K. Sayood, Kompresja danych - wprowadzenie,
Sieci neuronowe - projekt
Sieci neuronowe - projekt Maciej Barański, Kamil Dadel 15 stycznia 2015 Streszczenie W ramach projektu został zrealizowany algorytm kompresji stratnej bazujący na działaniu samoorganizującej się sieci
Dane obrazowe. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski
Dane obrazowe R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski www.il.pw.edu.pl/~rg s-rg@siwy.il.pw.edu.pl Przetwarzanie danych obrazowych! Przetwarzanie danych obrazowych przyjmuje trzy formy:! Grafikę
BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat
BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,
Cechy formatu PNG Budowa bloku danych Bloki standardowe PNG Filtrowanie danych przed kompresją Wyświetlanie progresywne (Adam 7)
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 5, strona 1. PNG (PORTABLE NETWORK GRAPHICS) Cechy formatu PNG Budowa bloku danych Bloki standardowe PNG Filtrowanie danych przed kompresją Wyświetlanie
Kodowanie i kompresja Streszczenie Studia Wieczorowe Wykład 10, 2007
1 Kompresja wideo Kodowanie i kompresja Streszczenie Studia Wieczorowe Wykład 10, 2007 Dane wideo jako sekwencja skorelowanych obrazów (ramek). Specyfika danych wideo: drobne zmiany kolorów w kolejnych
Kompresja dźwięku w standardzie MPEG-1
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 7, strona 1. Kompresja dźwięku w standardzie MPEG-1 Ogólne założenia kompresji stratnej Zjawisko maskowania psychoakustycznego Schemat blokowy
Fundamentals of Data Compression
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Kompresja bezstratna. Entropia. Kod Huffmana
Kompresja bezstratna. Entropia. Kod Huffmana Kodowanie i bezpieczeństwo informacji - Wykład 10 29 kwietnia 2013 Teoria informacji Jeśli P(A) jest prawdopodobieństwem wystapienia informacji A to niech i(a)
Teoria Informacji i Metody Kompresji Danych
Teoria Informacji i Metody Kompresji Danych 1 Przykładowe zadania (dodatkowe materiały wykładowe) 2 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL
teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015
teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015 1 zakres materiału zakres materiału 1. Czym jest teoria informacji? 2. Wprowadzenie matematyczne. 3. Entropia i informacja.
Akwizycja obrazów. Zagadnienia wstępne
Akwizycja obrazów. Zagadnienia wstępne Wykorzystane materiały: R. Tadeusiewicz, P. Korohoda, Komputerowa analiza i przetwarzanie obrazów, Wyd. FPT, Kraków, 1997 A. Przelaskowski, Techniki Multimedialne,
Cyfrowe Przetwarzanie Obrazów. Karol Czapnik
Cyfrowe Przetwarzanie Obrazów Karol Czapnik Podstawowe zastosowania (1) automatyka laboratoria badawcze medycyna kryminalistyka metrologia geodezja i kartografia 2/21 Podstawowe zastosowania (2) komunikacja
dr inż. Piotr Odya dr inż. Piotr Suchomski
dr inż. Piotr Odya dr inż. Piotr Suchomski Podział grafiki wektorowa; matematyczny opis rysunku; małe wymagania pamięciowe (i obliczeniowe); rasteryzacja konwersja do postaci rastrowej; rastrowa; tablica
Kodowanie źródeł sygnały video. Sygnał video definicja i podstawowe parametry
Kodowanie źródeł sygnały video (A) (B) (C) Sygnał video definicja i podstawowe parametry Liczba klatek na sekundę Przeplot Rozdzielczość obrazu Proporcje obrazu Model barw Przepływność binarna Kompresja
Podstawy transmisji multimedialnych podstawy kodowania dźwięku i obrazu Autor Wojciech Gumiński
Podstawy transmisji multimedialnych podstawy kodowania dźwięku i obrazu Autor Wojciech Gumiński Podstawy transmisji multimedialnych Plan wykładu Wprowadzenie 1. Wprowadzenie 2. Ilość informacji 3. Kodowanie
Grafika komputerowa. Oko posiada pręciki (100 mln) dla detekcji składowych luminancji i 3 rodzaje czopków (9 mln) do detekcji koloru Żółty
Grafika komputerowa Opracowali: dr inż. Piotr Suchomski dr inż. Piotr Odya Oko posiada pręciki (100 mln) dla detekcji składowych luminancji i 3 rodzaje czopków (9 mln) do detekcji koloru Czerwony czopek
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. KOMPRESJA ALGORYTMEM ARYTMETYCZNYM, GOLOMBA I RICE'A Idea algorytmu arytmetycznego Przykład kodowania arytmetycznego Renormalizacja
Nowoczesne metody emisji ucyfrowionego sygnału telewizyjnego
Nowoczesne metody emisji ucyfrowionego sygnału telewizyjnego Bogdan Uljasz Wydział Elektroniki Wojskowej Akademii Technicznej ul. Kaliskiego 2 00-908 Warszawa Konferencja naukowo-techniczna Dzisiejsze
Przetwarzanie i transmisja danych multimedialnych. Wykład 7 Transformaty i kodowanie. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 7 Transformaty i kodowanie Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład
Przetwarzanie i transmisja danych multimedialnych. Wykład 5 Kodowanie słownikowe. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 5 Kodowanie słownikowe Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Przemysław
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,
1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości
Formaty plików graficznych
Formaty plików graficznych Stworzony obraz, czy to w grafice wektorowej czy to w rastrowej, można i należy zapisać w pliku. Istnieje wiele różnych formatów plików, które mogą być wykorzystane do tego celu.
Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.
1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci
W11 Kody nadmiarowe, zastosowania w transmisji danych
W11 Kody nadmiarowe, zastosowania w transmisji danych Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Plan wykładu 1. Kody nadmiarowe w systemach transmisji cyfrowej 2. Typy kodów,
Kompresja danych kodowanie Huffmana. Dariusz Sobczuk
Kompresja danych kodowanie Huffmana Dariusz Sobczuk Plan wykładu Kodowanie metodą Shannona-Fano Kodowanie metodą Huffmana Elementarny kod Golomba Kod Golomba Kod Rice a kompresja danych 2 Efektywny kod
Kompresja JPG obrazu sonarowego z uwzględnieniem założonego poziomu błędu
Kompresja JPG obrazu sonarowego z uwzględnieniem założonego poziomu błędu Mariusz Borawski Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Zbieranie danych Obraz sonarowy
Entropia Kodowanie. Podstawy kompresji. Algorytmy kompresji danych. Sebastian Deorowicz
Algorytmy kompresji danych 2007 02 27 Plan wykładu 1 Modelowanie i kodowanie 2 Modelowanie i kodowanie Plan wykładu 1 Modelowanie i kodowanie 2 Modelowanie i kodowanie definicja stowarzyszona ze zbiorem
POSZUKIWANIE MIAR OCENY DEGRADACJI OBRAZÓW WSKUTEK KOMPRESJI METODĄ JPEG *
Polskie Towarzystwo Fotogrametrii i Teledetekcji Sekcja Fotogrametrii i Teledetekcji Komitetu Geodezji PAN Komisja Geoinformatyki PAU Zakład Fotogrametrii i Informatyki Teledetekcyjnej AGH Archiwum Fotogrametrii,
dr inż. Jacek Naruniec
dr inż. Jacek Naruniec J.Naruniec@ire.pw.edu.pl Entropia jest to średnia ilość informacji przypadająca na jeden znak alfabetu. H( x) n i 1 p( i)log W rzeczywistości określa nam granicę efektywności kodowania
Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 6. Transformata cosinusowa. Krótkookresowa transformata Fouriera.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 6 Transformata cosinusowa. Krótkookresowa transformata Fouriera. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów
Podstawy kompresji danych
Podstawy kompresji danych Pojęcie kompresji W ogólności kompresja (kodowanie) jest procedurą (przekształceniem) zmiany reprezentacji wejściowego zbioru danych do postaci wymagającej mniejszej liczby bitów
Kodowanie informacji
Kodowanie informacji Tomasz Wykład 4: kodowanie arytmetyczne Motywacja Podstawy i własności Liczby rzeczywiste Motywacje 1 średnia długość kodu Huffmana może odbiegać o p max + 0.086 od entropii, gdzie
Bogusław Jackowski GRAFIKA DYSKRETNA BACHOTEK 1998
Bogusław Jackowski GRAFIKA DYSKRETNA BACHOTEK 1998 Motto: bit kształtuje świadomość filozofia Hakunów Nr 1 B. Jackowski: Grafika dyskretna, Batchotek 1998 Mapa bitowa niekoniecznie musi być prostokątna...
Wstęp Statyczne kody Huffmana Dynamiczne kody Huffmana Praktyka. Kodowanie Huffmana. Dawid Duda. 4 marca 2004
4 marca 2004 Podstawowe oznaczenia i definicje Wymagania wobec kodu Podstawowa idea Podsumowanie Podstawowe oznaczenia i definicje Podstawowe oznaczenia i definicje: alfabet wejściowy: A = {a 1, a 2,...,
TECHNIKI MULTIMEDIALNE
Studia Podyplomowe INFORMATYKA TECHNIKI MULTIMEDIALNE dr Artur Bartoszewski Film ile klatek na sekundę? Impulsy świetlne działają na komórki nerwowe jeszcze przez kilka ułamków sekundy po ustąpieniu faktycznego
Technologie cyfrowe semestr letni 2018/2019
Technologie cyfrowe semestr letni 2018/2019 Tomasz Kazimierczuk Kompresja Kompresja bezstratna: z postaci skompresowanej można odtworzyć całkowitą informację wejściową. Kompresja polega na zastosowaniu
Elementy grafiki komputerowej
Formaty plików w grafice komputerowej Formaty plików w grafice komputerowej formaty dla grafiki rastrowej zapis bez kompresji: BMP, RAW zapis z kompresją bezstratną: PCX, GIF, PNG, TIFF zapis z kompresją
Pracownia Komputerowa wykład V
Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system
LABORATORIUM TELEMONITORINGU OBIEKTÓW I AGLOMERACJI. Temat: Metody anonimizacji obrazu
LABORATORIUM TELEMONITORINGU OBIEKTÓW I AGLOMERACJI Temat: Metody anonimizacji obrazu W programie Watermarker.exe dostępny jest graficzny interfejs udostępniający opcje algorytmów anonimizacji. Funkcjonalności
Wygra Polska czy Brazylia, czyli o tym jak zwięźle zapisywać informacje
Wygra Polska czy Brazylia, czyli o tym jak zwięźle zapisywać informacje Witold Tomaszewski Instytut Matematyki Politechniki Śląskiej e-mail: Witold.Tomaszewski@polsl.pl Je n ai fait celle-ci plus longue
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 1, strona 1.
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 1, strona 1. SYSTEMY MULTIMEDIALNE Co to jest system multimedialny? Elementy systemu multimedialnego Nośniki danych i ich wpływ na kodowanie Cele
NOWOCZESNE METODY EMISJI UCYFROWIONEGO SYGNAŁU TELEWIZYJNEGO
dr inż. Bogdan Uljasz Wojskowa Akademia Techniczna, Wydział Elektroniki, Instytut Telekomunikacji ul. Gen. S.Kaliskiego 2, 00-908 Warszawa tel.: 0-22 6837696, fax: 0-22 6839038, e-mail: bogdan.uljasz@wel.wat.edu.pl
teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015
teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 1 wczoraj Wprowadzenie matematyczne. Entropia i informacja. Kodowanie. Kod ASCII. Stopa kodu. Kody bezprefiksowe.
Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład Kody liniowe - kodowanie w oparciu o macierz parzystości
Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład 13 1 Kody liniowe - kodowanie w oparciu o macierz parzystości Przykład Różne macierze parzystości dla kodu powtórzeniowego. Co wiemy z algebry
Przedstawiamy Państwu tekst będący
Zaawansowana kompresja cyfrowych sygnałów wizyjnych standard AVC/H.264 MAREK DOMAŃSKI, TOMASZ GRAJEK, JAROSŁAW MAREK Politechnika Poznańska, Zakład Telekomunikacji Multimedialnej i Radioelektroniki Przedstawiamy
Temat 7. Dekodery, enkodery
Temat 7. Dekodery, enkodery 1. Pojęcia: koder, dekoder, enkoder, konwerter kodu, transkoder, enkoder priorytetowy... Koderami (lub enkoderami) nazywamy układy realizujące proces zamiany informacji kodowanej
Metody kompresji i przechowywania obrazów
Metody kompresji i przechowywania obrazów Obrazy ogromnymi zbiorami danych: Np. Fotografia 24mm x 36 mm 10 7 punktów; rozdzielczość 0.01 mm 256 poziomów; >10 MB Na komputerze 640 x 480 pikseli 900 kb 1280x1024
Kodowanie Shannona-Fano
Kodowanie Shannona-Fano Kodowanie Shannona-Fano znane było jeszcze przed kodowaniem Huffmana i w praktyce można dzięki niemu osiągnąć podobne wyniki, pomimo, że kod generowany tą metodą nie jest optymalny.
Nierówność Krafta-McMillana, Kodowanie Huffmana
Nierówność Krafta-McMillana, Kodowanie Huffmana Kodowanie i kompresja informacji - Wykład 2 1 marca 2010 Test na jednoznaczna dekodowalność Kod a jest prefiksem kodu b jeśli b jest postaci ax. x nazywamy
FORMATY PLIKÓW GRAFICZNYCH
FORMATY PLIKÓW GRAFICZNYCH Różnice między nimi. Ich wady i zalety. Marta Łukasik Plan prezentacji Formaty plików graficznych Grafika wektorowa Grafika rastrowa GIF PNG JPG SAV FORMATY PLIKÓW GRAFICZNYCH
Kompresja danych Streszczenie Studia Dzienne Wykład 10,
1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny
Inżynieria obrazów cyfrowych. Ćwiczenie 3. Wybrane modele kolorów i ich zastosowania
Doc. dr inż. Jacek Jarnicki Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej jacek.jarnicki@pwr.wroc.pl Inżynieria obrazów cyfrowych Ćwiczenie 3 Wybrane modele kolorów i ich zastosowania
Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38
Wykład 2 Przetwarzanie obrazów mgr inż. 1/38 Przetwarzanie obrazów rastrowych Jedna z dziedzin cyfrowego obrazów rastrowych. Celem przetworzenia obrazów rastrowych jest użycie edytujących piksele w celu
FORMATY GRAFICZNE. Dobra ilustracja przychodzi w małym pliku. David Siegel, Tworzenie stron WWW. 1. Rodzaje plików graficznych
FORMATY GRAFICZNE Dobra ilustracja przychodzi w małym pliku. David Siegel, Tworzenie stron WWW 1. Rodzaje plików graficznych 1. Mapy bitowe reprezentują obraz jako prostokątną tablicę pikseli (np. standardy
Techniki multimedialne
Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo