Ćwiczenia Otwierające A czas płynie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ćwiczenia Otwierające A czas płynie"

Transkrypt

1 Ćwiczenia Otwierające czas płynie ufgabe : Das Herz (2 Punkte) Das Herz eines Menschen schlägt durchschnittlich 70 Mal pro Minute. Wie viel Herzschläge klopft ein Herz pro Stunde? ) ) 7000 C) 4200 D) 700 E) 420 Exercice. «Le cœur» (2 points) Le cœur humain bat en moyenne 70 fois par minute. Combien de fois bat-il par heure? ) ) 7000 C) 4200 D) 700 E) 420 Exercice. Coeur (2 points) Le coeur de l homme bat environ 70 fois pendant une minute. Environ combien de battements produit le coeur durant une heure? ) ) 7000 C) 4200 D) 700 E) 420 Tarea. El corazón (2 puntos) El corazón de un hombre late normalmente 70 veces por minuto. Cuantas veces late el corazón en una hora? ) ) 7000 C) 4200 D) 700 E) 420 Task. Heart (2 points) Human heart does 70 beats per minute, on average. How many beats does the heart do in the course of one hour, on average? a) b) 7000 c) 4200 d) 700 e) 420 Pakiet edukacyjny VI czas płynie klasa 4 szkoła podstawowa Strona

2 Zadanie 2. Kubuś Puchatek (7 ) Kubuś Puchatek od poniedziałku do piątku zapisywał na oddzielnych kartkach, jak długo pracował przy gromadzeniu zapasów na zimę. Wpisz odpowiednie liczby, pokoloruj kartkę na której napisany jest najdłuższy czas. Zadanie 3. Rozkład jazdy ( 3 punkty) Karol dojeżdża do szkoły autobusem linii nr 0. Droga z domu na przystanek zajmuje mu 7 minut. utobus jedzie 6 minut. Z przystanku do szkoły Karol idzie 3 minuty. Którym autobusem najpóźniej Karol powinien pojechać do szkoły, aby zdążyć na lekcje rozpoczynające się o godzinie 8:00? O której godzinie Karol powinien wyjść z domu? Rozkład jazdy. Linia nr 0 7:00 7:0 7: 20 7:25 7:30 7:35 7:40 7:50 Pakiet edukacyjny VI czas płynie klasa 4 szkoła podstawowa Strona 2

3 Zadanie 4. Ile to czasu? (4 punkty) Oblicz : 6 tygodni i 6 dni ile to dni? 5 lat i 2 miesiące ile to miesięcy? 4 doby i 3 godziny ile to godzin? 4 godziny i 0 minut - ile to minut? Zadanie 5. Ślimak (3 punkty) Ślimak wspina się na pięciometrowy mur. W ciągu dnia wznosi się do góry 3m, a w ciągu nocy ześlizguje się o 2 metry w dół. Po jakim czasie ślimak znajdziecie na szczycie muru? Uzasadnij swoje rozumowanie. Zadanie 6. urza (2 punkty) Podczas burzy obserwujemy błysk i grzmot. Dźwięk przebywa w powietrzu drogę 300 metrów w czasie sekundy. Oblicz jak daleko uderzył piorun, jeśli jego odgłos dotarł po upływie 3 sekund. Wynik podaj w kilometrach i metrach. Zadanie 7. Odwiedziny (4 punkty) Tata z Maćkiem pojechali do babci w odwiedziny. Jechali samochodem przez 4 godziny i 30 minut z przeciętną prędkością 50 km/h, zużywając po 8 litrów benzyny na 00km drogi. Przed wyjazdem Tata Maćka do pustego baku zatankował 24 litry benzyny. Ile litrów benzyny zostało w baku gdy dojechali do babci? Zadanie 8. Tarcza zegara (2 punkty) Tarczę zegara podziel na a) dwie części tak, aby suma liczb w każdej części była taka sama b) sześć części tak, aby suma liczb w każdej części była taka sama. a) b) Pakiet edukacyjny VI czas płynie klasa 4 szkoła podstawowa Strona 3

4 Zadanie 9. Krzyżówka ( ) Rozwiąż krzyżówkę i odczytaj hasło.. Ma 60 sekund lat 3. Początek dnia 4. Ma 365 lub 366 dni 5. Ma 7 dni 6. Rok ma ich dwanaście 7. Wskazuje godziny godziny 9. 5 minut 0. Trwa 60 razy krócej niż minuta Hasło:. Zadanie 0. Piotruś liczy czas - gra Komplet kart przeznaczony jest dla dwóch, maksymalnie trzech osób. Należy skopiować odpowiednią liczbę kompletów kart do gry i rozdać uczniom. Zasady gry: ) Jeden z uczestników rozdaje wszystkie karty. 2) Jeśli zawodnik otrzymał dwie karty o tej samej wartości odkłada je. 3) Zawodnicy kolejno wyciągają po jednej karcie od przeciwnika i odkładają pary kart tej samej wielkości. 4) Wygrywa zawodnik, który pierwszy odłoży wszystkie swoje karty. Pakiet edukacyjny VI czas płynie klasa 4 szkoła podstawowa Strona 4

5 Pakiet edukacyjny VI czas płynie klasa 4 szkoła podstawowa Strona 5

6 ROZWIĄZNI ORZ SCHEMT PUNKTCJI ZESTWU ĆWICZEŃ OTWIERJĄCYCH czas płynie Zadanie. Serce (2 punkty) : Punkty: Serce człowieka uderza przeciętnie 70 razy w ciągu minuty. Ile przeciętnie uderzeń wykonuje serce w ciągu jednej godziny? Odpowiedź c) Zadanie 2. Kubuś Puchatek (7 ) PONIEDZIŁEK 40min 2h20min WTOREK 7200sek. 20min 2.h ŚROD pół doby 2h CZWRTEK 0min h50min PIĄTEK 3h 80.min Prawidłowa zamiana jednostek czasu, za każdą wielkość po punkcie (razem 6 ). 0-6 Pokolorowanie kartki z najdłuższym czasem punkt. Zadanie 3. Rozkład jazdy (3 punkty) Pakiet edukacyjny VI czas płynie klasa 4 szkoła podstawowa Strona 6

7 C Obliczenie ile czasu zajmie Karolowi dojazd autobusem i dojście do szkoły: 6min + 3min = 9min Obliczenie, którym autobusem Karol może najpóźniej wyjechać do szkoły: 8:00 9min = 7:4, czyli autobus o godz. 7:40 Obliczenie, o której Karol powinien wyjść z domu: 7:40 7 min = 7:33 Zadanie 4. Ile to czasu? (4 punkty) Prawidłowa zamiana jednostek czasu. Za każdy poprawnie obliczony przykład przyznajemy punkt. 6 tygodni i 6 dni to 48 dni 5 lat i 2 miesiące to 62 miesiące 4 doby i 3 godziny to 99 godzin 4 godziny i 0 minut - to 250 minut 0-4 Zadanie 5. Ślimak (3 ) C Obliczenie, że po każdym dniu i nocy ślimak wspina się po murze o m. Obliczenie, że po dwóch dniach i dwóch nocach będzie na wysokości 2m. Obliczenie, że trzeciego dnia wzniesie się na szczyt muru (i już tam zostanie). Za każdy inny poprawny sposób rozwiązania zadania przyznajemy 3 punkty. Zadanie 6. urza (2 punkty) Obliczenie jak daleko uderzył piorun : 300m/s x 3s = 3900m Podanie wyniku w kilometrach i metrach: 3900m = 3km900m Pakiet edukacyjny VI czas płynie klasa 4 szkoła podstawowa Strona 7

8 Zadanie 7. Odwiedziny (4 punkty) C D Obliczenie długości przejechanej drogi: 4,5h x 50km/h = 225km Obliczenie ilości benzyny zużytej na 200km: 8 l x 2 =6l Obliczenie ilości benzyny zużytej na 25km: 8 l : 4 =2 l Obliczenie ilości benzyny, która pozostała w baku: 24 (6+2) = 6 litrów Zadanie 8. Tarcza zegara (2 punkty) a) Podzielenie tarczy zegara na dwie części, tak aby suma liczb w każdej części była taka sama: =39 i = 39 b) Podzielenie tarczy zegara na sześć części tak, aby suma liczb w każdej części była taka sama. 2+=3, +2 =3, 0+3=3, 9+4=3, 8+5=3 Zadanie 9. Krzyżówka ( ). Minuta 2. Wiek 3. Ranek 4. Rok 5. Tydzień 6. Miesiąc 7. Zegar 8. Doba 9. Kwadrans 0. Sekunda Prawidłowe rozwiązanie krzyżówki po punkcie za każde hasło. 0-0 Odczytanie hasła: Miary czasu 0- Pakiet edukacyjny VI czas płynie klasa 4 szkoła podstawowa Strona 8

9

Czas to pieniądz Ćwiczenia Otwierające

Czas to pieniądz Ćwiczenia Otwierające zas to pieniądz Ćwiczenia Otwierające Exercise. The movie ( points) The film started at 3:47 and finished at 6:8. How long was the film? ) 85min ) 5min ) 9min D) 49min E) 09min ufgabe. Filmvorstellung

Bardziej szczegółowo

Rozwiążmy Razem A czas płynie

Rozwiążmy Razem A czas płynie Rozwiążmy Razem czas płynie ufgabe. Das Segelboot (2 Punkte) m Montag Mittag beginnt das Segelboot die 00 Stunden Kreuzfahrt. n welchem Wochentag und um wie viel Uhr beendet es seine Fahrt? ) m Mittwoch

Bardziej szczegółowo

Spotkanie 2: Rozwiążmy razem - Szczęśliwej drogi już czas

Spotkanie 2: Rozwiążmy razem - Szczęśliwej drogi już czas Spotkanie 2: Rozwiążmy razem - Szczęśliwej drogi już czas Aufgabe. 1 Ein schnelles Auto (4 Punkte) Ein Auto fährt mit einer konstanten Geschwindigkeit von 25 Meter pro Sekunde. Wie viele Kilometer legt

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 14 stycznia 2012 r. zawody II stopnia (rejonowe)

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 14 stycznia 2012 r. zawody II stopnia (rejonowe) Kod ucznia Ilość zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego stycznia 0 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający

Bardziej szczegółowo

Liczbolandii C) 3290 D) 3630 E) Wie viel beträgt der Unterschied zwischen der Zahl 3300 und einer 10mal kleineren Zahl?

Liczbolandii C) 3290 D) 3630 E) Wie viel beträgt der Unterschied zwischen der Zahl 3300 und einer 10mal kleineren Zahl? Rozwiążmy razem - W Liczbolandii Exercise. Big difference ( points) What is the difference between 00 and the number which is 0 times smaller than 00? ) 0 B) 970 C) 90 D) 60 E) 0 ufgabe. Großer Unterschied

Bardziej szczegółowo

Spotkanie 1: Ćwiczenia otwierające - Szczęśliwej drogi już czas

Spotkanie 1: Ćwiczenia otwierające - Szczęśliwej drogi już czas Spotkanie : Ćwiczenia otwierające - Szczęśliwej drogi już czas Aufgabe. Profiläufer (4 Punkte) Ein Sprinter legt 00 Meter innerhalb von 0 Sekunden zurück. Welche Geschwindigkeit in Kilometer pro Stunde

Bardziej szczegółowo

Ćwiczenia otwierające Pola małe i duże

Ćwiczenia otwierające Pola małe i duże Ćwiczenia otwierające Pola małe i duże Exercice. Une aire bizarre (2 points) De combien de fois l aire de la première figure est-elle plus petite de celle de la deuxième? A) 4 fois B) 2 fois C) 3 fois

Bardziej szczegółowo

W krainie liczb naturalnych - Ćwiczenia Otwierające. Heute ist Dienstag, der zehnte Mai. Welches Datum ist Dienstag auch?

W krainie liczb naturalnych - Ćwiczenia Otwierające. Heute ist Dienstag, der zehnte Mai. Welches Datum ist Dienstag auch? W krainie liczb naturalnych - Ćwiczenia Otwierające ufgabe. Welcher Datum ist das? (2 Punkte) Heute ist Dienstag, der zehnte Mai. Welches Datum ist Dienstag auch? a) 6-te Mai, b) 20-ste Mai, c) 22-ste

Bardziej szczegółowo

Die Summe von fünf aufeinander folgenden natürlichen Zahlen ist gleich von diesen Zahlen ist: A) 490 B) 475 C) 471 D) 423 E) 402

Die Summe von fünf aufeinander folgenden natürlichen Zahlen ist gleich von diesen Zahlen ist: A) 490 B) 475 C) 471 D) 423 E) 402 Rozwiążmy razem Wokół dzielników i wielokrotności ufgabe. Summe der Zahlen (2 Punkte) Die Summe von fünf aufeinander folgenden natürlichen Zahlen ist gleich 2000. Die größte von diesen Zahlen ist: ) 490

Bardziej szczegółowo

Wokół dzielników i wielokrotności Ćwiczenia Otwierające

Wokół dzielników i wielokrotności Ćwiczenia Otwierające Wokół dzielników i wielokrotności Ćwiczenia Otwierające Exercise 1. The smallest number (2 points) What is the smallest natural number divisible simultaneously by 1, 2, 3, 4, 5, 6? Aufgabe 1. Die kleinste

Bardziej szczegółowo

Z logiką na Ty Rozwiążmy Razem

Z logiką na Ty Rozwiążmy Razem Exercise 1. Weigh and bread (3 points) Z logiką na Ty Rozwiążmy Razem On the scales of weighing machine there are weights and loafs of bread. The scales are in the balance. How many kilograms does the

Bardziej szczegółowo

KONKURS MATEMATYCZNY w szkole podstawowej 2010/2011 ETAP WOJEWÓDZKI

KONKURS MATEMATYCZNY w szkole podstawowej 2010/2011 ETAP WOJEWÓDZKI Kod ucznia Liczba uzyskanych punktów Nr zadania 1 14 15 16 17 18 Liczba punktów Drogi Uczniu! Witamy Cię w trzecim etapie konkursu. Przed Tobą test składający się z 14 zadań zamkniętych i 4 zadań otwartych.

Bardziej szczegółowo

Wydział Matematyki I Informatyki ul. Słoneczna Olsztyn

Wydział Matematyki I Informatyki ul. Słoneczna Olsztyn Klucz Napisać program sprawdzający czy dany klucz pasuje do danego zamka. Dziurka w zamku reprezentowana jest w postaci tablicy zero-jedynkowej i jest spójna. Klucz zakodowany jest jako ciąg par liczb

Bardziej szczegółowo

ZADANIE 1 Codzienna trasa listonosza ma kształt trójkata równobocznego, którego wierzchołki stanowia

ZADANIE 1 Codzienna trasa listonosza ma kształt trójkata równobocznego, którego wierzchołki stanowia ZADANIE 1 Codzienna trasa listonosza ma kształt trójkata równobocznego, którego wierzchołki stanowia bloki A, B, C. Z bloku A do bloku B listonosz idzie z 3 km/h. Z bloku B do bloku C idzie z dwukrotnie

Bardziej szczegółowo

Samochód jadąc z prędkością 60km/h pokonał 140km. Jak długo jechał ten samochód?

Samochód jadąc z prędkością 60km/h pokonał 140km. Jak długo jechał ten samochód? PRĘDKOŚĆ, DROGA, CZAS. Zadanie 1. Samochód jadąc z prędkością 60km/h pokonał 140km. Jak długo jechał ten samochód? Zadanie 2. Dwa samoloty wystartowały jednocześnie z dwóch lotnisk oddalonych o 3400km

Bardziej szczegółowo

Ćwiczenia otwierające Pola, ary i hektary

Ćwiczenia otwierające Pola, ary i hektary Ćwiczenia otwierające Pola, ary i hektary Exercise. The area of square (2 points) The quadrangle CD is a square and the point M is a middle of the side. n area of the shadowed figure is equal to 9cm².

Bardziej szczegółowo

otwierające Zabawy figurami

otwierające Zabawy figurami Ćwiczenia otwierające Zabawy figurami Exercise 1. Square (2 points) Four figures among five figures below can be used to built a square. What figure can not be used? ufgabe 1. Quadrat (2 Punkte) Mit vier

Bardziej szczegółowo

Spotkanie 1: Ćwiczenia otwierające Zmagania z polami

Spotkanie 1: Ćwiczenia otwierające Zmagania z polami Spotkanie 1: Ćwiczenia otwierające Zmagania z polami Aufgabe 1. Quadrat und Rechteck (8 Punkte) Ein Quadrat hat einen gleichen Umfang wie ein Rechteck mit Seiten 60m und 40m. Um wie viel ist die Quadratfläche

Bardziej szczegółowo

La figure ci-après est composée avec ce type de carré. Quelle est l aire de cette figure? C) 10 D) 6 C) 10 D) 6 C) 10 D) 6

La figure ci-après est composée avec ce type de carré. Quelle est l aire de cette figure? C) 10 D) 6 C) 10 D) 6 C) 10 D) 6 Pola małe i duże Rozwiążmy Razem Tarea. La superficie no totalmente cuadrado ( puntos) La superficie de la figura dibujada con cuadrados es de: ) ) 8 C) 0 D) 6 Exercice. Une aire pas tout à fait carrée

Bardziej szczegółowo

Rozwiążmy razem - Świat w procentach

Rozwiążmy razem - Świat w procentach Rozwiążmy razem - Świat w procentach Aufgabe 1. Prüfung (6 Punkte) Das Diagramm stellt die Ergebnisse einer Prüfung dar, die 120 Schüler von einer Schule geschrieben haben. a) Berechne, wie viel Prozent

Bardziej szczegółowo

Przeprowadź analizę diagramu słupkowego i uzupełnij tabelę. powietrze woda lód beton szkło Ośrodki

Przeprowadź analizę diagramu słupkowego i uzupełnij tabelę. powietrze woda lód beton szkło Ośrodki zadania treningowe z matematyki Akcja edukacja ZESTAW 2. Zadanie 1. Przeprowadź analizę diagramu słupkowego i uzupełnij tabelę Prędkość, m s 6000 5500 5000 4500 4000 3500 3000 2500 2000 1500 1000 500 0

Bardziej szczegółowo

15 w 13 mieści się 0 razy. Przecinek wstawiamy nad przecinkiem. Nie ma już cyfr w dzielnej? 27,6 = 27,60, więc możemy wpisać zero.

15 w 13 mieści się 0 razy. Przecinek wstawiamy nad przecinkiem. Nie ma już cyfr w dzielnej? 27,6 = 27,60, więc możemy wpisać zero. Wspólna praca, jeden wynik strona 6 Przykłady poziom A 8 4 6 5 2 2 9 6 5 5 4 8 7 2 7 2 : czyli: 52 : 2 = 846 poziom B 2 9 3 3 5 5 3 3 5 3 5 5 w 3 mieści się razy : czyli: 335 : 5 = 29 poziom C 4, 3 3,

Bardziej szczegółowo

Rozwiążmy razem - Matematyczny pojedynek!

Rozwiążmy razem - Matematyczny pojedynek! Rozwiążmy razem - Matematyczny pojedynek! Exercise. Karol s age (4 points) Iwona is 9 years old. Krysia in a year will be times younger than Iwona. Karol is 3 years older than Krysia. How old is Karol?

Bardziej szczegółowo

Trenuj przed sprawdzianem! Matematyka

Trenuj przed sprawdzianem! Matematyka mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. 1. Rodzina Kowalskich: pan Jan, pani Maria i syn Karol postanowili

Bardziej szczegółowo

Ćwiczenia otwierające Liczbowy zawrót głowy

Ćwiczenia otwierające Liczbowy zawrót głowy Ćwiczenia otwierające Liczbowy zawrót głowy Aufgabe 1. Katzen und Kanarienvögel (4 Punkte) In einem Zooladen wurden nur Katzen und Kanarienvögel verkauft. Zum Kauf wurden insgesamt 72 Stück Katzen und

Bardziej szczegółowo

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z arkusza egzaminacyjnego OMAP-Q00-1904 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (2 pkt) Podstawa programowa

Bardziej szczegółowo

II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ ODSTAWOWYCH ETA III - WOJEWÓDZKI 3 marca 2018 r. Godz.10:00 Kod pracy ucznia Suma punktów Czas pracy: 90 minut Liczba punktów możliwych do uzyskania:

Bardziej szczegółowo

Zależność prędkości od czasu

Zależność prędkości od czasu prędkość {km/h} KINEMATYKA ruch jednostajny i przyspieszony 1. Na trasie z Olesna do Poznania kursuje autobus pospieszny i osobowy. Autobus zwykły wyjechał o 8 00 i jechał ze średnią prędkością 40 km/h.

Bardziej szczegółowo

Słupki i słupeczki Rozwiążmy Razem

Słupki i słupeczki Rozwiążmy Razem Projekt Wespół w zespół z Matematyką bez Granic - rok szkolny 2009/200 Słupki i słupeczki Rozwiążmy Razem Exercise. Not similar- but the same (2 points) The quotient 378794 : 857 = 442 is given. In which

Bardziej szczegółowo

KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. Finał 20 kwietnia 2012 roku. Zestaw dla uczniów klas VI

KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. Finał 20 kwietnia 2012 roku. Zestaw dla uczniów klas VI Uczeń Liczba zdobytych punktów Drogi Uczniu, KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012 Finał 20 kwietnia 2012 roku Zestaw dla uczniów klas VI witaj na finale konkursu Omnibus Matematyczny. Przeczytaj

Bardziej szczegółowo

Trenuj przed sprawdzianem! Matematyka Test 3

Trenuj przed sprawdzianem! Matematyka Test 3 mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. 1. Dom państwa Wiśniewskich stoi na działce o powierzchni

Bardziej szczegółowo

SZKOLNA LIGA ZADANIOWA

SZKOLNA LIGA ZADANIOWA KLASA 4 - ZESTAW 1 W następujących działaniach wstaw w miejsce gwiazdek brakujące cyfry. Pewna liczba dwucyfrowa ma w rzędzie jedności 5. Jeżeli między jej cyfry wstawimy 0, to liczba ta zwiększy się o

Bardziej szczegółowo

Konkursy w województwie podkarpackim w roku szkolnym 2013/2014 KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY

Konkursy w województwie podkarpackim w roku szkolnym 2013/2014 KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu! Witaj na II etapie konkursu z matematyki. Przeczytaj

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 20010/2011

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 20010/2011 Etap wojewódzki 5 marca 2011 r. Godzina 11.00 Kod ucznia M Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera

Bardziej szczegółowo

Rozwiążmy razem - Zamieniamy, wymieniamy, obliczamy

Rozwiążmy razem - Zamieniamy, wymieniamy, obliczamy Rozwiążmy razem - Zamieniamy, wymieniamy, obliczamy Exercise 1. Leavings of tape (4 points) How many tape of length equal to 13 metres will leave after battening of two windows with 2m10cm x 1m20cm dimensions?

Bardziej szczegółowo

Zestaw 6 funkcje. Zad. 1. Zad.2 Funkcja określona jest przy pomocy tabeli

Zestaw 6 funkcje. Zad. 1. Zad.2 Funkcja określona jest przy pomocy tabeli Zestaw 6 funkcje Zad. 1 Zad.2 Funkcja określona jest przy pomocy tabeli 5 10 15 20 25 3 2 17 10-8 a) Określ dziedzinę i wypisz wartości tej funkcji. b) Jaka jest największa wartość tej funkcji? c) Dla

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 13 stycznia 2015 r. 90 minut Informacje

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2015/2016

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2015/2016 Etap wojewódzki 20 lutego 2016 r. Godzina 11.00 Kod ucznia Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera

Bardziej szczegółowo

MATEMATYKA PRĘDKOŚĆ, DROGA, CZAS

MATEMATYKA PRĘDKOŚĆ, DROGA, CZAS SCENARIUSZ LEKCJI PRZEDMIOT: MATEMATYKA TEMAT: PRĘDKOŚĆ, DROGA, CZAS AUTOR SCENARIUSZA : mgr Elżbieta Szmytkowska OPRACOWANIE ELEKTRONICZNO GRAFICZNE : mgr Beata Rusin TEMAT LEKCJI Prędkość, droga, czas

Bardziej szczegółowo

PRACA Z UCZNIEM ZDOLNYM PRZYGOTOWANIE UCZNIÓW DO KANGURA

PRACA Z UCZNIEM ZDOLNYM PRZYGOTOWANIE UCZNIÓW DO KANGURA PRACA Z UCZNIEM ZDOLNYM PRZYGOTOWANIE UCZNIÓW DO KANGURA opracowała : Marzenna Obremska KOŁO KANGUROWE klasa III 1. Ile kwadratów, a ile trójkątów widzisz na rysunku? 2. Trzy psy obserwują 4 koty, które

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH . kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu! Witaj na etapie szkolnym konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

Spotkanie 1: Ćwiczenia otwierające - Świat w trójwymiarze

Spotkanie 1: Ćwiczenia otwierające - Świat w trójwymiarze Spotkanie 1: Ćwiczenia otwierające - Świat w trójwymiarze Exercise 1. Digital cube (4 points) We are making a cube from the net below. What number is opposite to the wall with number 4? Aufgabe 1. Ziffernwürfel

Bardziej szczegółowo

Temat: Przedstawianie i odczytywanie informacji przedstawionych za pomocą wykresów. rysowanie i analizowanie wykresów zależności funkcyjnych.

Temat: Przedstawianie i odczytywanie informacji przedstawionych za pomocą wykresów. rysowanie i analizowanie wykresów zależności funkcyjnych. Scenariusz lekcji matematyki dla klasy I Gimnazjum Temat: Przedstawianie i odczytywanie informacji przedstawionych za pomocą wykresów Cel ogólny : rysowanie i analizowanie wykresów zależności funkcyjnych.

Bardziej szczegółowo

PRÓBNY EGZAMIN ÓSMOKLASISTY

PRÓBNY EGZAMIN ÓSMOKLASISTY PRÓNY EGZAMIN ÓSMOKLASISTY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 13 KWIETNIA 2019 CZAS PRACY: 100 MINUT 1 ZADANIE 1 (1 PKT) Firma kurierska przyjmuje wyłacznie paczki, których

Bardziej szczegółowo

Temat: Proporcje. Wielkości wprost i odwrotnie proporcjonalne.

Temat: Proporcje. Wielkości wprost i odwrotnie proporcjonalne. Spotkanie 15 Temat: Proporcje. Wielkości wprost i odwrotnie proporcjonalne. Plan zajęć 1. Co to jest proporcja? Jak zapisujemy proporcję? Z czym kojarzy się nam słowo proporcja z proporcem. Wyobraźmy sobie,

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY ROK SZKOLNY 2018/2019

WOJEWÓDZKI KONKURS MATEMATYCZNY ROK SZKOLNY 2018/2019 KOD UCZNIA Imię i nazwisko ucznia (Wpisuje Wojewódzka Komisja Konkursowa po rozkodowaniu prac) Czas rozwiązywania: 90 minut... Informacje: WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów szkół podstawowych

Bardziej szczegółowo

ZADANIA DO ROZWIĄZANIA. MAJ 2016 r.

ZADANIA DO ROZWIĄZANIA. MAJ 2016 r. MAJ 2016 r. 1. W turnieju szachowym, rozgrywanym w systemie każdy z każdym, bez rewanżu, miało brać udział 8 zawodników. Jeden z nich zrezygnował. O ile zmniejszyła się liczba zaplanowanych rozgrywek?

Bardziej szczegółowo

Scenariusz lekcji matematyki w klasie 3 a z zastosowaniem niektórych elementów OK.

Scenariusz lekcji matematyki w klasie 3 a z zastosowaniem niektórych elementów OK. Scenariusz lekcji matematyki w klasie 3 a z zastosowaniem niektórych elementów OK. Temat: Uwielbiam liczyć - Utrwalenie dodawania i odejmowania w zakresie 1000 oraz mnożenia i dzielenia w zakresie 100.

Bardziej szczegółowo

Zadania z ułamkami. Obliczenia czasowe

Zadania z ułamkami. Obliczenia czasowe Przykładowe zadania do etapu szkolnego i do etapu powiatowego Konkursu Matematycznego dla uczniów klas V. (zadania z poprzednich edycji konkursu) Zadania z ułamkami. Zad. 1. (2 pkt) Pod kasztanowcem leżały

Bardziej szczegółowo

SPRAWDZIAN NR Na wykresie przedstawiono zależność prędkości pociągu od czasu.

SPRAWDZIAN NR Na wykresie przedstawiono zależność prędkości pociągu od czasu. SPRAWDZIAN NR 1 AGNIESZKA JASTRZĘBSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Na wykresie przedstawiono zależność prędkości pociągu od czasu. Dokończ zdanie. Wybierz stwierdzenie A albo B oraz jego uzasadnienie

Bardziej szczegółowo

Ruch jednostajny prostoliniowy

Ruch jednostajny prostoliniowy Ruch jednostajny prostoliniowy Ruch jednostajny prostoliniowy to taki ruch, którego torem jest linia prosta, a ciało w jednakowych odcinkach czasu przebywa jednakową drogę. W ruchu jednostajnym prostoliniowym

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2014/2015

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2014/2015 Etap wojewódzki 21 lutego 2015 r. Kod ucznia Godzina 11.00 Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera

Bardziej szczegółowo

Probny test szóstoklasisty z matematyki nr 15. W górach

Probny test szóstoklasisty z matematyki nr 15. W górach SPRAWDŹ SIĘ! Probny test szóstoklasisty z matematyki nr 15 Wpisuje uczeń KOD UCZNIA PESEL W górach 1. Z Lublina do Zakopanego jest 390 km. Justyna z rodzicami i bratem jechała samochodem 5 godzin. Z jaką

Bardziej szczegółowo

Test z wyrażeń algebraicznych kl.i Gimnazjum gr.a

Test z wyrażeń algebraicznych kl.i Gimnazjum gr.a Test z wyrażeń algebraicznych kl.i Gimnazjum gr.a zad.1 /1pkt/ Wyrażenie 4:x+5y to: a) różnica b) Iloczyn c) Iloraz d) suma zad.2 /1pkt/ 2 Wartość liczbowa wyrażenia a 6a 2 dla a 3 jest równa: a) 7 b)

Bardziej szczegółowo

Zadania z fizyki. Promień rażenia ładunku wybuchowego wynosi 100 m. Pewien saper pokonuje taką odległość z. cm. s

Zadania z fizyki. Promień rażenia ładunku wybuchowego wynosi 100 m. Pewien saper pokonuje taką odległość z. cm. s c) 6(3x - 2) + 5(1-3x) = 7(x + 2) 3(1-2x) d) - 4)(5x + 3) + (4x - 3)(6x + 3) = (6x - 6)(8x + 3) + (9x 2-10) Zadanie 1. Zadania z fizyki Działająca na motocykl siła, której źródłem jest jego silnik, ma

Bardziej szczegółowo

Przeanalizujemy przykład pozwalający ustalić zależność między bokami prostokąta, którego pole wynosi 12 cm 2.

Przeanalizujemy przykład pozwalający ustalić zależność między bokami prostokąta, którego pole wynosi 12 cm 2. SCENARIUSZ LEKCJI MATEMATYKI W KLASIE I GIMNAZJUM Temat: Wielkości odwrotnie proporcjonalne. Cele ogólne: -Rozwijanie umiejętności logicznego myślenia, współpracy i współodpowiedzialności. Cele operacyjne:

Bardziej szczegółowo

Funkcje. należący do tej prostej napisz jej wzór oraz narysuj jej wykres. i której wykres jest równoległy do wykresu funkcji liniowej y = 1 4

Funkcje. należący do tej prostej napisz jej wzór oraz narysuj jej wykres. i której wykres jest równoległy do wykresu funkcji liniowej y = 1 4 Opracowała mgr Lucyna Nikiel Zespół szkół Ogólnokształcących im Armii Krajowej w Bielsku Białej Zadania można wykorzystać do przygotowania uczniów do egzaminu gimnazjalnego lub do powtórzenia wiadomości

Bardziej szczegółowo

MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI PŁOCK 2014

MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI PŁOCK 2014 MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI PŁOCK 204 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 Zad. 8 SUMA PUNKTÓW Max liczba

Bardziej szczegółowo

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE!

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! Imię i nazwisko: Kl. Termin oddania: Liczba uzyskanych punktów: /50 Ocena: ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! 1. /(0-2) Przelicz jednostki szybkości:

Bardziej szczegółowo

Etap I Rok szkolny 2007/2008 Zadanie 1 Krzyżówka Hasło: Algorytm Za każde poprawnie wpisane słowo 0,25 pkt suma 2 pkt, za hasło 1 pkt

Etap I Rok szkolny 2007/2008 Zadanie 1 Krzyżówka Hasło: Algorytm Za każde poprawnie wpisane słowo 0,25 pkt suma 2 pkt, za hasło 1 pkt Schemat punktowania odpowiedzi do zadań z konkursu informatycznego dla gimnazjów Zadanie Krzyżówka Hasło: Algorytm Za każde poprawnie wpisane słowo 0,25 pkt suma 2 pkt, za hasło pkt R A M 2 F O L D E R

Bardziej szczegółowo

TEST MATEMATYCZNY DLA UCZNIÓW KLAS IV - V

TEST MATEMATYCZNY DLA UCZNIÓW KLAS IV - V TEST MTEMTYZNY L UZNIÓW KLS IV - V Zadanie. daś waży 47,09 kg, a Monika 47, kg. Kto ważywięcejioile? Monika o 0,009 kg daś o 0,00 kg Monika o 0,00 kg daś o 0,009 kg Zadanie. Gdyby ciasto francuskie wysokości

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo

ZAPRASZAMY I ZACHĘCAMY DO ROZWIĄZYWANIA ZADAŃ

ZAPRASZAMY I ZACHĘCAMY DO ROZWIĄZYWANIA ZADAŃ ZAPRASZAMY I ZACHĘCAMY DO ROZWIĄZYWANIA ZADAŃ TERMIN SKŁADANIA PRAC UPŁYWA 11 LUTEGO 2012R. KLASA IV Do sklepu sprowadzono zeszyty w kratkę po 10 sztuk w paczce i zeszyty w linie po 15 sztuk w paczce.

Bardziej szczegółowo

Przeprowadź analizę diagramu słupkowego i uzupełnij tabelę. powietrze woda lód beton szkło Ośrodki

Przeprowadź analizę diagramu słupkowego i uzupełnij tabelę. powietrze woda lód beton szkło Ośrodki zadania treningowe z matematyki Akcja edukacja ZESTAW 2. Zadanie 1. Przeprowadź analizę diagramu słupkowego i uzupełnij tabelę Prędkość, m s 6000 5500 5000 4500 4000 3500 3000 2500 2000 1500 1000 500 0

Bardziej szczegółowo

LUTY klasa 2 MATEMATYKA

LUTY klasa 2 MATEMATYKA 20. tydzień nauki Jak dzielimy? Temat: Jak dzielimy? Dzielenie czynnościowe: jako podział na równe części i rozmieszczanie elementów 7.6 po tyle samo. Dzielenie w zakresie 30. Wprowadzenie znaku dzielenia.

Bardziej szczegółowo

ZAPRASZAMY DO VI ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 24 MAJA 2013 R. ŻYCZYMY POWODZENIA!!

ZAPRASZAMY DO VI ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 24 MAJA 2013 R. ŻYCZYMY POWODZENIA!! ZAPRASZAMY DO VI ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 24 MAJA 2013 R. ŻYCZYMY POWODZENIA!! LIGA ZADANIOWA KLASA IV Uzupełnij tabelę: Bok kwadratu Pole kwadratu

Bardziej szczegółowo

mgr inż. Łukasz Szymański Biuro Projektowo-Konsultingowe TransEko mgr inż. Paweł Włodarek Politechnika Warszawska

mgr inż. Łukasz Szymański Biuro Projektowo-Konsultingowe TransEko mgr inż. Paweł Włodarek Politechnika Warszawska mgr inż. Łukasz Szymański Biuro Projektowo-Konsultingowe TransEko mgr inż. Paweł Włodarek Politechnika Warszawska PLAN PREZENTACJI Przykład lotnisk (Warszawa, Kraków, Lublin) Pomiary ruchu napełnienia

Bardziej szczegółowo

Konspekt zajęć sportowych dla kategorii: ŻAK data: r.

Konspekt zajęć sportowych dla kategorii: ŻAK data: r. Konspekt zajęć sportowych dla kategorii: ŻAK data:16.02.2016r. Prowadzący: Marek Siatrak (AMO Jelenia Góra) Miejsce zajęć: Boisko Orlik ZSOiT ul. Jana Pawła II Temat zajęć: Podanie/Przyjęcie + strzał Czas

Bardziej szczegółowo

SCENARIUSZ TURNIEJU MIĘDZYKLASOWEGO SUPER PIĄTKA

SCENARIUSZ TURNIEJU MIĘDZYKLASOWEGO SUPER PIĄTKA SCENARIUSZ TURNIEJU MIĘDZYKLASOWEGO SUPER PIĄTKA Opracowała: Barbara Machnicka Nauczyciel Zespołu Szkół Spożywczych w Rzeszowie Cele przedsięwzięcia: - zmniejszenie dystansu do matematyki jako przedmiotu

Bardziej szczegółowo

KWIECIEŃ Grupa A 73, 70, 63, 60, 53, 50,, 70 > > 49. : = Sprawdzenie:

KWIECIEŃ Grupa A 73, 70, 63, 60, 53, 50,, 70 > > 49. : = Sprawdzenie: Imię nazwisko, numer dziennika Imię i nazwisko, numer z dziennika KWIECIEŃ Grupa A 1. Podane liczby zapisano według pewnej zasady. Zapisz dwie kolejne liczby. 73, 70, 63, 60, 53, 50,, 2. Otocz pętlą liczbę,

Bardziej szczegółowo

Czas na rozwiązanie: 120 min.

Czas na rozwiązanie: 120 min. Czas na rozwiązanie: 120 min. Przed Tobą 11 zadań testowych, 6 zadań otwartych krótkiej odpowiedzi i 2 zadania dowodowe. Za swoje rozwiązania możesz maksymalnie możesz uzyskać 50 punktów (22 pkt. za zadania

Bardziej szczegółowo

LIGA klasa 1 - styczeń 2017

LIGA klasa 1 - styczeń 2017 LIGA klasa 1 - styczeń 2017 MAŁGORZATA PIECUCH IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Po prostoliniowym odcinku drogi ruchem jednostajnym poruszały się dwa samochody. Na wykresie przedstawiono zależność drogi

Bardziej szczegółowo

SPRAWDZIAN NR 1. Oceń prawdziwość każdego zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest fałszywe.

SPRAWDZIAN NR 1. Oceń prawdziwość każdego zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest fałszywe. SPRAWDZIAN NR 1 URSZULA ZDRODOWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Pociąg przejechał trasę o długości 50 km (z Bydgoszczy do Torunia) w czasie 50 minut. Oceń prawdziwość każdego zdania. Zaznacz P, jeśli

Bardziej szczegółowo

Scenariusz powtórzeniowej lekcji matematyki w kl. III

Scenariusz powtórzeniowej lekcji matematyki w kl. III Scenariusz powtórzeniowej lekcji matematyki w kl. III Temat: Nie taki egzamin straszny, czyli ABC gimnazjalisty Czas: godz. lekcyjna Cel główny: przygotowanie uczniów do egzaminu gimnazjalnego w obszarze

Bardziej szczegółowo

Oto przykład konspektu lekcji jaką przeprowadziłam w klasie pierwszej gimnazjum.

Oto przykład konspektu lekcji jaką przeprowadziłam w klasie pierwszej gimnazjum. Metody aktywizujące na lekcjach matematyki. Przygotowując lekcje matematyki staram się tak dobrać metody pracy, żebybyłyone atrakcyjne dla ucznia oraz zachęcały do intensywnej nauki. Podczas lekcji utrwalających

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2009/2010

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2009/2010 Etap wojewódzki 13 marca 2010 r. Kod ucznia Godzina 10.00 Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera

Bardziej szczegółowo

3.4. FUNKCJA LINIOWA ZADANIA TEKSTOWE. Sześć lat temu ojciec był 6 razy starszy od syna.

3.4. FUNKCJA LINIOWA ZADANIA TEKSTOWE. Sześć lat temu ojciec był 6 razy starszy od syna. .4. FUNKCJA LINIOWA ZADANIA TEKSTOWE Przykład.4..Ojciec i syn mają razem 47 lat. Sześć lat temu ojciec był 6 razy starszy od syna. Ile lat ma obecnie kaŝdy z nich? x wiek ojca y wiek syna x Układamy pierwsze

Bardziej szczegółowo

XVI POWIATOWY KONKURS z MATEMATYKI dla uczniów kl. IV VI szkół podstawowych w roku szkolnym etap I r. godz.

XVI POWIATOWY KONKURS z MATEMATYKI dla uczniów kl. IV VI szkół podstawowych w roku szkolnym etap I r. godz. XVI POWIATOWY KONKURS z MATEMATYKI dla uczniów kl. IV VI szkół podstawowych w roku szkolnym 2015-2016 etap I 12.04.2016r. godz. 9 00-10 00 KOD UCZNIA Informacje dla ucznia 1. Czytaj uważnie wszystkie teksty

Bardziej szczegółowo

LIGA MATEMATYCZNO-FIZYCZNA KLASA I ETAP IV

LIGA MATEMATYCZNO-FIZYCZNA KLASA I ETAP IV LIGA MATEMATYCZNO-FIZYCZNA KLASA I ETAP IV Zad. Janek oszczędza, aby kupić komputer, który kosztuje 5400 zł. Zapytany, ile już zgromadził pieniędzy, odpowiedział : Nawet gdybym miał o jedną piątą więcej

Bardziej szczegółowo

Klasa 3. Odczytywanie wykresów.

Klasa 3. Odczytywanie wykresów. Klasa 3 Odczytywanie wykresów 1 Wykres obok przedstawia zmiany temperatury podczas pewnego zimowego dnia w Giżycku Jaką temperaturę powietrza pokazywał tego dnia termometr o godzinie 18 00? A 0 C B 1 C

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 2012

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 2012 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 202 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Poprawna odpowiedź Zad. 4 Zad. 5 Zad.

Bardziej szczegółowo

~ A ~ 4. Podczas szycia obrusu zużywa się 80 cm taśmy. Do ilu obrusów wystarczy 15 metrowe opakowanie taśmy? a. 2 b. 5 c. 6 d. 18 e.

~ A ~ 4. Podczas szycia obrusu zużywa się 80 cm taśmy. Do ilu obrusów wystarczy 15 metrowe opakowanie taśmy? a. 2 b. 5 c. 6 d. 18 e. 1. Na półce stały trzy słoiki z cukierkami. W pierwszym słoiku było 17 cukierków, w drugim było o dwa cukierki więcej niż w pierwszym, a w trzecim było o dwa cukierki więcej niż w drugim. Ile cukierków

Bardziej szczegółowo

Matematyka test dla uczniów klas piątych

Matematyka test dla uczniów klas piątych Matematyka test dla uczniów klas piątych szkół podstawowych w roku szkolnym 2010/2011 Etap szkolny (60 minut) Dysleksja [suma punktów] Imię i nazwisko... kl.5... Asia postanowiła sprawdzić, ile czasu poświęca

Bardziej szczegółowo

Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź D C B A C B C C D C C D A

Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź D C B A C B C C D C C D A Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KRYTERIA OCENIANIA POZIOM PODSTAWOWY Klucz odpowiedzi do zadań zamkniętych Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ

LUBELSKA PRÓBA PRZED MATURĄ Czas pracy 170 minut Klasa 1 Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 19 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od 1. do 20. są podane

Bardziej szczegółowo

Test z matematyki. Małe olimpiady przedmiotowe. Imię i nazwisko. Drogi Uczniu,

Test z matematyki. Małe olimpiady przedmiotowe. Imię i nazwisko. Drogi Uczniu, Małe olimpiady przedmiotowe Test z matematyki ORGANIZATORZY: Wydział Edukacji Urzędu Miasta w Koszalinie Centrum Edukacji Nauczycieli w Koszalinie Imię i nazwisko. Szkoła Szkoła Podstawowa nr 7 w Koszalinie

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2014 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2014 Czas 90 minut sumaryczna liczba punktów Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2014 Czas 90 minut 1. Otrzymujesz do rozwiązania 10 zadań zamkniętych oraz 5 zadań otwartych. 2.

Bardziej szczegółowo

Scenariusz zajęć na hospitację diagnozującą z fizyki kl I gimnazjum dział,,kinematyka

Scenariusz zajęć na hospitację diagnozującą z fizyki kl I gimnazjum dział,,kinematyka Scenariusz zajęć na hospitację diagnozującą z fizyki kl I gimnazjum dział,,kinematyka Temat: Rozwiązywanie zadań dotyczących ruchów z wykorzystaniem wykresów V(t) i S(t). Diagnoza: Na lekcjach fizyki w

Bardziej szczegółowo

Spis treści. Statystyka...2. Liczby...8. Figury płaskie Prostokątny układ współrzędnych Wielkości proporcjonalne Procenty...

Spis treści. Statystyka...2. Liczby...8. Figury płaskie Prostokątny układ współrzędnych Wielkości proporcjonalne Procenty... Spis treści Statystyka...2 Liczby...8 Figury płaskie... 27 Prostokątny układ współrzędnych... 2 Wielkości proporcjonalne... 5 Procenty... 56 Potęga o wykładniku naturalnym... 6 Wyrażenia algebraiczne...

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013 Etap wojewódzki 23 lutego 2013 r. Instrukcja dla ucznia Godzina 11.00 Kod ucznia 1. Sprawdź, czy zestaw zawiera 8 stron. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi. 2. Na tej stronie i

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 2018 Rozwiązania i punktacja

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 2018 Rozwiązania i punktacja Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 018 Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną

Bardziej szczegółowo

XIV WOJEWÓDZKI KONKURS MATEMATYCZNY

XIV WOJEWÓDZKI KONKURS MATEMATYCZNY XIV WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO ETAP III - WOJEWÓDZKI Kod ucznia 24 marca 2017 roku godz. 13:00 Suma punktów Czas pracy: 90 minut Liczba punktów do

Bardziej szczegółowo

Spotkanie 2: Rozwiążmy razem - W Literlandii

Spotkanie 2: Rozwiążmy razem - W Literlandii Spotkanie 2: Rozwiążmy razem - W Literlandii Aufgabe 1. Wer ist älter? (6 Punkte) Roman ist zweimal so alt, wie Paweł wird, wenn Adam das gegenwärtige Alter von Roman erreicht. Wer von ihnen ist am ältesten

Bardziej szczegółowo

KONSPEKT ZAJĘĆ EDUKACYJNYCH

KONSPEKT ZAJĘĆ EDUKACYJNYCH KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Opracowała: grupa 4 ds. korelacji matematyczno-fizycznej Przedmiot: matematyka Klasa: I technikum poziom podstawowy Czas trwania: 45 min. Data: Część merytoryczna

Bardziej szczegółowo

Pasjonat kwiecień. 1. Janek był na wsi przez cały lipiec, sierpień i jeden dzień we wrześniu. Ile dni był Janek na wsi, ile to tygodni?

Pasjonat kwiecień. 1. Janek był na wsi przez cały lipiec, sierpień i jeden dzień we wrześniu. Ile dni był Janek na wsi, ile to tygodni? Pasjonat kwiecień 1. Janek był na wsi przez cały lipiec, sierpień i jeden dzień we wrześniu. Ile dni był Janek na wsi, ile to tygodni? 2. W przedszkolu wychowawczyni przygotowała dla dwanaściorga dzieci

Bardziej szczegółowo

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY Zad1 ( 5 pkt) 1 0 8 1 2 11 5 4 Dane są liczby x 5, y 5 2 2 1 5 a) Wyznacz liczbę, której 60% jest równe x Wynik podaj z dokładnością do 0,01 b)

Bardziej szczegółowo

5V2y_okl_2013 15 maja 2013 09:07:33

5V2y_okl_2013 15 maja 2013 09:07:33 5V2y_okl_2013 15 maja 2013 09:07:33 Spis treści 0,5 UŁAMKI DZIESIĘTNE Zapisywanie ułamków dziesiętnych... 3 Porównywanie ułamków dziesiętnych... 7 Różne sposoby zapisywaniadługościimasy... 9 Dodawanie

Bardziej szczegółowo

Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką?

Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką? pitagoras.d2.pl II. ZADANIA TEKSTOWE Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką? 2. Towar z 23% podatkiem VAT kosztuje 984 zł. Ile wynosi podatek VAT?

Bardziej szczegółowo