Zadanie 2. Mewa leci z prędkością 0,2 km/min. na południe. Wiejący wschodni wiatr ma prędkość 1 i 7/18 m/s. Oblicz prędkość mewy względem Ziemi.
|
|
- Grażyna Stefaniak
- 9 lat temu
- Przeglądów:
Transkrypt
1 Zespół Szkół Ogólnokształcących w Kcyni Zestaw zadań na etap szkolny 6 kwietnia 01 r. godz Zadanie 1. W skali 1: odległość między miastami A i B jest o 1,7 cm większa od odległości między tymi miastami na mapie o skali 1: Oblicz odległość między miastami w rzeczywistości i na każdej z map. Zadanie. Mewa leci z prędkością 0, km/min. na południe. Wiejący wschodni wiatr ma prędkość 1 i 7/18 m/s. Oblicz prędkość mewy względem Ziemi. Zadanie. Z pręta długości 41 cm wykonano szkielet kwadratu i szkielet trójkąta równobocznego. Oblicz pole powierzchni kwadratu i trójkąta, jeżeli wiadomo, że bok trójkąta jest o dwa cm dłuższy od boku kwadratu. Ile gramów 15 %-wego kwasu solnego i ile gramów 0 %-wego kwasu solnego należy zmieszać, by otrzymać 18 gramów 0 %-wego kwasu solnego? Oblicz masę ostrosłupa prawidłowego czworokątnego wykonanego z miedzi o krawędzi podstawy 5 dm i wysokości 6 dm, jeżeli wiadomo, że gęstość miedzi wynosi 9000 kg/m. Zadanie 6. Oblicz pole powierzchni obszaru zacieniowanego, jeżeli wiadomo, że bok trójkąta równobocznego ma długość 8. Na rozwiązanie zadań masz 10 minut. Za zadania możesz otrzymać łącznie punkty. Można korzystać z kalkulatora prostego. POWODZENIA!
2 0 kwietnia 01 r. godz Zadanie 1. Cenę płaszcza obniżono najpierw o 0 %, a następnie o 0 % i wtedy płaszcz kosztował 700 zł. Jaka była cena płaszcza przed tymi obniżkami? Zadanie. Dany jest trapez równoramienny ABCD (patrz rysunek). D C a) Oblicz pole i obwód trójkąta. 6 cm b) Oblicz długość przekątnej. 6 pkt A 60 B 10 cm Zadanie. Oblicz długość odcinka KL łączącego środki dwóch krawędzi sześcianu (patrz rysunek). K 6 cm L 5 pkt Dany jest kwadrat ABCD. Pole koła opisanego na tym kwadracie jest o 8π większe od pola koła wpisanego w ten kwadrat. Oblicz pole powierzchni kwadratu. Wykonaj rysunek. Oblicz długość dłuższej wysokości równoległoboku z rysunku cm 16 cm Zadanie 6. Z miast A i B odległych o 4 km, o godzinie 8 0 wyjeżdżają naprzeciw siebie dwaj rowerzyści. Prędkość jazdy jednego z nich jest o 4 km/h większa niż prędkość drugiego. Oblicz prędkości obu rowerzystów, jeżeli wiesz, że spotkają się o godzinie Na rozwiązanie zadań masz 10 minut. Możesz korzystać z kalkulatora prostego.
3 1 marca 009 r. godz Zadanie 1. a) Oblicz: liczby. 8 1,4 :1 : 4, ,6 + b) Wykaż, że liczby i są liczbami odwrotnymi. 6 Zadanie. Na działce o powierzchni 0,5 ha postawiono dom, który zajmuje 80 m powierzchni działki. Dodatkowa część użytkowa działki stanowi % jej powierzchni. Resztę przeznaczono na ogród. Ile m zajmuje ogród i jaki jest to procent powierzchni działki? Zadanie. Basen olimpijski ma 50 m długości. Przy jednym brzegu głębokość basenu jest równa 1,5 m, a przy przeciwległym m. Kąt nachylenia dna basenu do powierzchni wody, tzw. kąt dyspersji, jest stały na całej długości basenu. Oblicz głębokość basenu w jego płytszej części, w odległości 10 m od brzegu. a) Ile gramów soli potrzeba do przygotowania 500 g roztworu o stężeniu 8 %? b) Ile litrów wody należy dolać do 16 litrów 10 %-wego roztworu syropu wiśniowego, by otrzymać syrop o 8 %-ej zawartości soku? Producent proszku do prania sprzedaje go w dwóch różnych pudełkach, dla których ustalił tę samą cenę. Pierwsze ma kształt graniastosłupa o wymiarach 0cm na 7cm na 0cm, a drugie ma kształt walca o średnicy w podstawie 18cm i wysokości 0cm. a) Które opakowanie bardziej opłaca się kupić? b) Oblicz, ile dekagramów proszku może zmieścić się w każdym z pudełek, jeżeli wiadomo, że 100 ml to 80 g proszku, oraz waga netto proszku w każdym z opakowań jest podana z dokładnością do dziesięciu dekagramów. Zadanie 6 Rano wyjechał z miasta autobus, a po upływie 0,7 h w tym samym kierunku wyjechała ciężarówka. Do punktu końcowego, leżącego w odległości 151, km, ciężarówka i autobus przybyły jednocześnie. Oblicz średnią prędkość ciężarówki, wiedząc, że autobus jechał ze średnią prędkością 4, kilometra na godzinę. Na rozwiązanie zadań masz 10 minut.
4 14 kwietnia 008 r. godz Zadanie 1. a) Wyrażenie ( x y) ( x y) ( x _ y)( y x) + zapisz w najprostszej postaci, a następnie oblicz jego wartość liczbową dla x= i y=. 8 pkt b) Oblicz ( 4,5) , ,09 + 6, Zadanie. Zadanie. W równoległoboku ABCD o kącie ostrym 60º przekątna BD długości 10 cm jest prostopadła do boku AD. Oblicz obwód i pole powierzchni tego równoległoboku. Wykonaj rysunek. Dane są funkcje: y = x +, y x + 9 = 0. a) Narysuj wykresy obu funkcji w jednym układzie współrzędnych, b) Oblicz miejsca zerowe tych funkcji, c) Dla jakich argumentów obie funkcje jednocześnie przyjmują wartości ujemne? Ile kul o promieniu 5 cm można pomalować trzema litrami farby, jeśli wiadomo, że jeden litr tej f b t l i 9 i h i? P j ij 14 Poniższy wykres przedstawia jak zmieniały się notowania pewnej spółki. 5 pkt 8, 7, Notowania spółki w systemie ciągłym Cena akcji w złotych 6, 5, 4,,, 1, 10:00 10:0 11:00 11:0 1:00 1:0 1:00 1:0 14:00 14:0 15:00 15:0 Zadanie 6 a) Odczytaj z wykresu różnicę między najwyższą a najniższą ceną akcji. b) Inwestor kupił akcje tej spółki o godzinie 10:15 i sprzedał je o godzinie 15:0. Czy zarobił, czy stracił na tej inwestycji i ile? c) Czy można było zarobić na akcjach tej spółki, kupując pewną ich liczbę o godzinie 11:45 i odsprzedając je w godzinach od 1:00 do 14:45? Sklep zakupił w hurtowni telefony i telewizory. Za 0 telefonów i 1 telewizorów zapłacono łącznie 700 zł. W przeciągu jednego miesiąca sprzedano 75% telewizorów i 80% telefonów i uzyskano łącznie za te produkty 950 zł. Jaka jest cena detaliczna telewizora oraz telefonu, jeżeli ze sprzedaży jednego telewizora sklep ma 15% zysku, a z telefonu 0% zysku? Na rozwiązanie zadań masz 10 minut.
5 0 kwietnia 007 r. godz Zadanie 1. Oblicz. a) = 1 11 b) 7 4 ( 1.8) = pkt Zadanie. Zadanie. Do kwiaciarni dostarczono kwiaty, z czego 75% stanowiły storczyki, 1 7 pozostałych kwiatów róże, oraz 5 gerber. Ile kwiatów dostarczono do kwiaciarni? Na dwóch końcach deski długości,5 metra siedzą: dziewczynka o masie 0 kg i chłopiec o masie 40 kg. W jakiej odległości od dziewczynki powinien znajdować punkt podparcia deski, aby tak otrzymana huśtawka była w równowadze? Wykonaj i opisz rysunek Trójkąt równoboczny i kwadrat mają równe obwody. Wykaż, że pole kwadratu jest większe od pola trójkąta. Oblicz o ile pole kwadratu jest większe od pola trójkąta. Wynik podaj z dokładnością do 0,01. Poniższy wykres przedstawia jak zmieniały się notowania euro w NBP w okresie kolejnych trzech miesięcy w 001 r. CENA EURO W NBP PLN za 1 euro,675,65,65,6,575,55,55,5,475,45,45,4,75,5,5,,57,65,59,6,49,51,48,49,47,51,5, IV V VI,4,45,8,9,8,4,5,41,4 Zadanie 6 d) Odczytaj z wykresu najniższą i najwyższą wartość kursu euro w maju. e) O ile procent mniejsza była najniższa zanotowana cena euro od jego maksymalnego kursu w tym okresie? f) Wyznacz średnią cenę euro w tym okresie. Ile razy podczas wahania kursu ceny przekraczały tę wartość w kwietniu, maju, czerwcu? W trójkącie ABC wysokość poprowadzona z wierzchołka C dzieli bok AB na odcinki długości i 7. Wyznacz długości boków AC i BC tego trójkąta, jeżeli wiadomo, że jeden z tych boków jest o dwa dłuższy od drugiego.? Na rozwiązanie zadań masz 10 minut.
6 1 marca 006 r. godz Zadanie 1. Oblicz. a) + = + b) 4 ( 4 ) = Zadanie. W skali 1: odległość między punktami na mapie wynosi Jaka będzie odległość między tymi punktami w skali 1:00000?,6 10 m. Zadanie. Wyznacz liczby całkowite, spełniające jednocześnie obydwie nierówności. 1 5x x x + 4 b) x 9 x + 4 a) ( ) + ( x 15)( x + 15) W dzienniku Rzeczpospolita z 0 czerwca 001 roku opublikowano dane dotyczące wykorzystania zeszłorocznego urlopu (wg CBOS). 5 pkt Zadanie 6. g) Ile procent Polaków przeznaczyło cały urlop na wypoczynek, a ile na pracę zarobkową? h) O ile procent mniej Polaków połowę urlopu przeznaczyło na pracę niezarobkową niż na wypoczynek? i) Ile procent Polaków poświęciło urlop w całości lub w znacznej części na różne prace zarobkowe i niezarobkowe? Obwód prostokąta wynosi 0 cm. Wewnątrz tego prostokąta narysowano prostokąt, którego boki są odpowiednio równoległe do boków danego prostokąta i oddalone od nich o cm. Oblicz pole powstałej ramki. Stosunek twardości złota do twardości srebra (w skali Brinella) jest równy 18:5. Twardość srebra wynosi 50 HB. O ile procent srebro jest twardsze od złota? Na rozwiązanie zadań masz 10 minut.
7 GMINNEGO KONKURSU MATEMATYCZNEGO 5 luty 005r. godz Zadanie 1. a) Jakim procentem liczby 1 jest wartość wyrażenia 17,5 16? b) Zapisz w postaci potęgi liczby 10 następujące wyrażenie: c) Uprość wyrażenie: +. 6 pkt + 16 ; Zadanie. Dłuższe ramię szlabanu kolejowego ma długość 4 10 cm, a krótsze 0, wzniesie się dłuższe ramię, gdy krótsze opuści się o 5 10 m? km. O ile Zadanie. Oblicz sumę długości okręgów stycznych wewnętrznie, wiedząc, że odległość między ich środkami wynosi 4 cm, zaś stosunek długości promieni wynosi 5. Oblicz pole powierzchni i obwód trójkąta o wierzchołkach A(0,0), B(4,), C(,6). 6 pkt 4pkt Jeżeli długość prostokątnej działki zmniejszymy o 0%, to o ile należy wydłużyć jej szerokość, aby pole powierzchni było takie jak pierwotnie? Zadanie 6. Oblicz pole powierzchni obszaru zakreskowanego, gdy długość r promienia dużego koła wynosi 4. r Na rozwiązanie zadań masz 10 minut.
8 GMINNEGO KONKURSU MATEMATYCZNEGO 05 marca 004r. godz Zadanie 1. a) Jakim procentem liczby,9 jest wartość wyrażenia b) Zapisz w postaci jednej potęgi wyrażenie c) Uprość wyrażenie ( ) ( 7) ) ( ) 5 ( ) ) 1,5 6? ,4 + 4 Zadanie. Punkty A(,4) i B(,10) są wierzchołkami trójkąta ABC, którego pole jest równe 15. Znajdź współrzędne punktu C jeśli druga jego współrzędna wynosi (rozważ dwa przypadki). Zadanie. Firma przewozowa zakupiła 1000 l paliwa po,45zł. za litr. Cenę 1litra obniżono o 4% a następnie podwyższono o 4%. Jaka będzie różnica w cenie 1000 l paliwa zakupionego po tych operacjach?. 9, Oblicz pole trójkąta równobocznego opisanego na okręgu o promieniu 4 cm. W jakim wielokącie stosunek liczby boków wielokąta do liczby jego przekątnych wynosi 1:16? Zadanie 6. Oblicz pole powierzchni obszaru zakreskowanego gdy długość boku kwadratu wynosi 10. Na rozwiązanie zadań masz 10 minut.
9 GMINNEGO KONKURSU MATEMATYCZNEGO 4 marca 00r. godz ( 7 ) ( 7 + ) Zadanie 1. a) Jakim procentem liczby 1,8 jest wartość wyrażenia (0,75) + ( 1,5)? b) Zapisz w postaci potęgi wyrażenie , c) Udowodnij, że = 10. Zadanie. Po podwójnej obniżce ceny najpierw o 5%, a później o 5 % płaszcz kosztuje 85 zł. Jaka była cena płaszcza przed obniżką? Zadanie. W trójkącie o bokach 1, 16 i 0 poprowadzono dwie proste równoległe do najkrótszego boku. Proste te odcinają na najdłuższym z boków, po obu jego końcach odcinki o mierze 5. Oblicz obwód środkowego trapezu. Producent konserw zakupił do produkcji nową maszynę, biorąc w banku kredyt w wysokości zł, płatny w ciągu 1,5 roku. Wiedząc, ze bank udziela kredytu na 0% w stosunku rocznym, oblicz wartość odsetek za 1,5 roku. Oblicz pola trapezu, w którym boku równoległe mają 16 i 44, a nierównoległe 17 i 5. Zadanie 6. Oblicz pole powierzchni obszaru zakreskowanego Na rozwiązanie zadań masz 10 minut.
I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Arkusz II. Luty 2014. Liczba punktów 30, czas pracy 90min
I Ty możesz zostać Pitagorasem Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów Arkusz II Luty 2014 Liczba punktów 30, czas pracy 90min mgr Iwona Tlałka Zadanie 1. (0 1) I Ty możesz zostać Pitagorasem
MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2
MARATON MATEMATYCZNY-MARZEC 2015 KLASA I Obwód poniższej figury wynosi: Zredukuj wyrażenia Zadanie 2 Uprość wyrażenia, a następnie oblicz ich wartości dla: a = -1, b = 2 Wyłącz wspólny czynnik przed nawias.
Maraton Matematyczny Klasa I październik
Zad.1 Oblicz pamiętając o kolejności działań. Maraton Matematyczny Klasa I październik 4,4 2,25 2 1 a) (5,3-6 ) 2 4 (-28 ) = b) 4 7 2 ( ) 3 2 3 = Zad.2 Oblicz wartość wyrażeń: a) ( 3,6-2,5) : 0,55 3* 0,5=
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI LISTOPAD 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P3 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla
Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
KURS MATURA PODSTAWOWA Część 2
KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:
Klasówka gr. A str. 1/3
Klasówka gr. A str. 1/3 1. Boki trójkąta ABC mają długości 9 cm, 7cm, 8 cm. Boki trójkąta podobnego A B C w skali 1 2 mają długości: A. 18 cm, 14 cm, 16 cm B. 4 1 2 cm, 3 1 2 cm, 4 cm C. 4 1 2 cm, 7 cm,
ZADANIA MATURALNE STEREOMETRIA POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska
ZADANIA MATURALNE STEREOMETRIA POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska Zad.1. ( 5 pkt) Objętość ostrosłupa prawidłowego trójkątnego, o długości krawędzi podstawy 6 cm, jest równa cm 3. Oblicz
Praca kontrolna nr 3, listopad 2018 termin oddania pracy do ,( ) ma cyfrę 6 na dziewiątym miejscu po przecinku?
Praca kontrolna nr 3, listopad 2018 termin oddania pracy do 3.12.2018 Imię i nazwisko... klasa III Zadanie 1. (0 1) Ile z następujących liczb: 2 3, 1 6, 0,( 62 ), 0 626,( ) ma cyfrę 6 na dziewiątym miejscu
Matematyka podstawowa VII Planimetria Teoria
Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma
LUBELSKA PRÓBA PRZED MATURĄ 2013
LUBELSKA PRÓBA PRZED MATURĄ 03 MATEMATYKA - poziom podstawowy STYCZEŃ 03 Instrukcja dla zdającego Czas pracy: 70 minut. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu
Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8
Testy do gimnazjum Jednokładność, podobieństwo, twierdzenie Talesa. Test dla klasy III Przekształcenia geometryczne. Grupa I Zad. Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=
EGZAMIN WSTĘPNY Z MATEMATYKI
Egzamin wstępny do I Społecznego Liceum Ogólnokształcącego BEDNARSKA Kod zdającego EGZAMIN WSTĘPNY Z MATEMATYKI 1. Przed sobą masz egzamin wstępny z matematyki, który składa się z dwóch części. Osoby,
Klasa 3.Graniastosłupy.
Klasa 3.Graniastosłupy. 1. Uzupełnij nazwy odcinków oznaczonych literami: a........................................................... b........................................................... c...........................................................
Planimetria VII. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
Czas pracy 170 minut
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 010 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 15 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi:
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu
SPRAWDZIAN PO KLASIE 1. ROZSZERZENIE
SPRWZIN PO KLSIE. ROZSZERZENIE ZNIE ( PKT) Liczbę 5 7 zaokr aglamy do liczby,6. ład względny tego przybliżenia jest równy ) 0,8% ) 0,008% ) 8% ) 00 5 % ZNIE ( PKT) Wyrażenie x + x dla x > ma wartość )
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 010 Instrukcja dla zdającego Czas pracy 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16
LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy
1 MATEMATYKA - poziom podstawowy LUTY 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q
LUBELSKA PRÓBA PRZED MATURĄ klasa 2b
MATEMATYKA materiał ćwiczeniowy CZERWIEC 0 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od do są podane
ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE
ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE Zad.1. (1p) Liczba 3 30 9 90 jest równa: A. 3 210 B. 3 300 C. 9 120 D. 27 2700 Zad.2. (1p) Liczba 3 8 3 3 9 2 jest równa: A. 3
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut Rozwiązania i punktacja Zadanie 1. (1 punkt) Średnia arytmetyczna liczb 0, 3 10 2015 i 2, 2 10 201 jest
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 3 (równania i nierówności; twierdzenie Pitagorasa)
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 3 (równania i nierówności; twierdzenie Pitagorasa) 1. Zapisz w postaci równania: a) Różnica liczby x i i liczby 8 jest równa połowie liczby
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
EGZAMIN WSTĘPNY Z MATEMATYKI
EGZAMIN WSTĘPNY Z MATEMATYKI 1. Przed sobą masz egzamin z matematyki, który składa się z dwóch części. Osoby, które chcą się dostać do klasy matematycznej muszą napisać obie części poniższego egzaminu
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne)
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) 1. W którym przypadku z podanych odcinków można zbudować trójkąt? a) 8cm; 1,2dm
2. Na każdej stronie wpisz, w odpowiednim miejscu, kod zdającego.
POZIOM 2 - ŚREDNIOZAAWANSOWANY CZAS 120 MINUT INSTRUKCJA DLA ZDAJĄCEGO 1. Przed sobą masz egzamin na poziomie 2 średniozaawansowanym. 2. Na każdej stronie wpisz, w odpowiednim miejscu, kod zdającego. 3.
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI STYCZEŃ 0 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron.. W zadaniach od. do 0. są podane odpowiedzi: A, B, C, D,
Zadanie 1. (0 1) Cena okularów bez promocji wynosi 240 zł. Ile zapłaci za te okulary klient, który ma 35 lat? Wybierz odpowiedź spośród podanych.
Informacja do zadań 1. i 2. Promocja w zakładzie optycznym jest związana z wiekiem klienta i polega na tym, że klient otrzymuje tyle procent zniżki, ile ma lat. Zadanie 1. (0 1) Cena okularów bez promocji
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW W ROKU SZKOLNYM 08/09.0.09 R.. Test konkursowy zawiera zadania. Są to zadania zamknięte i otwarte. Na ich
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria
1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 6 MARCA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) ( 5 Liczba 3 4 2 1 2
MARATON GRUDNIOWY KLASA I Zadanie 1. Zadanie2 Ile kosztuje rower, jeżeli pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł?
Oblicz wartość wyrażenia MARATON GRUDNIOWY KLASA I Zadanie 1 Zadanie2 Ile kosztuje rower, jeżeli pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł? Zadanie 3 Trzy boki trapezu równoramiennego
Próbny egzamin maturalny z matematyki Poziom podstawowy
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2019 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera
ZESTAW ZADAŃ NA OCENĘ DOPUSZCZAJĄCY Z MATEMATYKI W KLASIE IV.
ZESTAW ZADAŃ NA OCENĘ DOPUSZCZAJĄCY Z MATEMATYKI W KLASIE IV. I. POTĘGI. LOGARYTMY. FUNKCJA WYKŁADNICZA 1. Przedstaw liczby 16,4, w postaci potęgi liczby: 2; 4;. 2. Wykonaj działania: a) = b) 25 5 5 =
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 015 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut
Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź
KL. I. ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział:
KL. I ZAD. 1 2 3 0,5 x 3 5 Oblicz x : 1, 2 7 3 1 1,4 : 2 20 4 ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział: 2 2 kg i jeszcze 2 razy po swojej masy. Ile waży złowiona
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów stycznych, c) rozpoznaje trójkąty podobne i wykorzystuje
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
Egzamin wstępny z Matematyki 1 lipca 2011 r.
Egzamin wstępny z Matematyki 1 lipca 011 r. 1. Mamy 6 elementów. Ile jest możliwych permutacji tych elementów jeśli: a) wszystkie elementy są różne, b) dwa elementy wśród nich są identyczne, a wszystkie
PRZYKŁADOWE ZADANIA OTWARTE KONKURSOWE
PRZYKŁADOWE ZADANIA OTWARTE KONKURSOWE Zadanie 1 Biuro Turystyczne Raj w przypadku rezygnacji z wycieczki nie zwraca pełnej kwoty. a) Jeśli rezygnacja z wyjazdu następuje miesiąc przed terminem wyjazdu,
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6 Lang: Długość okręgu. pole pierścienia będę chciał znaleźć inne wyrażenie na pole pierścienia. oszacowanie
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2015/2016 13 STYCZNIA 2016 R. 1. Test konkursowy zawiera 21 zadań. Są to zadania zamknięte i otwarte. Na
Powtórka przed klasówką nr 4 - pola wielokątów
Powtórka przed klasówką nr 4 - pola wielokątów MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Plakat informujący o zawodach miał kształt prostokąta o wymiarach 50 cm 60 cm. Oblicz pole prostokąta
Kuratorium Oświaty w Lublinie KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ZESTAW ZADAŃ KONKURSOWYCH ROK SZKOLNY 2018/2019 ETAP TRZECI
Kuratorium Oświaty w Lublinie.. Imię i nazwisko ucznia Pełna nazwa szkoły Liczba uzyskanych punktów KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ZESTAW ZADAŃ KONKURSOWYCH ROK SZKOLNY 2018/2019 ETAP
Spis treści. POLA WIELOKĄTÓW Pole prostokąta... 27 Pole równoległoboku i rombu... 30 Pole trójkąta... 31 Pole trapezu... 33 Sprawdź, czy umiesz...
Spis treści FIGURY NA PŁASZCZYŹNIE Proste, odcinki, okręgi, koła... 3 Trójkąty, czworokąty i inne wielokąty... 5 Kąty... 9 Kąty w trójkątach i czworokątach... 11 Konstrukcje geometryczne (część 1)... 14
Kąty przyległe, wierzchołkowe i zewnętrzne
Kąty przyległe, wierzchołkowe i zewnętrzne 1. Ile wynosi miara kąta przyległego do kąta o mierze 135 o. 2. Wyznacz miary kątów α, β, γ, δ: 3. Z dwóch kątów przyległych, miara jednego jest dwa razy większa
Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 13 lutego 2016 r. zawody II stopnia (rejonowe)
Kod ucznia:. Liczba punktów: Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 1 lutego 016 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu przedmiotowego z matematyki. Przed
LUBELSKA PRÓBA PRZED MATUR MATEMATYKA - poziom podstawowy
1 MATEMATYKA - poziom podstawowy LUTY 2015 Instrukcja dla zdaj cego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamie ć w miejscu na to przeznaczonym.
Skrypt 33. Powtórzenie do matury:
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 33 Powtórzenie do matury:
Matematyka. Zadanie 1. Zadanie 2. Oblicz. Zadanie 3. Zadanie 4. Wykaż, że liczba. 2 2 jest podzielna przez 5. Zadanie 5.
Matematyka Zadanie 1. Oblicz liczby Zadanie. Oblicz Zadanie 3. Wykaż, że liczba jest podzielna przez Zadanie 4. Wykaż, że liczba 30 0 jest podzielna przez 5. Zadanie 5. n 1 Uzasadnij, że prawdziwa jest
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. są podane 4 odpowiedzi:
Pole powierzchni całkowitej prostopadłościanu o wymiarach 5 x 3 x 4 jest równe A. 94 B. 60 C. 47 D. 20
STEREOMETRIA - ZADANIA MATURALNE lata 2010-2017 Zadanie 1. (0-1) Maj 2010 [I. Wykorzystanie i tworzenie informacji] Pole powierzchni całkowitej prostopadłościanu o wymiarach 5 x x 4 jest równe A. 94 B.
Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru?
Klasa I. Na planie wykonanym w skali : 2000 odległość między domem Kasi a domem Basi wynosi7,3 cm. Jaka jest rzeczywista odległość między ich domami? 2. Jaką miarę ma kąt przyległy do kąta o mierze 62?
ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.
ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla
PRÓBNY EGZAMIN ÓSMOKLASISTY
PRÓBNY EGZAMIN ÓSMOKLASISTY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 16 MARCA 2019 CZAS PRACY: 100 MINUT 1 ZADANIE 1 (1 PKT) Firma transportowa Paka korzysta z samochodów dostawczych,
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY
Centralna Komisja Egzaminacyjna ARKUSZ ĆWICZENIOWY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC 2012 Instrukcja dla zdającego 1. Sprawdź, czy arkusz ćwiczeniowy zawiera 28 stron (zadania 1 32). 2. Odpowiedzi
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 017 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19 stron
EGZAMIN ÓSMOKLASISTY MATEMATYKA
www.galileusz.com.pl EGZAMIN ÓSMOKLASISTY MATEMATYKA ARKUSZ 100 minut 30 Zadanie 1. (0 1) W systemie rzymskim liczbę 979 zapiszesz: A.CMLXXIX B. CDXXIX C. DCCXIX D. DCCCLIX Zadanie 2. (0 1) Czynsz za wynajem
ZADANIE 1 (5 PKT) ZADANIE 2 (5 PKT) Oblicz objętość czworościanu foremnego o krawędzi a.
ZADANIE 1 (5 PKT) Czworościan foremny o krawędzi a rozcięto płaszczyzna prostopadła do jednej z krawędzi, przechodzac a w odległości 0, 25a od jednego końca tej krawędzi. Oblicz objętość otrzymanych brył.
ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Centralna Komisja Egzaminacyjna ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 01 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz ćwiczeniowy zawiera strony (zadania 1 ).. Rozwiązania zadań i odpowiedzi wpisuj w miejscu
LUBELSKA PRÓBA PRZED MATUR 2015. MATEMATYKA - poziom rozszerzony klasa I
1 MATEMATYKA - poziom rozszerzony klasa I CZERWIEC 2015 Instrukcja dla zdaj cego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 17). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego
WYPEŁNIA KOMISJA KONKURSOWA
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2016/2017 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 24 MARCA 2012 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT.) Która równość jest fałszywa? Wybierz odpowiedź spośród
OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH
OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH Zadanie 1 Jeden z boków prostokąta ma 5 cm, a drugi jest 3 razy dłuższy. Oblicz pole prostokąta. Zadanie 2 Oblicz pole kwadratu, którego obwód wynosi 6 dm. Zadanie
UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 7 MARCA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) ( 5 Liczba
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 11 KWIETNIA 2015 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Koszt ubezpieczenia samochodu w pewnej firmie
LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Instrukcja dla zdającego Czas pracy: 170 minut
KOD UCZNIA MATEMATYKA 5 LUTY 015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-33). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin..
STEREOMETRIA. Poziom podstawowy
STEREOMETRIA Poziom podstawowy Zadanie ( 8 pkt ) W stożku tworząca o długości jest nachylona do powierzchni podstawy pod kątem, którego tangens jest równy Oblicz stosunek pola powierzchni bocznej do pola
Matematyka podstawowa IX. Stereometria
Zadania wprowadzające: Matematyka podstawowa IX Stereometria 1. Pole powierzchni całkowitej sześcianu jest równe 54. Oblicz objętość sześcianu. 2. Pole powierzchni sześcianu jest równe 96.Oblicz długość
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego ETAP REJONOWY rok szkolny 2018/2019
Kod ucznia Data urodzenia ucznia dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego ETAP REJONOWY rok szkolny 018/019 Instrukcja dla ucznia 1. Sprawdź,
XV WOJEWÓDZKI KONKURS Z MATEMATYKI
XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
2. Na każdej stronie wpisz, w odpowiednim miejscu, kod zdającego.
POZIOM 3 - ZAAWANSOWANY CZAS 120 MINUT INSTRUKCJA DLA ZDAJĄCEGO 1. Przed sobą masz egzamin na poziomie 3 zaawansowanym. 2. Na każdej stronie wpisz, w odpowiednim miejscu, kod zdającego. 3. W zadaniach
Zadanie 1. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S 1
Zadanie. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S i S 2 obliczyć pole trapezu ABCD. Zadanie 2. Mamy trapez, w którym suma kątów przy dłuższej podstawie
ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Centralna Komisja Egzaminacyjna ARKUSZ ĆWICZENIOWY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz ćwiczeniowy zawiera strony (zadania 1 3).. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to
Przykłady zadań do standardów.
Przykłady zadań do standardów 1 Wykorzystanie i tworzenie informacji 1 Oblicz wartośd wyrażenia: log 5 log8 log Odp: 1 1 3 5 8 Wyrażenie 5 1 0,5 : 3 zapisz w postaci p, gdzie p jest liczbą całkowitą Odp:
Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis 24 marca 2012 Czas pracy: 90 minut
Strona 1 /Gimnazjum/Egzamin gimnazjalny Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis www.zadania.info 24 marca 2012 Czas pracy: 90 minut Zadanie 1 (1 pkt.) Która równość jest
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY. 18 listopada 2013 r. godz. 13:00
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY 18 listopada 2013 r. godz. 13:00 Kod pracy ucznia Suma punktów Czas pracy: 90 minut Liczba punktów możliwych do uzyskania: 30
UZUPEŁNIA ZESPÓŁ NADZORUJĄCY miejsce na naklejkę z kodem
Układ graficzny CKE 2011 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ
Zwróć uwagę. Czytaj uważnie treści zadań i polecenia. W razie potrzeby przeczytaj je kilka razy.
Zwróć uwagę Poniżej znajdziesz kilka wskazówek, którą mogą ci ułatwić napisanie sprawdzianu szóstoklasisty. Najważniejsza z nich to: Czytaj uważnie treści zadań i polecenia. W razie potrzeby przeczytaj
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 209 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 7 maja 209 r.
Zadanie 1. Przekątna prostopadłościanu o wymiarach ma długość A. 2 5 B. 2 3 C. 5 2 D Zadanie 2.
Zadanie 1. Przekątna prostopadłościanu o wymiarach 3 4 5 ma długość A. 2 5 B. 2 3 C. 5 2 D. 2 15 Zadanie 2. Pole powierzchni całkowitej prostopadłościanu jest równe 198. Stosunki długości krawędzi prostopadłościanu
Tematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
WOJEWÓDZKI KONKURS MATEMATYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 016/017 10.11.016 1. Test konkursowy zawiera zadania. Są to zadania zamknięte i otwarte.
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY+ 5 MARCA 2011 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Cena towaru bez podatku
Przedstawiamy Państwu propozycję sprawdzianu diagnostycznego na koniec klasy I szkoły ponadgimnazjalnej opracowanego na wzór arkusza maturalnego na
Przedstawiamy Państwu propozycję sprawdzianu diagnostycznego na koniec klasy I szkoły ponadgimnazjalnej opracowanego na wzór arkusza maturalnego na poziomie podstawowym. Narzędzie to było dostępne do pobrania
ZADANIE 2 Czy istnieje taki wielokat, który ma 2 razy więcej przekatnych niż boków?
PLANIMETRIA 2 ZADANIE 1 W rombie jedna z przekatnych jest dłuższa od drugiej o 3 cm. Dla jakich długości przekatnych pole rombu jest większe od 5cm 2? 1 ZADANIE 2 Czy istnieje taki wielokat, który ma 2
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej