Podstawy Nawigacji. mapa nawigacyjna
|
|
- Elżbieta Lis
- 9 lat temu
- Przeglądów:
Transkrypt
1 Podstawy Nawigacji mapa nawigacyjna
2 Program wykładów: Istota, cele, zadania i rodzaje nawigacji. Podstawowe pojęcia i definicje z zakresu nawigacji. Morskie jednostki miar. Kierunki na morzu, rodzaje, zamiana kierunków. Systemy wyrażania kierunków. Zamiana kierunków między systemami. Kształt i wymiary Ziemi, układy odniesienia i współrzędnych. Podstawowe wiadomości o mapach nawigacyjnych. Pozycja statku i jej rodzaje.
3 Mapa (z łac. mappa = 'obrus') - uogólniony obraz powierzchni Ziemi lub jej części (także nieba lub planety czy innego ciała niebieskiego), wykonywany na płaszczyźnie, w skali, według zasad odwzorowania kartograficznego, przy użyciu umownych znaków graficznych. Mapa stanowi podstawowe narzędzie badań i prezentacji wyników w historii, geografii i geodezji. Przeniesienie powierzchni ze sfery (Ziemia nie jest idealną kulą, ma nieregularny kształt geoidy, ale przy sporządzaniu mapy przyjmuje się założenie o jej kulistości, lub że jest elipsoidą obrotową) na płaską powierzchnię mapy wymaga:
4 zastosowania odpowiedniego rzutu, czyli odwzorowania kartograficznego, zmniejszenia obrazu do żądanej skali, zastosowania przyjętych znaków umownych, uogólnienia przedstawionego obrazu. Nauka o mapach to kartografia.
5 Mapa nawigacyjna mapa Merkatora. mapa morska wykonana w rzucie kartograficznym, w którym południki i równoleżniki geograficzne przecinają się pod kątem prostym;
6 Mapa nawigacyjna mapa Merkatora. przedstawienia południków jako linii prostych, równoległych do siebie, spowodowało zniekształcenie obrazu powierzchni kuli ziemskiej, na której południki zbiegają się przy biegunach
7 Mapa nawigacyjna mapa Merkatora. Zniekształcenie to jest coraz większe w miarę oddalania się od równika w kierunku biegunów. Aby je zmniejszyć, równoleżniki nie są na mapie jednakowo oddalone od siebie, lecz odstęp pomiędzy nimi jest coraz większy, w miarę oddalania się od równika.
8 Mapa nawigacyjna mapa Merkatora. Dlatego też mierząc na mapie odległość na jej bocznych ramkach, odcinek mili morskiej trzeba brać na tej szerokości geograficznej, na której znajduje się mierzona odległość.
9 Mapa nawigacyjna mapa Merkatora.
10 Mapa nawigacyjna mapa Merkatora. Praktycznym efektem stosowania map Merkatora w nawigacji jest korzystanie z bocznych podziałek kątowych (szerokościowych), a nie dolnych / górnych (długościowych). Zależnie od tego jak daleko znajdujemy się od Równika mila morska czyli minuta szerokościowa będzie miała na mapie inną długość w stosunku do minuty długościowej. Odległości na mapie nanosi się lub odczytuje z pomocą cyrkla nawigacyjnego zwanego czasem Kroczkiem
11 Mapa nawigacyjna mapa Merkatora. Na mapie Merkatora wykreślanie kursów i namiarów jest łatwe, ponieważ są one liniami prostymi, przecinającymi wszystkie południki pod jednym i tym samym kątem.
12 Loksodroma (gr. loksós - ukośny, droma - linia) jest linią krzywą na powierzchni kuli (np. Ziemi), przecinającą wszystkie południki pod tym samym kątem. Na mapie Merkatora (dokładniej na mapie w rzucie Merkatora) loksodroma odwzorowuje się w postaci linii prostej i jako taka jest powszechnie stosowana w nawigacji morskiej i lotniczej do wykreślania drogi (kursu). Statek płynący stałym kursem, np. korzystając z kompasu w rzeczywistości utrzymuje ten sam kąt względem kierunku północ-południe, a więc przecina wszystkie południki pod tym samym kątem - płynie po loksodromie. Loksodroma nie jest najkrótszą drogą łączącą dwa punkty na powierzchni kuli, właściwość taką ma za to ortodroma.
13 Ortodroma (st.gr. ὀρθόs, orthos = prosty, prawidło wy; δρόμος, dromos = droga, przebieg) to najkrótsza droga pomiędzy dwoma punktami na powierzchni kuli biegnąca po jej powierzchni. Stanowi ona zawsze fragment koła wielkiego. Linię ortodromy otrzymuje się przez przecięcie kuli płaszczyzną przechodzącą przez punkty A,B na powierzchni tej kuli oraz przez środek kuli. Na mapie Merkatora (dokładniej na mapie w rzucie Merkatora) ortodroma jest linią krzywą wygiętą w kierunku bliższego bieguna ziemskiego, w przeciwieństwie do loksodromy, która przecina wszystkie południki pod tym samym kątem, a na mapie Merkatora jest linią prostą.
14
15
16 Skala mapy Pod pojęciem skali mapy rozumie się stosunek długości linii na rysunku do odpowiadającej jej linii w rzeczywistości. Wielkość skali podawana jest w formie ułamka (np. 1/200000) lub stosunku (np. 1:200000), w którym mianownik wskazuje stopień zmniejszania. Im ułamek lub stosunek jest mniejszy, tym skala jest mniejsza i na odwrót.
17 Skala mapy W odniesieniu do map w odwzorowaniu Merkatora skala podana jest w nagłówku mapy, zwanym legendą. Oprócz tego podaje się w tym miejscu również szerokość geograficzną, do której odnosi się skala. Tę szerokość nazywa się równoleżnikiem podstawowym lub konstrukcyjnym. Jest to równoleżnik sieczności walca i kuli. Jego skala nazywa się skalą główną mapy. Na przykład dla mapy w rzucie Merkatora skala 1: dla równoleżnika podstawowego φ=56 oznacza, że zachowuje ona swoją wartość jedynie na tym równoleżniku, natomiast na pozostałych wartość jej będzie inna.
18 Siatka kartograficzna Układ wybranych południków i równoleżników na powierzchni kuli ziemskiej nosi nazwę siatki geograficznej W siatce takiej przedstawionej na globu Siatka geograficzna stanowi podstawę do nanoszenia na mapę obiektów geograficznych. Jeśli więc siatka ulega deformacji, ulęgają także odkształceniu stosunki wymiarowe obiektów znajdujących się na powierzchni Ziemi oraz ich rozmieszczenie względem siebie.
19 Siatka kartograficzna Dzieje się tak dlatego, że nie można jednocześnie na mapie zachować trzech warunków wierności, a mianowicie zgodności odległości, pól (powierzchni) i kątów. Im większy obszar Ziemi przedstawiony jest na mapie, tym większe będą deformacje. Natomiast im mniejszy obszar, tym rysunek wierniej oddaje rzeczywistość.
20 Siatka kartograficzna Układ wybranych południków i równoleżników przedstawiony na płaszczyźnie nazywa się siatką kartograficzną. Siatki te powstają z rzutowania siatki geograficznej bezpośrednio na płaszczyznę, bądź z rzutowania pośredniego, tj. na powierzchnie bryły, którą można bez zniekształceń rozwinąć na płaszczyźnie, bądź też są pochodne od nich.
21 Cechy siatki geograficznej Południki łuki schodzą się biegunach; jednakowa długość, odległości między nimi zmniejszają się w kierunku biegunów; przecinają się pod kątem prostym z równoleżnikami Równoleżniki - kształt koncentrycznych okręgów; są różnej długości najdłuższy to równik, a najkrótsze to bieguny; odległości między nimi są takie same; przecinają się pod kątem prostym z południkami;
22 Mapa nawigacyjna mapa Merkatora.
23 Odwzorowania walcowe poprzeczne Gaussa-Krugera
24 Odwzorowania walcowe poprzeczne Gaussa-Krugera
25 Odwzorowania Odwzorowania walcowe poprzeczne Merkatora
26 ENC elektroniczna mapa nawigacyjna jest to tradycyjna mapa morska lub wybrane jej elementy, które przetworzone są na postać cyfrową przechowywaną w pamięci komputera. Umożliwia ona wygenerowanie fragmentu mapy na ekranie monitora. Jest oryginalną bazą danych standaryzowaną, co do zawartości, struktury i formatu, wydawana jest przez upoważnione biura hydrograficzne. Zawiera informacje umożliwiające bezpieczną żeglugę.
27 ENC elektroniczna mapa nawigacyjna ENC jest jednym z elementów ECDIS (ang. Electronic Chart Display and Information System), czyli systemu zobrazowania elektronicznej mapy i informacji nawigacyjnej, który jest nawigacyjnym systemem informacyjnym. Jeżeli system spełnia wymóg dotyczący posiadania zaktualizowanych map określony prawidłem V/20 Konwencji SOLAS 1974, zdolny jest do zobrazowania wybranej informacji z wewnątrzsystemowej bazy danych SENC (ang. System Electronic Navigational Chart).
28 Mapa rastrowa to bitmapa będąca cyfrową reprezentacją mapy wykonanej w konkretnej skali i odwzorowaniu kartograficznym. Najczęściej tworzona poprzez skanowanie map analogowych (papierowych lub foliowych).
29 Ze względu na stałą rozdzielczość mapy rastrowej nadaje się ona do odwzorowania małych obszarów, dla których nie występuje w stopniu istotnym zniekształcenie charakterystyczne dla wybranego odwzorowania kartograficznego.
30 Mapa wektorowa To numeryczne opracowanie kartograficzne złożone z obiektów typu: punkt, linia, obszar i ich odmian, dla których współrzędne węzłów są zapisane, natomiast obraz mapy jest generowany w zależności od ustawionej skali.
31 Symbole Symbols and abbreviations used on ENC s Do wymiany cyfrowych danych hydrograficznych pomiędzy Biurami Hydrograficznymi jak również w celu dystrybucji tych danych dla szerokiego spektrum użytkowników końcowych IHO opracowała standard S-57 (IHO Transfer Standard for Digital Hydrographic Data). Standard S-57 pozwala przesyłać w sposób spójny i jednolity dane hydrograficzne. Obecnie S-57 jest wykorzystywany jedynie do kodowania i wymiany Elektronicznych Map Nawigacyjnych (ENC) przeznaczonych głównie jako podstawowe mapy nawigacyjne dla systemów ECDIS.
Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt):
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2014/2015 Zadanie I. 1. Według podanych współrzędnych punktów wyznaczyć ich położenie w przestrzeni (na jednym rysunku aksonometrycznym) i określić,
Mapa umiejętności czytania, interpretacji i posługiwania się mapą Polski.
Mapa umiejętności czytania, interpretacji i posługiwania się mapą Polski. Uczeń: odczytuje z map informacje przedstawione za pomocą różnych metod kartograficznych Mapa i jej przeznaczenie Wybierając się
3b. Rozwiązywanie zadań ze skali mapy
3b. Rozwiązywanie zadań ze skali mapy SKALA MAPY określa stopień zmniejszenia odległości przedstawionej na mapie w stosunku do odpowiedniej odległości w terenie. Wyróżniamy następujące rodzaje skali: SKALA
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
STA T T A YSTYKA Korelacja
STATYSTYKA Korelacja Pojęcie korelacji Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi. Charakteryzując korelację dwóch cech podajemy dwa czynniki: kierunek oraz
SPRAWDZIANY Z MATEMATYKI
SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci
WYKŁAD 8. Postacie obrazów na różnych etapach procesu przetwarzania
WYKŁAD 8 Reprezentacja obrazu Elementy edycji (tworzenia) obrazu Postacie obrazów na różnych etapach procesu przetwarzania Klasy obrazów Klasa 1: Obrazy o pełnej skali stopni jasności, typowe parametry:
Efektywność nauczania w Gimnazjum w Lutyni
Efektywność nauczania w Gimnazjum w Lutyni Efektywność nauczania w danej szkole często utożsamiana jest z jej wynikami egzaminacyjnymi. Gdyby wszystkie szkoły w Polsce pracowały z uczniami o tym samym
Geometria Wykreślna Wykład 3
Geometria Wykreślna Wykład 3 OBRÓT PUNKTU Z obrotem punktu A związane są następujące elementy obrotu: - oś obrotu - prosta l, - płaszczyzna obrotu - płaszczyzna, - środek obrotu - punkt S, - promień obrotu
ST- 01.00 SPECYFIKACJA TECHNICZNA ROBOTY GEODEZYJNE. Specyfikacje techniczne ST-01.00 Roboty geodezyjne
41 SPECYFIKACJA TECHNICZNA ST- 01.00 ROBOTY GEODEZYJNE 42 SPIS TREŚCI 1. WSTĘP... 43 1.1. Przedmiot Specyfikacji Technicznej (ST)...43 1.2. Zakres stosowania ST...43 1.3. Zakres Robót objętych ST...43
RZUTOWANIE AKSONOMETRYCZNE
Zapis i Podstawy Konstrukcji Rzuty aksonometryczne 1 RZUTOWANIE AKSONOMETRYCZNE Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów W metodzie aksonometrycznej rzutnią jest płaszczyzna
Temat ćwiczenia: Analiza pojedynczego zdjęcia lotniczego
Uniwersytet Rolniczy w Krakowie Wydział InŜynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczenia: Analiza pojedynczego zdjęcia lotniczego ZAGADNIENIA 1. Podstawowe elementy
BLOK I. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach:
BLOK I. Rachunek różniczkowy i całkowy. Znaleźć przyrost funkcji f() = przy = zakładając, że przyrost zmiennej niezależnej jest równy: a), ; b), ;, 5.. Znaleźć iloraz różnicowy funkcji y = f() w punkcie
III. GOSPODARSTWA DOMOWE, RODZINY I GOSPODARSTWA ZBIOROWE
III. GOSPODARSTWA DOMOWE, RODZINY I GOSPODARSTWA ZBIOROWE 1. GOSPODARSTWA DOMOWE I RODZINY W województwie łódzkim w maju 2002 r. w skład gospodarstw domowych wchodziło 2587,9 tys. osób. Stanowiły one 99,0%
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
TYPY GRAFÓW c.d. Graf nazywamy dwudzielnym, jeśli zbiór jego wierzchołków można podzielić na dwa rozłączne podzbiory, tak że żadne dwa wierzchołki należące do tego samego podzbioru nie są sąsiednie. G
PROGRAM SZKOLENIA Z ZAKRESU TOPOGRAFII ORAZ SYSTEMU GLOBALNEJ LOKALIZACJI SATELITARNEJ (GPS)
KOMENDA GŁÓWNA PAŃSTWOWEJ STRAŻY POŻARNEJ BIURO SZKOLENIA PROGRAM SZKOLENIA Z ZAKRESU TOPOGRAFII ORAZ SYSTEMU GLOBALNEJ LOKALIZACJI SATELITARNEJ (GPS) Warszawa 2011 Program szkolenia został opracowany
Standardowe tolerancje wymiarowe WWW.ALBATROS-ALUMINIUM.COM
Standardowe tolerancje wymiarowe WWW.ALBATROSALUMINIUM.COM Tolerancje standardowe gwarantowane przez Albatros Aluminium obowiązują dla wymiarów co do których nie dokonano innych uzgodnień podczas potwierdzania
Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik ochrony fizycznej osób i mienia 515[01]
Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik ochrony fizycznej osób i mienia 515[01] 1 2 3 4 5 6 Efektem rozwiązania zadania egzaminacyjnego przez zdającego była praca 7 egzaminacyjna,
Ćwiczenie nr 2 Zbiory rozmyte logika rozmyta Rozmywanie, wnioskowanie, baza reguł, wyostrzanie
Ćwiczenie nr 2 Zbiory rozmyte logika rozmyta Rozmywanie, wnioskowanie, baza reguł, wyostrzanie 1. Wprowadzenie W wielu zagadnieniach dotyczących sterowania procesami technologicznymi niezbędne jest wyznaczenie
Cyfrowe modele powierzchni terenu: przykłady nie tylko z Ziemi
Cyfrowe modele powierzchni terenu: przykłady nie tylko z Ziemi Wykład z cyklu: Tajemnice Ziemi i Wszechświata Jurand Wojewoda www.ing.uni.wroc.pl/~jurand.wojewoda Pojęcia podstawowe i definicje odwzorowanie
Ćwiczenie nr 8 Elementy uzupełniające
Ćwiczenie nr 8 Elementy uzupełniające Materiały do kursu Skrypt CAD AutoCAD 2D strony: 94-96 i 101-110. Wprowadzenie Rysunki techniczne oprócz typowych elementów, np. linii, wymiarów, łuków oraz tekstów,
1. MONITOR. a) UNIKAJ! b) WYSOKOŚĆ LINII OCZU
Temat: Organizacja obszaru roboczego podczas pracy przy komputerze. 1. MONITOR a) UNIKAJ! - umieszczania monitora z boku, jeżeli patrzysz na monitor częściej niż na papierowe dokumenty - dostosowywania
Statystyki opisowe. Marcin Zajenkowski. Marcin Zajenkowski () Statystyki opisowe 1 / 57
Statystyki opisowe Marcin Zajenkowski Marcin Zajenkowski () Statystyki opisowe 1 / 57 Struktura 1 Miary tendencji centralnej Średnia arytmetyczna Wartość modalna Mediana 2 Miary rozproszenia Roztęp Wariancja
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra (db.) D
Harmonogramowanie projektów Zarządzanie czasem
Harmonogramowanie projektów Zarządzanie czasem Zarządzanie czasem TOMASZ ŁUKASZEWSKI INSTYTUT INFORMATYKI W ZARZĄDZANIU Zarządzanie czasem w projekcie /49 Czas w zarządzaniu projektami 1. Pojęcie zarządzania
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9
Pomiary geofizyczne w otworach
Pomiary geofizyczne w otworach Profilowanie w geofizyce otworowej oznacza rejestrację zmian fizycznego parametru z głębokością. Badania geofizyki otworowej, wykonywane dla potrzeb geologicznego rozpoznania
ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C
MODERNIZACJI EWIDENCJI GRUNTÓW I BUDYNKÓW
Gmina : Lubaczów Powiat : Lubaczów Województwo: Podkarpackie PROJEKT MODERNIZACJI EWIDENCJI GRUNTÓW I BUDYNKÓW obręb Sieniawka 1 Wykonano: luty 2013 r. ZAKRES TREŚCI PROJEKTU I. Cel i zakres prac modernizacyjnych
Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych
Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2011 roku. Warszawa 2011 I. Badana populacja
Projekt MES. Wykonali: Lidia Orkowska Mateusz Wróbel Adam Wysocki WBMIZ, MIBM, IMe
Projekt MES Wykonali: Lidia Orkowska Mateusz Wróbel Adam Wysocki WBMIZ, MIBM, IMe 1. Ugięcie wieszaka pod wpływem przyłożonego obciążenia 1.1. Wstęp Analizie poddane zostało ugięcie wieszaka na ubrania
Środki manipulowania. prof. PŁ dr hab. inż. Andrzej Szymonik www.gen-prof.pl Łódź 2015/2016
Środki manipulowania prof. PŁ dr hab. inż. Andrzej Szymonik www.gen-prof.pl Łódź 2015/2016 Manipulowanie def. Sprawne przemieszczanie dóbr na krótkie odległości, które zazwyczaj odbywa się w obrębie budynku
PL 215182 B1. RAK ROMAN ROZTOCZE ZAKŁAD USŁUGOWO-PRODUKCYJNY, Tomaszów Lubelski, PL 17.01.2011 BUP 02/11 31.10.2013 WUP 10/13
PL 215182 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 215182 (13) B1 (21) Numer zgłoszenia: 388515 (51) Int.Cl. E05B 65/02 (2006.01) E05C 5/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
Wymagania na poszczególne oceny klasa 4
Wymagania na poszczególne oceny klasa 4 a) Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć
Całka potrójna. Całka potrójna po prostopadłoscianie. f (x i, y i, z i ) x i y i z i. (1)
Całka potrójna Całka potrójna po prostopadłoscianie Rozważmy prostopadłościan = {(x, y, z) R 2 : a x b, c y d, p z q}, gdzie a, b, c, d, p, q R, oraz funkcję trzech zmiennych f : R ograniczoną w tym prostopadłościanie.
UKŁAD ROZRUCHU SILNIKÓW SPALINOWYCH
UKŁAD ROZRUCHU SILNIKÓW SPALINOWYCH We współczesnych samochodach osobowych są stosowane wyłącznie rozruszniki elektryczne składające się z trzech zasadniczych podzespołów: silnika elektrycznego; mechanizmu
Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.
Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy nr 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3
WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji. Laboratorium Obróbki ubytkowej materiałów.
WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Obróbki ubytkowej materiałów Ćwiczenie nr 1 Temat: Geometria ostrzy narzędzi skrawających Cel ćwiczenia Celem ćwiczenia
SPECYFIKACJA TECHNICZNA 2. PRACE GEODEZYJNE
SPECYFIKACJA TECHNICZNA 2. PRACE GEODEZYJNE 27 SPIS TREŚCI 2. PRACE GEODEZYJNE... 27 1. WSTĘP... 29 1.1.Przedmiot ST... 29 1.2. Zakres stosowania Specyfikacji technicznej... 29 1.3. Zakres robót objętych
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od
Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem
Odpowiedzi i schematy oceniania Arkusz Zadania zamknięte Numer zadania Poprawna odpowiedź Wskazówki do rozwiązania B W ( ) + 8 ( ) 8 W ( 7) ( 7) ( 7 ) 8 ( 7) ( 8) 8 ( 8) Iloczyn dwóch liczb ujemnych jest
OBLICZENIA MATEMATYCZNE W GEOGRAFII
OBLICZENIA MATEMATYCZNE W GEOGRAFII 1. Kartografia Wysokość względna bezwzględna Wysokość względna to wysokość liczona od podstawy formy terenu podawana w metrach. Wysokość bezwzględna jest wysokością
D-01.01.01. wysokościowych
D-01.01.01 Odtworzenie nawierzchni i punktów wysokościowych 32 Spis treści 1. WSTĘP... 34 1.1. Przedmiot SST... 34 1.2. Zakres stosowania SST... 34 1.3. Zakres robót objętych SST... 34 1.4. Określenia
SERI A 93 S E RI A 93 O FLUSH GRID WITHOUT EDGE TAB
SERIA E93 CONIC FRINCTION CONIC 2 SERIA 93 SERIA 93 O FLUSH GRID WITHOUT EDGE TAB Podziałka Powierzchnia 30 mm Flush Grid Prześwit 47% Grubość Minimalny promień skrętu taśmy Układ napędowy Szerokość taśmy
Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej
Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej 3.1 Informacje ogólne Program WAAK 1.0 służy do wizualizacji algorytmów arytmetyki komputerowej. Oczywiście istnieje wiele narzędzi
OGÓLNODOSTĘPNE IFORMACJE O WYNIKACH EGZAMINÓW I EFEKTYWNOŚCI NAUCZANIA W GIMNAZJACH przykłady ich wykorzystania i interpretowania
Teresa Kutajczyk, WBiA OKE w Gdańsku Okręgowa Komisja Egzaminacyjna w Gdańsku OGÓLNODOSTĘPNE IFORMACJE O WYNIKACH EGZAMINÓW I EFEKTYWNOŚCI NAUCZANIA W GIMNAZJACH przykłady ich wykorzystania i interpretowania
Projekt z dnia 2 listopada 2015 r. z dnia.. 2015 r.
Projekt z dnia 2 listopada 2015 r. R O Z P O R Z Ą D Z E N I E M I N I S T R A P R A C Y I P O L I T Y K I S P O Ł E C Z N E J 1) z dnia.. 2015 r. w sprawie treści, formy oraz sposobu zamieszczenia informacji
WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO I MATEMATYCZNEGO
Nr ćwiczenia: 101 Prowadzący: Data 21.10.2009 Sprawozdanie z laboratorium Imię i nazwisko: Wydział: Joanna Skotarczyk Informatyki i Zarządzania Semestr: III Grupa: I5.1 Nr lab.: 1 Przygotowanie: Wykonanie:
PRZETWORNIK NAPIĘCIE - CZĘSTOTLIWOŚĆ W UKŁADZIE ILORAZOWYM
PRZETWORNIK NAPIĘCIE - CZĘSTOTLIWOŚĆ W UKŁADZIE ILORAZOWYM dr inż. Eligiusz Pawłowski Politechnika Lubelska, Wydział Elektryczny, ul. Nadbystrzycka 38 A, 20-618 LUBLIN E-mail: elekp@elektron.pol.lublin.pl
14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.
Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących
PROCEDURA EWALUACJI WEWNĘTRZNEJ W SZKOLE PODSTAWOWEJ IM. JANA PAWŁA II W GRZĘDZICACH
PROCEDURA EWALUACJI WEWNĘTRZNEJ W SZKOLE PODSTAWOWEJ IM. JANA PAWŁA II W GRZĘDZICACH GRZĘDZICE 2009R. TREŚĆ PROCEDURY 1. WSTĘP 2. TERMIN I SPOSÓB ZAPOZNAWANIA RADY PEDAGOGICZNEJ Z PLANEM EWALUACJI WEWNĘTRZNEJ
PRZEPISY KLASYFIKACJI I BUDOWY STATKÓW MORSKICH
PRZEPISY KLASYFIKACJI I BUDOWY STATKÓW MORSKICH ZMIANY NR 2/2010 do CZĘŚCI VIII INSTALACJE ELEKTRYCZNE I SYSTEMY STEROWANIA 2007 GDAŃSK Zmiany Nr 2/2010 do Części VIII Instalacje elektryczne i systemy
Test całoroczny z matematyki. Wersja A
Test całoroczny z matematyki klasa IV Wersja A Na kartce masz zapisanych 20 zadań. Opuść więc te, których rozwiązanie okaże się zbyt trudne dla Ciebie. Wrócisz do niego później. W niektórych zadaniach
Ogólna charakterystyka kontraktów terminowych
Jesteś tu: Bossa.pl Kurs giełdowy - Część 10 Ogólna charakterystyka kontraktów terminowych Kontrakt terminowy jest umową pomiędzy dwiema stronami, z których jedna zobowiązuje się do nabycia a druga do
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
Matematyka:Matematyka I - ćwiczenia/granice funkcji
Matematyka:Matematyka I - ćwiczenia/granice funkcji 1 Matematyka:Matematyka I - ćwiczenia/granice funkcji Granice funkcji Zadanie 1 Wykorzystując definicję Heinego granicy funkcji, znaleźć (1) Zadanie
MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.
INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję
art. 488 i n. ustawy z dnia 23 kwietnia 1964 r. Kodeks cywilny (Dz. U. Nr 16, poz. 93 ze zm.),
Istota umów wzajemnych Podstawa prawna: Księga trzecia. Zobowiązania. Dział III Wykonanie i skutki niewykonania zobowiązań z umów wzajemnych. art. 488 i n. ustawy z dnia 23 kwietnia 1964 r. Kodeks cywilny
KSIĘGA ZNAKU TOTORU S.C.
2011 SPIS TREŚCI FORMA PODSTAWOWA...03 FORMY UZUPEŁNIAJĄCE...06 KONSTRUKCJA ZNAKU...08 POLE PODSTAWOWE I POLE OCHRONNE...10 WIELKOŚCI MINIMALNE...11 WARIANTY ACHROMATYCZNE I MONOCHROMATYCZNE...13 KOLORYSTYKA...15
Zarządzanie projektami. wykład 1 dr inż. Agata Klaus-Rosińska
Zarządzanie projektami wykład 1 dr inż. Agata Klaus-Rosińska 1 DEFINICJA PROJEKTU Zbiór działań podejmowanych dla zrealizowania określonego celu i uzyskania konkretnego, wymiernego rezultatu produkt projektu
Wyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
Wskaźniki oparte na wolumenie
Wskaźniki oparte na wolumenie Łukasz Bąk Wrocław 2006 1 Wolumen Wolumen reprezentuje aktywność inwestorów krótko- i długoterminowych na rynku. Każda jednostka wolumenu jest wynikiem działania dwóch osób
Wały napędowe półosie napędowe przeguby wałów i półosi
Wykorzystano materiały Układ napędowy - podzespoły Wały napędowe półosie napędowe przeguby wałów i półosi opracowanie mgr inż. Ireneusz Kulczyk aktualizacja 07.2011 Zespół Szkół Samochodowych w Bydgoszczy
Architektura Systemów Komputerowych. Sterowanie programem skoki Przerwania
Architektura Systemów Komputerowych Sterowanie programem skoki Przerwania 1 Sterowanie programem - skoki Kolejność wykonywania instrukcji programu jest zazwyczaj zgodna z kolejnością ich umiejscowienia
SCHEMATY STRON. Baner... 3. Nawigacja... 6. Nawigacja okruszkowa... 9. Prawa kolumna zobacz również... 10. Boksy... 11. Zwykła strona...
SCHEMATY STRON SPIS TREŚCI Baner... 3 Nawigacja... 6 Nawigacja okruszkowa... 9 Prawa kolumna zobacz również... 10 Boksy... 11 Zwykła strona... 13 Strona bez podstron... 14 1 Schemat strony to zestaw elementów
JTW SP. Z OO. Zapytanie ofertowe. Zakup i dostosowanie licencji systemu B2B część 1
JTW SP. Z OO Zapytanie ofertowe Zakup i dostosowanie licencji systemu B2B część 1 Strona 1 z 8 Spis treści 1. Wskazówki dla oferentów... 3 1.1 Osoby kontaktowe... 3 2.2 Termin składania ofert... 4 2.3
8. Zginanie ukośne. 8.1 Podstawowe wiadomości
8. 1 8. ginanie ukośne 8.1 Podstawowe wiadomości ginanie ukośne zachodzi w przypadku, gdy płaszczyzna działania obciążenia przechodzi przez środek ciężkości przekroju pręta jednak nie pokrywa się z żadną
I. LOGICZNE STRUKTURY DRZEWIASTE
I LOGICZNE STRUKTURY DRZEWIASTE Analizując dany problem uzyskuje się zadanie projektowe w postaci pewnego zbioru danych Metoda morfologiczna, która została opracowana w latach 1938-1948 przez amerykańskiego
KONKURSY MATEMATYCZNE. Treść zadań
KONKURSY MATEMATYCZNE Treść zadań Wskazówka: w każdym zadaniu należy wskazać JEDNĄ dobrą odpowiedź. Zadanie 1 Wlewamy 1000 litrów wody do rurki w najwyższym punkcie systemu rurek jak na rysunku. Zakładamy,
7. REZONANS W OBWODACH ELEKTRYCZNYCH
OBWODY SYGNAŁY 7. EZONANS W OBWODAH EEKTYZNYH 7.. ZJAWSKO EZONANS Obwody elektryczne, w których występuje zjawisko rezonansu nazywane są obwodami rezonansowymi lub drgającymi. ozpatrując bezźródłowy obwód
UCHWAŁY PODJĘTE na Nadzwyczajnym Walnym Zgromadzeniu Akcjonariuszy w dniu 30 marca 2009 r. Uchwała nr 1
UCHWAŁY PODJĘTE na Nadzwyczajnym Walnym Zgromadzeniu Akcjonariuszy w dniu 30 marca 2009 r. Uchwała nr 1 w sprawie wyboru Komisji Skrutacyjnej 1. NWZA powołuje do składu Komisji Skrutacyjnej następujące
Soczewkowanie grawitacyjne 3
Soczewkowanie grawitacyjne 3 Przypomnienie Mikrosoczewkowania a natura ciemnej materii Źródła rozciągłe Efekt paralaksy Linie krytyczne i kaustyki Przykłady Punktowa soczewka Punktowa soczewka Punktowe
14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY
14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY Ruch jednostajny po okręgu Pole grawitacyjne Rozwiązania zadań należy zapisać w wyznaczonych miejscach pod treścią zadania
EGZAMIN POTWIERDZAJ CY KWALIFIKACJE W ZAWODZIE CZ PRAKTYCZNA
azwa kwalifikacji: Monta systemów suchej zabudowy Oznaczenie kwalifikacji: B. Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu umer PESEL zdaj cego* Wype nia zdaj cy Miejsce
Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik technologii odzieży 311[34]
Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik technologii odzieży 311[34] 1 2 3 4 W rozwiązaniu zadania ocenie podlegało osiem następujących elementów: 5 I. Tytuł pracy egzaminacyjnej.
Zadanie 3 - (7 punktów) Iloczyn składników Jeśli zapis liczby 22 w postaci sumy zawiera składnik 1, lepiej pogrupować go z innym składnikiem
Zadanie 1 - (7 punktów) Latające kartki Ponieważ są 64 liczby od 27 do 90 włącznie, mamy 64 strony, czyli 16 kartek (16= 64 : 4). Pod stroną 26. znajdują się strony 24., 22.,..., 4. i 2. wraz z ich nieparzystymi
PLANIMETRIA. Poziom podstawowy
LANIMETRIA oziom podstawowy Zadanie ( pkt) W prostokątnym trójkącie ABC dana jest długość przyprostokątnej AC = Na przeciwprostokątnej AB wybrano punkt D, a na przyprostokątnej BC punkt E w taki sposób,
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 20/202 KOD UCZNIA Etap: Data: Czas pracy: szkolny 5 listopada 20 r. 90 minut Informacje dla ucznia:.
ROZDZIAŁ ÓSMY R o z w a ż a n i a n a t e m a t y ż e g l a r s k i e
ROZDZIAŁ ÓSMY Rozważania na tematy żeglarskie HISTORIA POWOJENNEGO NADAWANIA STOPNI ŻEGLARSKICH (widziana przez szuwarowego zbąszyńskiego żeglarza) Omawiając Historie Żeglarstwa Zbąszyńskiego wielokrotnie
2.Prawo zachowania masy
2.Prawo zachowania masy Zdefiniujmy najpierw pewne podstawowe pojęcia: Układ - obszar przestrzeni o określonych granicach Ośrodek ciągły - obszar przestrzeni którego rozmiary charakterystyczne są wystarczająco
PRZYRODA RODZAJE MAP
SCENARIUSZ LEKCJI PRZEDMIOT: PRZYRODA TEMAT: RODZAJE MAP AUTOR SCENARIUSZA: mgr Katarzyna Borkowska OPRACOWANIE ELEKTRONICZNO GRAFICZNE : mgr Beata Rusin TEMAT LEKCJI RODZAJE MAP CZAS REALIZACJI 2 x 45
Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo.
Konspekt lekcji Przedmiot: Informatyka Typ szkoły: Gimnazjum Klasa: II Nr programu nauczania: DKW-4014-87/99 Czas trwania zajęć: 90min Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia
SPECYFIKACJA TECHNICZNA WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH 45421000-4 ROBOTY W ZAKRESIE STOLARKI BUDOWLANEJ
SPECYFIKACJA TECHNICZNA WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH 45421000-4 ROBOTY W ZAKRESIE STOLARKI BUDOWLANEJ 1 SPIS TREŚCI 1. WSTĘP str. 3 2. MATERIAŁY str. 3 3. SPRZĘT str. 4 4.TRANSPORT str. 4 5. WYKONANIE
Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1
Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a
KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6
KLASA 3 GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R.
Eksperyment,,efekt przełomu roku
Eksperyment,,efekt przełomu roku Zapowiedź Kluczowe pytanie: czy średnia procentowa zmiana kursów akcji wybranych 11 spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie (i umieszczonych już
Modelowanie obiektów 3D
Synteza i obróbka obrazu Modelowanie obiektów 3D Modelowanie Modelowanie opisanie kształtu obiektu. Najczęściej stosuje się reprezentację powierzchniową opis powierzchni obiektu. Najczęstsza reprezentacja
Zadanie 14. (5 pkt) Rysunek przedstawia obieg Ziemi dookoła Słońca.
Zadanie 2. (2 pkt) Napisz obok podanych lat czy jest to rok PRZESTEPNY, czy ZWYKŁY. 1950 -..., 2006 -..., 2000 -..., 2100 -.... Zadanie 5. (1 pkt) Zamieszczone poniżej rysunki przedstawiają zróżnicowanie
Pozostałe procesy przeróbki plastycznej. Dr inż. Paweł Rokicki Politechnika Rzeszowska Katedra Materiałoznawstwa, Bud. C, pok. 204 Tel: (17) 865-1124
Pozostałe procesy przeróbki plastycznej Dr inż. Paweł Rokicki Politechnika Rzeszowska Katedra Materiałoznawstwa, Bud. C, pok. 204 Tel: (17) 865-1124 Tłoczenie Grupy operacji dzielimy na: dzielenie (cięcie)
Test F- Snedecora. będzie zmienną losową chi-kwadrat o k 1 stopniach swobody a χ
Test F- nedecora W praktyce często mamy do czynienia z kilkoma niezaleŝnymi testami, słuŝącymi do weryfikacji tej samej hipotezy, prowadzącymi do odrzucenia lub przyjęcia hipotezy zerowej na róŝnych poziomach
Zakupy przez internet w świetle nowych przepisów co zyskają konsumenci?
Zakupy przez internet w świetle nowych przepisów co zyskają konsumenci? Elżbieta Seredyńska Centrum Przedsiębiorczości Smolna Warszawa, 30 czerwca 2014 r. 1 Plan prezentacji 1. Zakres zastosowania 2. Nowe
Elementy cyfrowe i układy logiczne
Elementy cyfrowe i układy logiczne Wykład Legenda Zezwolenie Dekoder, koder Demultiplekser, multiplekser 2 Operacja zezwolenia Przykład: zamodelować podsystem elektroniczny samochodu do sterowania urządzeniami:
9. Dyfrakcja światła laserowego na tkaninach i siatce dyfrakcyjnej oraz promieni X na krysztale. Obliczenia dyfrakcyjne.
9. Dyfrakcja światła laserowego na tkaninach i siatce dyfrakcyjnej oraz promieni X na krysztale. Obliczenia dyfrakcyjne. Opracowanie: dr hab inż. Jarosław Chojnacki Politechnika Gdańska, Gdańsk 016 Materiały:
Trenuj przed sprawdzianem! Matematyka Test 4
mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. nformacja do zadań od 1. do 3. Historia telewizji w Polsce
W tym elemencie większość zdających nie zapisywała za pomocą równania reakcji procesu zobojętniania tlenku sodu mianowanym roztworem kwasu solnego.
W tym elemencie większość zdających nie zapisywała za pomocą równania reakcji procesu zobojętniania tlenku sodu mianowanym roztworem kwasu solnego. Ad. IV. Wykaz prac według kolejności ich wykonania. Ten
TURYSTYKA W WOJEWÓDZTWIE ŚWIĘTOKRZYSKIM W 2007 ROKU
TURYSTYKA W WOJEWÓDZTWIE ŚWIĘTOKRZYSKIM W 2007 ROKU Źródłem danych o stanie i wykorzystaniu turystycznych obiektów zbiorowego zakwaterowania jest stałe badanie statystyczne Głównego Urzędu Statystycznego,
OFERTA WYKŁADÓW, WARSZTATÓW I LABORATORIÓW DLA UCZNIÓW KLAS IV- VI SZKÓŁ PODSTAWOWYCH, GIMNAZJALNYCH I ŚREDNICH
OFERTA WYKŁADÓW, WARSZTATÓW I LABORATORIÓW DLA UCZNIÓW KLAS IV- VI SZKÓŁ PODSTAWOWYCH, GIMNAZJALNYCH I ŚREDNICH Strona 1 z 9 SPIS ZAJĘĆ WRAZ Z NAZWISKAMI WYKŁADOWCÓW dr hab. Mieczysław Kula Poznaj swój
Na wirtualnym szlaku Geoportal małopolskich szlaków turystycznych narzędziem do promocji regionu
Na wirtualnym szlaku Geoportal małopolskich szlaków turystycznych narzędziem do promocji regionu Mateusz Troll Instytut Geografii i Gospodarki Przestrzennej UJ Tomasz Gacek GISonLine S.C. Plan prezentacji
Gaz i jego parametry
W1 30 Gaz doskonały Parametry gazu Równanie Clapeyrona Mieszaniny gazów Warunki normalne 1 Gazem doskonałym nazywamy gaz spełniaj niający następuj pujące warunki: - cząstki gazu zachowują się jako doskonale