P r o j e k t W e s p ó ł w z e s p ó ł z M a t e m a t y k ą b e z G r a n i c
|
|
- Paweł Andrzejewski
- 9 lat temu
- Przeglądów:
Transkrypt
1 ZESTW ZDŃ ROZWIĄŻMY RZEM W trzy D. Task. lue cube (0 points) cube with an edge of 3dm was painted blue on all sides and then cut into twenty seven cubes with an edge of dm. How many of those cubes have three blue sides, how many have two blue sides, how many one side, and how many without any blue sides? ufgabe : Der blaue Würfel (0 Punkte) Sprachaufgabe Übersetzung in 5 Sprachen. Ein von aller Seiten blauer Kubikwürfel mit der Kante 3 dm hat man in 27 Würfelchen mit der Kante dm zerschnitten. Wie viel von diesen Würfelchen hat 3 blaue Seitenflächen, wie viel zwei, eine oder keine? Exercice. Un cube bleu ciel (0 points) Un cube d arête de 3 dm peint en bleu ciel de tous les côtés a été coupé en vingt-sept cubes d arête de dm. ombien de cubes a trois faces bleu ciel, combien en a deux, combien en a une et combien n en a aucune? Tarea. El dado azul (0 puntos) En el dado cúbico de una arista de 3 dm pintado al azul, han cortado de todas las aristas en veinte siete cúbicos con una arista de dm. uántos entre estos cubos tienen 3 caras azules, cuántos tienen 2, cuántos tienen y cuántos no la tienen ninguna? Exercice. un dé blue (0 points) Le dé cubique colorié en blue, qui a l arête de 3dm, a été coupé de tous ses côtés en 27 dés à l arête de dm. ombien d entre ces dés possèdent trois faces bleues, combien deux, combien une et combien aucune? Zadanie 2. DZIUR (3 punkty) Robotnicy na budowie kopią dziurę, która ma 2m długości, 2m szerokości i 2m głębokości. Sześciu robotników potrzebuje na wykonanie tego zadania trzech godzin. Ile czasu potrzebuje trzech robotników, aby wykopać dziurę, która będzie dwa razy dłuższa, dwa razy szersza i dwa razy głębsza? Zadanie 3. ZERWONO - IŁE KOSTKI (5 punktów) Załóżmy, że każdą ze ścian sześcianu można pomalować na biało lub czarno. Ile kostek różniących się układem kolorów na ścianach można w ten sposób uzyskać? Rozwiązanie przedstaw, zaznaczając odpowiednio pola wybranej siatki. Pakiet edukacyjny VI W TRZY D Strona
2 Zadanie 4. PREZENTY (4 punkty) Paczkę o wymiarach 25cm x 5cm x 0cm obwiązano wstążką na trzy różne sposoby przedstawione na rysunku. W którym przypadku użyjemy najwięcej, a w którym najmniej wstążki? Na zawiązanie kokardki potrzeba 40cm wstążki. Zadanie 5. REGŁ N KSIĄŻKI (5 punktów) Regał, który przedstawia rysunek, wykonano z desek o wymiarach 2m x 20cm x 20mm a) Ile desek potrzeba kupić na wykonanie regału?, b) Jaki jest koszt desek, jeżeli metr bieżący deski kosztuje 2 złotych? c) Jaki procent zakupionych desek nie będzie wykorzystany? d) Ile waży regał jeżeli gęstość drewna, z którego został wykonany, wynosi 650kg/m 3? Zadanie 6. SZEŚIN I SZEŚINIKI (2 punkty) Z 400 małych sześcianików o krawędzi długości cm,budujemy największy sześcian. Ile sześcianików nie wykorzystamy? Zadanie 7. MLUJEMY SZEŚIN (2 punkty) Pomalowano całą powierzchnie sześcianu i zużyto 7,26kg farby. Potrzeba kg farby na m 2. Jaka jest suma długości wszystkich krawędzi sześcianu. Pakiet edukacyjny VI W TRZY D Strona 2
3 Zadanie 8. PUDEŁK N ZPŁKI (5 punktów) Jarek kolekcjonuje pudełka na zapałki. Ma ich 245. Z prostokątnego arkusza kartonu o wymiarach 58cm i 4cm postanowił zrobić pudło na swoje zbiory. W każdym rogu kartonu wyciął kwadrat o boku długości 8cm, pozaginał prostokątne brzegi, a krawędzie okleił taśmą samoprzylepną. Pudełko zapałek ma wymiary: 5,5cm x 3,5cm x,5cm. Sprawdź czy zmieści w pudle wszystkie pudełka, tak aby nie wystawały poza brzegi. Zadanie 9. OKLEJMY PIRMIDĘ (3 punktów) Na wystawę należało wykonać podium w kształcie piramidy przedstawionej na rysunku. Pierwsza warstwa ma wymiary: 0,8m x 0,8m x 0,2m, druga 5dm x 5dm x 0,2m, a trzecia jest sześcianem o krawędzi 2dm. Plastyk zaproponował oklejenie podium drogim materiałem, więc oklejono tylko widoczne części tej piramidy. Oblicz pole powierzchni podium, które trzeba okleić. Zadanie 0. SITKI SZEŚINU ( punktów) Narysuj wszystkie możliwe siatki sześcianu. ROZWIĄZNI ORZ SHEMT OENINI ZESTWU Rozwiążmy razem W trzy D. Zadanie. ŁĘKITN KOSTK (0 punktów) Rozwiązanie: Po rozłożeniu kostki sześciennej otrzymamy : Osiem sześcianików narożnych o trzech ścianach błękitnych, Pakiet edukacyjny VI W TRZY D Strona 3
4 Dwanaście sześcianików bocznych błękitnych, o dwóch ścianach Sześć sześcianików środkowych o jednej ścianie błękitnej, Jeden sześcianik wewnętrzny, którego wszystkie ściany będą nie pomalowane. zynność Etapy rozwiązania zadania Liczba punktów poprawne przetłumaczenie 2 właściwe rozwiązanie w języku polskim 4 poprawne przetłumaczenie rozwiązania na język obcy 4 Task. lue cube (0 points) cube with an edge of 3dm was painted blue on all sides and then cut into twenty seven cubes with an edge of dm. How many of those cubes have three blue sides, how many have two blue sides, how many one side, and how many without any blue sides? Solution: fter dissecting the cube we get: Eight corner cubes with three blue sides Pakiet edukacyjny VI W TRZY D Strona 4
5 Τwelve side cubes with two blue sides Six middle cubes with one blue side One inner cube without a single blue side Scoring: ctivity Stages of solving the task Points orrect translation 2 orrect solution in Polish 4 orrect translation of each answer into a foreign language 4 ufgabe : Der blaue Würfel (0 Punkte) Sprachaufgabe Übersetzung in 5 Sprachen. Ein von aller Seiten blauer Kubikwürfel mit der Kante 3 dm hat man in 27 Würfelchen mit der Kante dm zerschnitten. Wie viel von diesen Würfelchen hat 3 blaue Seitenflächen, wie viel zwei, eine oder keine? Die Lösung: Nach dem Zerlegen der Würfelchen haben wir: cht Eckewürfelchen mit drei blauen Seiten. Pakiet edukacyjny VI W TRZY D Strona 5
6 Zwölf Seitenwürfelchen mit zwei blauen Seitenflächen Sechs Mittewürfelchen mit einer blauen Seitenfläche. Ein Innenwürfelchen ohne blaue Seitenflächen. Tätigkeit Die Stufen der ufgabelösung Punktenzahl Richtige Übersetzung 2 Richtige Losung in der polnischen Sprache 4 Richtige Übersetzung der Losung in die Fremdsprache Exercice. Un cube bleu ciel (0 points) Un cube d arête de 3 dm peint en bleu ciel de tous les côtés a été coupé en vingt-sept cubes d arête de dm. ombien de cubes a trois faces bleu ciel, combien en a deux, combien en a une et combien n en a aucune? orrigé : près avoir décomposé un cube nous aurons : Huit petits cubes d angle avec trois faces bleu ciel, Douze petits cubes latéraux avec deux faces bleu ciel, Six petits cubes centraux avec une face bleu ciel, Un cube intérieur dont aucune face ne sera peinte. 4 Pakiet edukacyjny VI W TRZY D Strona 6
7 arème : ctivité Solution étape par étape Nombre de points traduction correcte 2 bonne solution en polonais 4 traduction correcte en langue étrangère 4 Tarea. El dado azul (0 puntos) En el dado cúbico de una arista de 3 dm pintado al azul, han cortado de todas las aristas en veinte siete cúbicos con una arista de dm. uántos entre estos cubos tienen 3 caras azules, cuántos tienen 2, cuántos tienen y cuántos no la tienen ninguna? Solución: l descomponer el cubo obtenemos: Ocho cubitos de ángulo de tres caras azules. Doce cubitos laterales de dos caras azules. Seis cubitos centrales con una cara azul. Un cubito interior, cuyas todas las caras no serán pintadas. Pakiet edukacyjny VI W TRZY D Strona 7
8 Puntuación: ctividad Etapas de solución Número de los puntos Traducción correcta 2 Dar la solución correcta al polaco 4 Traducir correctamente la respuesta a un idioma extranjero 4 Exercice. un dé blue (0 points) Le dé cubique colorié en blue, qui a l arête de 3dm, a été coupé de tous ses côtés en 27 dés à l arête de dm. ombien d entre ces dés possèdent trois faces bleues, combien deux, combien une et combien aucune? Solution : près avoir décomposé le dé cubique, on obtient : Huit petits cubes d angle ayant trois faces bleues Douze petits cubes latéraux ayant deux faces bleues Six petits cubes centraux ayant une face bleue Un petit cube intérieur dont toutes les faces ne sont pas coloriées Pointage : ctivité Etapes de la solution Traduction corrècte 2 Solution corrècte en langue polonaise 4 Traduction corrècte de la solution en langue étrangere 4 Nombre de points Zadanie 2. DZIUR (3 punkty) zynność Etapy rozwiązania zadania Obliczenie objętości pierwszego otworu Obliczenie ile razy objętość drugiego otworu jest większa od objętości pierwszego otworu Liczba punktów Obliczenie czasu wykopania drugiego otworu przez Pakiet edukacyjny VI W TRZY D Strona 8
9 połowę robotników Zadanie 3. ZERWONO- IŁE KOSTKI (5 punktów) Rozwiązanie: Można uzyskać dziesięć różnych kostek. Oto ich siatki: zynność Etapy rozwiązania zadania Liczba punktów Za każde poprawne pomalowanie dwóch siatek pkt 5 Zadanie 4. PREZENTY (4 punkty) zynność Etapy rozwiązania zadania Obliczenie długości wstążki na obwiązanie pierwszej paczki Liczba punktów Obliczenie długości wstążki na obwiązanie drugiej paczki Pakiet edukacyjny VI W TRZY D Strona 9
10 Obliczenie długości wstążki na obwiązanie trzeciej paczki D Podanie odpowiedzi: Najwięcej wstążki użyjemy do obwiązania pierwszej paczki, a najmniej do obwiązania drugiej i trzeciej paczki Zadanie 5. REGŁ N KSIĄŻKI (5 punktów) zynność Etapy rozwiązania zadania Liczba punktów Obliczenie ilości desek Obliczenie kosztu desek Obliczenie procentu niewykorzystanych desek D E Obliczenie objętości regału: Obliczenie masy regału: Zadanie 6. SZEŚIN I SZEŚINIKI (2 punkty) zynność Etapy rozwiązania zadania Liczba punktów Obliczenie objętości największego sześcianu, jaki możemy zbudować Obliczenie ilości niewykorzystanych sześcianików Pakiet edukacyjny VI W TRZY D Strona 0
11 Zadanie 7. MLUJEMY SZEŚIN (2 punkty) zynność Etapy rozwiązania zadania Liczba punktów Obliczenie krawędzi sześcianu Obliczenie sumy długości wszystkich krawędzi sześcianu Zadanie 8. PUDEŁK N ZPŁKI (5 punktów) zynność Etapy rozwiązania zadania Obliczenie objętości pudła Liczba punktów Obliczenie objętości pudełka zapałek Sprawdzenie, czy 245 pudełek od zapałek zmieści się w pudle: Zaproponowanie sposobu ułożenia pudełek w pudle D 2 Zadanie 9. OKLEJMY PIRMIDĘ (3 punkty) zynność Etapy rozwiązania zadania Liczba punktów Obliczenie pola powierzchni dolnej warstwy podium Pakiet edukacyjny VI W TRZY D Strona
12 Obliczenie pola powierzchni górnych warstw podium Obliczenie pola powierzchni podium do oklejenia Zadanie 0. SITKI SZEŚINU ( punktów) Pakiet edukacyjny VI W TRZY D Strona 2
13 zynność Etapy rozwiązania zadania Liczba punktów Za każdą poprawnie narysowaną siatkę pkt Pakiet edukacyjny VI W TRZY D Strona 3
P r o j e k t W e s p ó ł w z e s p ó ł z M a t e m a t y k ą b e z G r a n i c
ĆWIZENIA OTWIERAJĄE W trzy D. Task. Quadratic Prisms (2 points) Answer the following questions: a) How many sides has a quadratic prism? b) How many edges has a quadratic prism? c) How many corners has
Spotkanie 2: Rozwiążmy razem - Świat w trójwymiarze
Spotkanie : Rozwiążmy razem - Świat w trójwymiarze Exercise 1. Cube with a flower (4 points) We are making a cube from the net below. What wall is opposite to the wall with a flower? Aufgabe 1. Würfel
Spotkanie 1: Dwiczenia otwierające Kręcidełka
Spotkanie 1: Dwiczenia otwierające Kręcidełka Exercise 1, Pyramid from blocks (10 points) There was built some pyramid from playing blocks on the table (see the picture) and then it was painted with colour.
Spotkanie 1: Ćwiczenia otwierające Zmagania z polami
Spotkanie 1: Ćwiczenia otwierające Zmagania z polami Aufgabe 1. Quadrat und Rechteck (8 Punkte) Ein Quadrat hat einen gleichen Umfang wie ein Rechteck mit Seiten 60m und 40m. Um wie viel ist die Quadratfläche
Spotkanie 1: Ćwiczenia otwierające - Świat w trójwymiarze
Spotkanie 1: Ćwiczenia otwierające - Świat w trójwymiarze Exercise 1. Digital cube (4 points) We are making a cube from the net below. What number is opposite to the wall with number 4? Aufgabe 1. Ziffernwürfel
Spotkanie 2: Rozwiążmy razem - Zmagania z polami
Spotkanie 2: Rozwiążmy razem - Zmagania z polami Aufgabe 1. Trapeze im Quadrat (6 Punkte) Aus einem Quadrat mit dem Flächeninhalt von 16cm² wurde ein Quadrat mit einer Seitenlänge von 2cm ausgeschnitten,
Zestaw nr 7 bryły. (Przyjmij do obliczeń, że 2 1,41 )
Zestaw nr 7 bryły Zad. 1. Ogrodnik zbudował 5 tuneli foliowych o długości 10 m każdy. Przekrój poprzeczny tunelu jest trapezem równoramiennym o podstawach 3 m i 1,6 m oraz wysokości 2,4 m. Ile metrów sześciennych
OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH
OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH Zadanie 1 Jeden z boków prostokąta ma 5 cm, a drugi jest 3 razy dłuższy. Oblicz pole prostokąta. Zadanie 2 Oblicz pole kwadratu, którego obwód wynosi 6 dm. Zadanie
Rozwiążmy razem W lustrze za lustrem
Rozwiążmy razem W lustrze za lustrem Exercice 1. Trois pastèque (10 points) Comment faire pour partager justement trois identiques pastèques entre quatre personnes, en faisant le moins de coupures qu il
Ćwiczenia otwierające Pola, ary i hektary
Ćwiczenia otwierające Pola, ary i hektary Exercise. The area of square (2 points) The quadrangle CD is a square and the point M is a middle of the side. n area of the shadowed figure is equal to 9cm².
otwierające Zabawy figurami
Ćwiczenia otwierające Zabawy figurami Exercise 1. Square (2 points) Four figures among five figures below can be used to built a square. What figure can not be used? ufgabe 1. Quadrat (2 Punkte) Mit vier
SPIS TREŚCI. PIERWIASTKI 1. Pierwiastki Działania na pierwiastkach Działania na pierwiastkach (cd.) Zadania testowe...
SPIS TREŚCI POTĘGI 1. Potęga o wykładniku naturalnym................................. 7 2. Iloczyn i iloraz potęg o jednakowych podstawach................ 8 3. Potęgowanie potęgi................................................
Kąty przyległe, wierzchołkowe i zewnętrzne
Kąty przyległe, wierzchołkowe i zewnętrzne 1. Ile wynosi miara kąta przyległego do kąta o mierze 135 o. 2. Wyznacz miary kątów α, β, γ, δ: 3. Z dwóch kątów przyległych, miara jednego jest dwa razy większa
Liczbolandii C) 3290 D) 3630 E) Wie viel beträgt der Unterschied zwischen der Zahl 3300 und einer 10mal kleineren Zahl?
Rozwiążmy razem - W Liczbolandii Exercise. Big difference ( points) What is the difference between 00 and the number which is 0 times smaller than 00? ) 0 B) 970 C) 90 D) 60 E) 0 ufgabe. Großer Unterschied
Ćwiczenia Otwierające A czas płynie
Ćwiczenia Otwierające czas płynie ufgabe : Das Herz (2 Punkte) Das Herz eines Menschen schlägt durchschnittlich 70 Mal pro Minute. Wie viel Herzschläge klopft ein Herz pro Stunde? ) 42000 ) 7000 C) 4200
II WOJEWÓDZKI KONKURS Z MATEMATYKI
II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Klucz odpowiedzi i kryteria punktowania zadań III ETAP - WOJEWÓDZKI 3 marca 2018 r. Liczba punktów możliwych do uzyskania: 40 Zasady ogólne:
Rozwiążmy razem - Świat w procentach
Rozwiążmy razem - Świat w procentach Aufgabe 1. Prüfung (6 Punkte) Das Diagramm stellt die Ergebnisse einer Prüfung dar, die 120 Schüler von einer Schule geschrieben haben. a) Berechne, wie viel Prozent
Z logiką na Ty Rozwiążmy Razem
Exercise 1. Weigh and bread (3 points) Z logiką na Ty Rozwiążmy Razem On the scales of weighing machine there are weights and loafs of bread. The scales are in the balance. How many kilograms does the
Klasa 3.Graniastosłupy.
Klasa 3.Graniastosłupy. 1. Uzupełnij nazwy odcinków oznaczonych literami: a........................................................... b........................................................... c...........................................................
Karta pracy w grupach
Karta pracy w grupach WIESŁAWA MALINOWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Oceń prawdziwość zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest fałszywe. A. To jest siatka sześcianu. P
Ćwiczenia otwierające Pola małe i duże
Ćwiczenia otwierające Pola małe i duże Exercice. Une aire bizarre (2 points) De combien de fois l aire de la première figure est-elle plus petite de celle de la deuxième? A) 4 fois B) 2 fois C) 3 fois
SPRAWDZIAN NR 1. Suma długości krawędzi prostopadłościanu o wymiarach 4 cm x 6 cm x 10 cm jest równa. A. 20 cm B. 40 cm C. 60 cm D.
SPRAWDZIAN NR 1 ARTUR ANTAS IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz poprawną odpowiedź. Który wielokąt jest podstawą ostrosłupa o 6 wierzchołkach? A. Trójkąt. B. Czworokąt. C. Pięciokąt. D. Sześciokąt.
Rozwiążmy razem Matematyka na okrągło
Rozwiążmy razem Matematyka na okrągło Exercise 1. Blue pencils (10 points) Ania has 9 pencils in a box. At least one of these pencils is blue. Among each four pencils at least two are of the same colour
La figure ci-après est composée avec ce type de carré. Quelle est l aire de cette figure? C) 10 D) 6 C) 10 D) 6 C) 10 D) 6
Pola małe i duże Rozwiążmy Razem Tarea. La superficie no totalmente cuadrado ( puntos) La superficie de la figura dibujada con cuadrados es de: ) ) 8 C) 0 D) 6 Exercice. Une aire pas tout à fait carrée
Die Summe von fünf aufeinander folgenden natürlichen Zahlen ist gleich von diesen Zahlen ist: A) 490 B) 475 C) 471 D) 423 E) 402
Rozwiążmy razem Wokół dzielników i wielokrotności ufgabe. Summe der Zahlen (2 Punkte) Die Summe von fünf aufeinander folgenden natürlichen Zahlen ist gleich 2000. Die größte von diesen Zahlen ist: ) 490
Rozwiążmy razem - Zamieniamy, wymieniamy, obliczamy
Rozwiążmy razem - Zamieniamy, wymieniamy, obliczamy Exercise 1. Leavings of tape (4 points) How many tape of length equal to 13 metres will leave after battening of two windows with 2m10cm x 1m20cm dimensions?
Spotkanie 1: Ćwiczenia otwierające Wszędzie matematyka
Spotkanie 1: Ćwiczenia otwierające Wszędzie matematyka Tarea 1. Sacar agua (10 puntos) Es posible, por medio de recipientes con la capacidad de 9 litros y 15 litros, medir exactamente 8 litros de agua,
Skrypt 18. Bryły. 2. Inne graniastosłupy proste rozpoznawanie, opis, rysowanie siatek, brył
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 18 Bryły 1. Prostopadłościan i sześcian rozpoznawanie,
5. Oblicz pole powierzchni bocznej tego graniastosłupa.
11. STEREOMETRIA Zad.11.1. Oblicz pole powierzchni całkowitej sześcianu, wiedząc Ŝe jego objętość wynosi 16 cm. Zad.11.. Oblicz długość przekątnej sześcianu, jeśli jego pole powierzchni całkowitej wynosi
Maraton Matematyczny Klasa I październik
Zad.1 Oblicz pamiętając o kolejności działań. Maraton Matematyczny Klasa I październik 4,4 2,25 2 1 a) (5,3-6 ) 2 4 (-28 ) = b) 4 7 2 ( ) 3 2 3 = Zad.2 Oblicz wartość wyrażeń: a) ( 3,6-2,5) : 0,55 3* 0,5=
Konkurs Matematyczny dla uczniów szkół podstawowych województwa zachodniopomorskiego w roku szkolnym 2014/2015 Etap wojewódzki SCHEMAT PUNKTOWANIA
Konkurs Matematyczny dla uczniów szkół podstawowych województwa zachodniopomorskiego w roku szkolnym 2014/2015 Etap wojewódzki SCHEMAT PUNKTOWANIA Rozwiązania zadań zostały ocenione w sposób holistyczny.
Wokół dzielników i wielokrotności Ćwiczenia Otwierające
Wokół dzielników i wielokrotności Ćwiczenia Otwierające Exercise 1. The smallest number (2 points) What is the smallest natural number divisible simultaneously by 1, 2, 3, 4, 5, 6? Aufgabe 1. Die kleinste
Z Matematyką przez Świat
Z Matematyką przez Świat konkurs matematyczny dla uczniów szkół podstawowych Etap Krajowy 23 maja 2017 Czas 60 minut Instrukcja dla Ucznia 1. Otrzymujesz do rozwiązania 7 zadań zamkniętych oraz 3 zadania
Spotkanie 2: Rozwiążmy razem - Płaszczaki
Spotkanie 2: Rozwiążmy razem - Płaszczaki Aufgabe 1. Holzfäller (10 Punkte) Fünf Holzfäller hacken fünf Baumstümpfe in fünf Minuten. Wie viele Holzfäller hacken zehn Baumstümpfe in zehn Minuten? Exercise
Próbny egzamin ósmoklasisty Matematyka
Próbny egzamin ósmoklasisty Matematyka DATA: Marzec 2019 r. CZAS PRACY: 100 minut Po raz pierwszy online! Informacje: 1. Czytaj uważnie wszystkie teksty i zadania. Wykonuj zadania zgodnie z poleceniami.
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 13 Zadania stereometria
1 TEST WSTĘPNY 1. (1p) Graniastosłup ma 12 wierzchołków. Liczba krawędzi tego graniastosłupa to: A. 12 B. 18 C. 24 D. 36 2. (1p) Pole powierzchni jednej ściany sześcianu jest równe 9. Objętość tego sześcianu
Spotkanie 2: Rozwiążmy razem - Szczęśliwej drogi już czas
Spotkanie 2: Rozwiążmy razem - Szczęśliwej drogi już czas Aufgabe. 1 Ein schnelles Auto (4 Punkte) Ein Auto fährt mit einer konstanten Geschwindigkeit von 25 Meter pro Sekunde. Wie viele Kilometer legt
GRANIASTOSŁUPY. Graniastosłupy dzielimy na proste i pochyłe. W graniastosłupach prostych krawędzie są prostopadłe do podstaw, w pochyłych nie są.
GRANIASTOSŁUPY Euklides (365-300 p.n.e.) słynny grecki matematyk i fizyk. Jego najwybitniejsze dzieło Elementy składało się z trzynastu ksiąg, z czego trzy ostatnie księgi dotyczą geometrii przestrzennej:
Spotkanie 2: Rozwiążmy razem - Wszędzie matematyka
Spotkanie 2: Rozwiążmy razem - Wszędzie matematyka Tarea 1. Tres urnas(10 puntos) En cada de tres urnas han instalado dos esferas: en una dos blancas, en segunda dos negras, en la tercera una blanca y
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_7) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji
Ćwiczenia otwierające Liczbowy zawrót głowy
Ćwiczenia otwierające Liczbowy zawrót głowy Aufgabe 1. Katzen und Kanarienvögel (4 Punkte) In einem Zooladen wurden nur Katzen und Kanarienvögel verkauft. Zum Kauf wurden insgesamt 72 Stück Katzen und
Spotkanie 1: Ćwiczenia otwierające W krainie literek
Spotkanie 1: Ćwiczenia otwierające W krainie literek Aufgabe 1. Spiele mit Buchstaben (4 Punkte) Schreibe in Form von einem Ausdruck: a) Die Bausteinhöhe ist gleich y cm. Von welcher Höhe ist ein Bauwerk,
Sprawdzian całoroczny kl. II Gr. A x
. Oblicz: a) (,5) 8 c) ( ) : ( ). Oblicz: Sprawdzian całoroczny kl. II Gr. A [ ] d) 6 a) ( : ) 5 6 6 8 50. Usuń niewymierność z mianownika: a). Oblicz obwód koła o polu,π dm. 5. Podane wyrażenia przedstaw
Spotkanie 2: Rozwiążmy razem - Liczby i litery bez tajemnic
Spotkanie 2: Rozwiążmy razem - Liczby i litery bez tajemnic Exercise 1. Three figures (10 points) Three figures are given: a circle plane, a triangle and a square - all of different sizes and colours:
ZESTAW ZADAŃ ROZWIĄśMY RAZEM - GRAMY W TANGRAMY.
ZESTW ZDŃ ROZWIĄśMY RZEM - GRMY W TNGRMY. Task. STROLL ROUND (0 points) Formerly, a river flew through Königsberg, which branched out around two islands. They built 7 bridges over the branches, one of
Formy pracy: indywidualna praca uczniów pod kierunkiem nauczyciela Typ lekcji: lekcja powtórzeniowa
Temat: Powtórzenie wiadomości o figurach geometrycznych i ich własnościach. Hospitacja diagnozująca w klasie IV Cele lekcji: - ocena stopnia opanowania umiejętności zapisu działań matematycznych - ocena
SZKOLNY KONKURS MATEMATYCZNY MATMIX 2007 DROGI UCZNIU!
Wersja A klasy I II SZKOLNY KONKURS MATEMATYCZNY MATMIX 007 DROGI UCZNIU! Masz do rozwiązania 8 zadań testowych, na rozwiązanie których masz 90 minut. Punktacja rozwiązań: - zadania od do 7 - punkty -
Konkurs przedmiotowy z matematyki dla uczniów szkół podstawowych 23 marca 2018 r. zawody II stopnia (rejonowe)
Kod ucznia:. Liczba punktów:. Konkurs przedmiotowy z matematyki dla uczniów szkół podstawowych 23 marca 2018 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu przedmiotowego z matematyki.
E G Z A M I N P R Ó B N Y nr 1 Grupa B Matematyka wokó nas. Klasa 3
Imię i nazwisko Klasa Ocena Nr zadania 1. 2. 3. 4. 5. 6. 7. 8. Liczba punktów 9. 10. 11. 12. 13. 14. 15. 16. Łącznie punktów Zadanie 1. (0 1 pkt.) Która z poniższych liczb, zapisanych w systemie rzymskim,
Czas trwania: 60minut
Konkurs MATEMATYKA NA BUDOWIE dla gimnazjalistów Numer ewidencyjny 22 października 2014r. 1. Sprawdź, czy zestaw konkursowy zawiera 13 stron. Ewentualne braki zgłoś komisji konkursowej. 2. Na pierwszej
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Wojewódzki
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu, witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
Spotkanie 2: Rozwiążmy razem - Do czego służą procenty?
Spotkanie 2: Rozwiążmy razem - Do czego służą procenty? Aufgabe 1. Wüsten (5 Punkte) Die Erde hat eine Fläche von etwa 510Mio. km². Länder belegen etwa 30Prozent der Erdoberfläche und Wüsten belegen etwa
Czas to pieniądz Ćwiczenia Otwierające
zas to pieniądz Ćwiczenia Otwierające Exercise. The movie ( points) The film started at 3:47 and finished at 6:8. How long was the film? ) 85min ) 5min ) 9min D) 49min E) 09min ufgabe. Filmvorstellung
Klasa 2. Ostrosłupy str. 1/4
Klasa 2. Ostrosłupy str. 1/4 1. Liczba wierzchołków ostrosłupa ośmiokątnego wynosi: A. 9 B. 16 C. 8 D. 7 2. Łączna długość prętów potrzebnych do wykonania szkieletu namiotu w kształcie ostrosłupa prawidłowego
XX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2011/2012
XX edycja Międzynarodowego Konkursu Matematycznego PIKOMA rok szkolny 2011/2012 Etap I Klasa IV Zastąp znaki zapytania znakami dodawania, odejmowania, mnożenia i dzielenia w taki sposób, aby wyniki obliczeń
Rozwiążmy Razem - Po co komu ten przecinek
Rozwiążmy Razem - Po co komu ten przecinek ufgabe. Schokoriegel (2 Punkte) In einem Lebensmittelgeschäft kosten Schokoriegel: 80 Groschen, Zloty und 9 Groschen, Zloty und 20 Groschen, Zloty und 60 Groschen.
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj
Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.
GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a
Potęgi str. 1/6. 1. Oblicz. d) Potęgę 3 6 można zapisać jako: A. 36 B C D. 3 6
Potęgi str. 1/6 1. Oblicz. a) 8 2 8 b) ( 2)7 2 c) 9 ( 9) 2 d) 34 27 2. Potęgę 3 6 można zapisać jako: A. 36 B. 3 3 3 3 3 3 C. 6 6 6 D. 3 6 3. Po obliczeniu wartości 3 2 3 otrzymamy liczbę: A. 3 8 B. 9
1 Odległość od punktu, odległość od prostej
24 Figury geometryczne 2 Figury geometryczne 1 Odległość od punktu, odległość od prostej P 1. Odległość punktu K od prostej p jest równa 4 cm. Który z odcinków ma długość równą 4 cm? K p A B C D A. AK
Rozwiążmy Razem A czas płynie
Rozwiążmy Razem czas płynie ufgabe. Das Segelboot (2 Punkte) m Montag Mittag beginnt das Segelboot die 00 Stunden Kreuzfahrt. n welchem Wochentag und um wie viel Uhr beendet es seine Fahrt? ) m Mittwoch
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2011/2012
Etap wojewódzki 25 lutego 2012 r. M Instrukcja dla ucznia Godzina 11.00 Kod ucznia 1. Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 2. Sprawdź, czy zestaw
PROSZĘ SOBIE WYOBRAZIĆ, ŻE...
44 NAUCZANIE MATEMATYKI PROSZĘ SOBIE WYOBRAZIĆ, ŻE... Jerzy Janowicz Wyobraźnia geometryczna jest jednym z elementarnych procesów psychicznych, niezbędnych do prawidłowego funkcjonowania w społeczeństwie.
Obwody i pola figur -klasa 4
Obwody i pola figur -klasa 4 str. 1/6...... imię i nazwisko lp. w dzienniku...... klasa data 1. Przyjmij za jednostkę. Zapisz, jakie pole ma narysowana figura. Pole =.......................... 2. Jakie
Pola powierzchni i objętości
Pola powierzchni i objętości Zadanie 1.... Trapez ABCD o wierzchołkach A = 3, 2, B = 1, 2, C = 1, 6 i D = 3, 8 obrócono wokół dłuższej podstawy. (c) Opisz powstałą bryłę i podaj jej wymiary Oblicz objętość
ZADANIA MATURALNE - STEREOMETRIA PP poziom podstawowy PR poziom rozszerzony
ZADANIA MATURALNE - STEREOMETRIA PP poziom podstawowy PR poziom rozszerzony Zad.1. ( PP 5 pkt) Objętość ostrosłupa prawidłowego trójkątnego, o długości krawędzi podstawy 6 cm, jest równa 9 cm. Oblicz miarę
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 13 stycznia 2015 r. 90 minut Informacje
Test na koniec nauki w klasie trzeciej gimnazjum
3 Przykładowe sprawdziany Test na koniec nauki w klasie trzeciej gimnazjum... imię i nazwisko ucznia...... data klasa Test Liczba x jest wynikiem dodawania liczb + +. Jaki warunek spełnia liczba x? 3 5
XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY
pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa
TWÓJ KOD. do elektronicznego zeszytu ćwiczeń ZNAJDUJE SIĘ W ŚRODKU
TWÓJ KOD do elektronicznego zeszytu ćwiczeń ZNAJDUJE SIĘ W ŚRODKU 2 część 2 klasa Spis treści V. Wyrażenia algebraiczne 1. Wyrażenia algebraiczne / 5 2. Wartość liczbowa wyrażenia algebraicznego / 9 3.
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_2) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (1 pkt) Asia
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2015/2016 12 STYCZNIA 2016 1. Test konkursowy zawiera 24 zadania. Są to zadania zamknięte i otwarte.
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający się z 31 zadań.
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
ZADANIA MATURALNE STEREOMETRIA POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska
ZADANIA MATURALNE STEREOMETRIA POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska Zad.1. ( 5 pkt) Objętość ostrosłupa prawidłowego trójkątnego, o długości krawędzi podstawy 6 cm, jest równa cm 3. Oblicz
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test składający się z 22 zadań.
PESEL. 1. Rozwiązania wszystkich zadań zapisuj na kartach odpowiedzi, pamiętając o podaniu numeru zadania.
Układ graficzny CKE 20 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem E W KLASIE
KONKURS Z MATEMATYKI
KONKURS Z MATEMATYKI ZESTAW POPRAWNYCH ODPOWIEDZI DO ARKUSZA - ETAP WOJEWÓDZKI Numer zadania Poprawna odpowiedź Liczba punktów 1. C 1 2. C 1 3. B 1 4. P, F, P 3 5. B 1 6. A 1 7. B 1 8. C 1 9. B 1 10. D
Matematyk Roku gminny konkurs matematyczny ETAP DRUGI 24 MARCA 2017 KLASA TRZECIA
Imię i nazwisko:.. Klasa:.. "Matematyka nie taka straszna jak ją malują Matematyk Roku 2017 - gminny konkurs matematyczny ETAP DRUGI 24 MARCA 2017 KLASA TRZECIA 1. Przed Tobą zestaw 20 zadań konkursowych.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI DLA KLAS DWUJĘZYCZNYCH
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R2A1F-062 EGZAMIN MATURALNY Z MATEMATYKI DLA KLAS DWUJĘZYCZNYCH Arkusz w języku francuskim Czas pracy 80 minut Instrukcja dla zdającego 1. Sprawdź, czy
Matematyka. Zadanie 1. Zadanie 2. Oblicz. Zadanie 3. Zadanie 4. Wykaż, że liczba. 2 2 jest podzielna przez 5. Zadanie 5.
Matematyka Zadanie 1. Oblicz liczby Zadanie. Oblicz Zadanie 3. Wykaż, że liczba jest podzielna przez Zadanie 4. Wykaż, że liczba 30 0 jest podzielna przez 5. Zadanie 5. n 1 Uzasadnij, że prawdziwa jest
SCHEMATY PUNKTOWANIA ROZUMOWANIE I WYKORZYSTYWANIE WIEDZY W PRAKTYCE Zadanie 1.
SCHEMATY PUNKTOWANIA ROZUMOWANIE I WYKORZYSTYWANIE WIEDZY W PRAKTYCE Zadanie 1. I. Ustalenie sposobu obliczenia pola prostokąta Uczeń zapisuje odpowiednie działania lub zapisuje wzór na pole prostokąta.
STEREOMETRIA. Poziom podstawowy
STEREOMETRIA Poziom podstawowy Zadanie ( 8 pkt ) W stożku tworząca o długości jest nachylona do powierzchni podstawy pod kątem, którego tangens jest równy Oblicz stosunek pola powierzchni bocznej do pola
Ile takich samych butelek wody należy dolać do dzbanka, aby sok stanowił 25% napoju? Wybierz odpowiedź spośród podanych.
Zadanie 1. Do dzbanka wlano 2 jednakowe butelki soku. Ile takich samych butelek wody należy dolać do dzbanka, aby sok stanowił 25% napoju? Wybierz odpowiedź spośród podanych.. 2. 4 C. 6 D. 8 Zadanie 2.
PRÓBNY EGZAMIN GIMNAZJALNY
RÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW RZYGOTOWANY RZEZ SERWIS WWW.ZADANIA.INFO 24 MARCA 2018 CZAS RACY: 90 MINUT 1 ZADANIE 1 (1 KT) Wykres przedstawia zależność objętości wody w zbiorniku deszczowym
W krainie liczb naturalnych - Ćwiczenia Otwierające. Heute ist Dienstag, der zehnte Mai. Welches Datum ist Dienstag auch?
W krainie liczb naturalnych - Ćwiczenia Otwierające ufgabe. Welcher Datum ist das? (2 Punkte) Heute ist Dienstag, der zehnte Mai. Welches Datum ist Dienstag auch? a) 6-te Mai, b) 20-ste Mai, c) 22-ste
Zadanie 1. (0 1) Cena okularów bez promocji wynosi 240 zł. Ile zapłaci za te okulary klient, który ma 35 lat? Wybierz odpowiedź spośród podanych.
Informacja do zadań 1. i 2. Promocja w zakładzie optycznym jest związana z wiekiem klienta i polega na tym, że klient otrzymuje tyle procent zniżki, ile ma lat. Zadanie 1. (0 1) Cena okularów bez promocji
ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ
ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ Nauczyciel: Małgorzata Drejka Gimnazjum nr 4 w Legionowie, klasa I F, zajęcia edukacyjne: matematyka Data: 12.06.2006. Cel główny: Obserwacja osiągniętego poziomu sprawności
Funkcja kwadratowa Zadania na plusy Maria Małycha. Funkcja kwadratowa. Zadanie 7
Funkcja kwadratowa Zadanie 1 Podaj wzór funkcji P(x), opisującej pole kwadratowej działki budowlanej w zależności od długości przekątnej x. Zadanie 2 Podaj wzór funkcji P(x), opisującej pole prostokątnej
Spotkanie 2: Rozwiążmy razem - Kręcidełka
Spotkanie 2: Rozwiążmy razem - Kręcidełka Exercise 1. Board with numbers (10 points) The circuit board was divided into 6 sectors and to every sector it was some different number from 1 to 6 corresponded.
UZUPEŁNIA ZESPÓŁ NADZORUJĄCY miejsce na naklejkę z kodem
Układ graficzny CKE 2011 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ
Czy pamiętasz? Zadanie 1. Rozpoznaj wśród poniższych brył ostrosłupy i graniastosłupy.
1. Bryły Tradycyjna futbolówka jest zszyta z 3232 kawałków. Gdybyśmy ją rozcięli, ujrzelibyśmy siatkę dwudziestościanu ściętego. Kulisty kształt piłka otrzymuje dzięki wypełnieniu sprężonym powietrzem.
Rozwiążmy razem - Matematyczny pojedynek!
Rozwiążmy razem - Matematyczny pojedynek! Exercise. Karol s age (4 points) Iwona is 9 years old. Krysia in a year will be times younger than Iwona. Karol is 3 years older than Krysia. How old is Karol?
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO MARCA 05 CZAS PRACY: 90 MINUT Informacja do zadań 3 Pracownik salonu samochodowego otrzymuje premię za każdy sprzedany
Wojewódzki Konkurs Matematyczny w gimnazjum rok szkolny 2011/2012 etap rejonowy
Kod ucznia Łączna liczba punktów Numer zadania 1 14 15 17 18 19 20 Drogi Uczniu! Liczba punktów Przed Tobą test składający się z 20 zadań. Za wszystkie zadania razem możesz zdobyć 40 punktów. Aby przejść
KONSPEKT DO LEKCJI MATEMATYKI W KL.V. TEMAT: Pole i obwód prostokąta w zadaniach praktycznych.
KONSPEKT DO LEKCJI MATEMATYKI W KL.V TEMAT: Pole i obwód prostokąta w zadaniach praktycznych. CELE LEKCJI: kształcenie umiejętności stosowania zdobytych wiadomości w różnych sytuacjach rzeczywistych utrwalenie
Zagadnienia na powtórzenie
Zagadnienia na powtórzenie TERESA ZIEGLER IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz takie dokończenie zdania, aby otrzymać zdanie prawdziwe. Sześcian przecięto płaszczyzną zawierającą dwie równoległe
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI
Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia diagnozy. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie należy powielać ani udostępniać w żadnej innej