system opracowywania dokumentów L A T E X

Wielkość: px
Rozpocząć pokaz od strony:

Download "system opracowywania dokumentów L A T E X"

Transkrypt

1 system opracowywania dokumentów L A T E X 29 października 2007

2 spis treści 1

3 polecenia wprowadzające otoczenie math - wzór umieszczony w tekście \begin{math}... \end{math} \(... \) $... $ otoczenie displaymath - nienumerowany wzór wystawiony \begin{displaymath}... \end{displaymath} \[... \] otoczenie equation - numerowany wzór wystawiony \begin{equation}... \end{equation}

4 ćwiczenie wzór w tekście: \( x^2+y^2=1 \) nienumerowany wzór wystawiony: \[ x^2+y^2=1 \] numerowany wzór wystawiony: \begin{equation} x^2+y^2=1 \end{equation}

5 indeksy, ułamki polecenie przykład wynik indeks dolny _ \[ a_{n} \] a n indeks górny ^ \[ x^{n} \] x n ułamek \frac{l}{m} \[ \frac{a+b}{c} \] a+b c ĆWICZENIE: a n = (1 + 1 n )n, x x2

6 pierwiastki polecenie przykład wynik pierwiastek \sqrt[n]{x} \[ \sqrt[6]{x} \] 6 x ĆWICZENIE: a n = 3 (1 + 1 n )n

7 całki, sumy polecenie przykład wynik całka \int \int_{a}^{b} suma \sum \sum_{k=0}^{\infty} b a k=0 powyższe symbole inaczej wyglądają we wzorze wystawionym, a inaczej we wzorze w tekście

8 zmienna wielkość symboli użycie niektórych symboli i indeksów daje inny wynik we wzorze wystawionym, a inny we wzorze w tekście, np. w tekście: k=0 a k wystawiony: w tekście: lim inf n b n wystawiony: k=0 a k lim inf b n n

9 przykłady liter greckich \gamma \delta \pi \xi \lambda γ δ π ξ λ \Gamma \Delta \Pi \Xi \Lambda Γ Π Ξ Λ \epsilon \varepsilon \theta \vartheta ɛ ε θ ϑ

10 ćwiczenie Γ(z) = + k=0 + 0 t z 1 e t dt ψ k = 1 1 ψ

11 alfabety matematyczne \mathrm ABCdef123 \mathit ABCdef123 \mathnormal ABCde f 123 \mathcal ABC \mathscr A BC \mathbb ABC \mathbbmss ABCdef12 \mathfrak ABCdef

12 przekreślenie symbolu: polecenie \not kod a \not \geq b daje wynik a b funkcje: do pisania nazw funkcji używamy poleceń. zamiast log(xy) log(xy) lepiej napisać \log xy log xy

13 modulo polecenie przykład wynik \bmod a \bmod b a mod b \pmod x \equiv y \pmod{a+b} x y (mod a + b)

14 wielokropki \ldots x_{1}, \ldots,x_{n} x 1,..., x n \cdots 1+a+a^2+ \cdots +a^n 1 + a + a a n \vdots \ddots....

15 otoczenie array Otoczenie array wypisuje tablice. Argument określa kolumny: l - kolumna wyrównana do lewej c - kolumna wyśrodkowana r - kolumna wyrównana do prawej \begin{array}{lcr} a & b & x+y \\ a+b & b+c & y \\ a+b+c & b+c+d & x-y \\ \end{array}

16 otoczenie array Argument opcjonalny określa wyrównanie tablicy w pionie w linii tekstu: t - wyrównanie do górnego wiersza b - wyrównanie do dolnego wiersza \begin[t]{array}{lcr} a & b & x+y \\ a+b & b+c & y \\ a+b+c & b+c+d & x-y \\ \end{array}

17 ograniczniki \left[ \begin{array}{lcr} a & b & x+y \\ a+b & b+c & y \\ a+b+c & b+c+d & x-y \\ \end{array} \right] Ograniczniki to symbole pełniące funkcje analogiczną do nawiasu. Zawsze muszą wystepować w parze (ogranicznik lewy i prawy). Ograniczniki z jednej pary nie muszą być takie same.

18 ograniczniki a b x + y a + b b + c y a + b + c b + c + d x y

19 Cwiczenie a b c d x + y z

20 ograniczniki Znak kropki określa ogranicznik niewidzialny. \left\{ \begin{array}{l} x+y=1 \\ x-y=0 \\ \end{array} \right. wynik { x + y = 1 x y = 0

21 otoczenie eqnarray Składnia otoczenia eqnarray jest podobna do array z trzema kolumnami. \begin{eqnarray} x & = & a+2b \\ y & < & 3a-b \\ z & = & 7b \end{eqnarray}

22 otoczenie eqnarray x = a + 2b (1) y < 3a b (2) z = 7b (3)

23 otoczenie eqnarray Aby nie numerować wybranego wiersza, stosujemy polecenie \nonumber \begin{eqnarray} x & = & a+2b \\ y & < & 3a-b+2c+d \nonumber\\ & & \mbox{} +7e-f \end{eqnarray}

24 otoczenie eqnarray x = a + 2b (4) y < 3a b + 2c + d + 7e f (5)

25 otoczenie eqnarray* aby w ogóle nie numerować wierszy, stosujemy polecenie \eqnarray* \begin{eqnarray*} x & = & a+2b \\ y & < & 3a-b+2c+d \\ & & \mbox{} +7e-f \end{eqnarray*}

26 otoczenie eqnarray* x = a + 2b y < 3a b + 2c + d + 7e f

27 otoczenie eqnarray polecenie \lefteqn \begin{eqnarray*} \lefteqn{ a + b = }\\ & & c + d + e + f + \\ & & g + h \end{eqnarray*}

28 otoczenie eqnarray a + b = c + d + e + f + g + h

29 dziękuję za uwagę

Edycja tekstu w programie LATEX - wzory matematyczne

Edycja tekstu w programie LATEX - wzory matematyczne Edycja tekstu w programie LATEX - wzory matematyczne 8 października 017 1. Liczby należy wpisywać używając trybu matematycznego, tzn. zamiast -314 wpisujemy $-314$. Różnica wygląda tak: -314 oraz 314.

Bardziej szczegółowo

Narzędzia informatyczne. Matematyka w L A T E Xu

Narzędzia informatyczne. Matematyka w L A T E Xu Narzędzia informatyczne. Matematyka w L A T E Xu Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 33 Matematyka w L A T E Xu Najnowsza wersja

Bardziej szczegółowo

Tryb Matematyczny w L A TEX-u

Tryb Matematyczny w L A TEX-u Tryb Matematyczny w L A TEX-u Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-13 1 2 Tekst w trybie matematycznym Ściąga z symboli 3 Jak nie pisać pracy magisterskiej

Bardziej szczegółowo

INFORMATYKA I L A TEX

INFORMATYKA I L A TEX Wykład INFORMATYKA I L A TEX Marta Tyran-Kamińska semestr letni 2004/2005 TEX program stworzony przez Donalda Knutha, przeznaczony do składu tekstów w sposób automatyczny, w szczególności tekstów matematycznych.

Bardziej szczegółowo

Komputerowy skład w L A T E X

Komputerowy skład w L A T E X Komputerowy skład w L A T E X dr hab. Bożena Woźna-Szcześniak, prof. UJD Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie b.wozna@ujd.edu.pl Laboratorium 9 B. Woźna-Szcześniak (UJD)

Bardziej szczegółowo

Latex Matematyka. Komputerowy skład tekstu. Akademia im. Jan Długosza. bwozna@gmail.com

Latex Matematyka. Komputerowy skład tekstu. Akademia im. Jan Długosza. bwozna@gmail.com Latex Matematyka dr hab. Bożena Woźna-Szcześniak Akademia im. Jan Długosza bwozna@gmail.com Komputerowy skład tekstu Dwa tryby matematyczne Wyrażenia matematyczne w L A T E X-u można pisać w dwóch trybach:

Bardziej szczegółowo

Edytor tekstu MS Word 2010 PL. Edytor tekstu MS Word 2010 PL umożliwia wykonywanie działań matematycznych.

Edytor tekstu MS Word 2010 PL. Edytor tekstu MS Word 2010 PL umożliwia wykonywanie działań matematycznych. Edytor tekstu MS Word 2010 PL. Edytor tekstu MS Word 2010 PL umożliwia wykonywanie działań matematycznych. Edytor tekstu MS Word 2010 PL umożliwia wykonywanie działań matematycznych, pod warunkiem, że

Bardziej szczegółowo

VI. Tablice, macierze i wyeksponowane równania

VI. Tablice, macierze i wyeksponowane równania VI., macierze i wyeksponowane równania 16 marca 2015 VI., macierze i wyeksponowane równania Środowisko array Środowisko array służy do tworzenia struktur tablicowych zawierających wyrażenia matematyczne.

Bardziej szczegółowo

VI. Tablice, macierze i wyeksponowane równania

VI. Tablice, macierze i wyeksponowane równania VI. Tablice, macierze i wyeksponowane równania Wiesław Krakowiak 13 maja 2014 1 Tablice 1.1 Środowisko array Środowisko array służy do tworzenia struktur tablicowych zawierających wyrażenia matematyczne.

Bardziej szczegółowo

1. OPEN OFFICE WZORY

1. OPEN OFFICE WZORY Część 1 1. OPEN OFFICE - WZORY 1 1. 1. OPEN OFFICE WZORY 1.1 Wstawianie wzoru Chcąc wstawić wzór do dokumentu tekstowego programu Writer należy z menu Wstaw wybrać pozycję Obiekt a następnie Formuła. Część

Bardziej szczegółowo

Úvod do TEXu. Brno, L A TEX dokumenty a matematika.

Úvod do TEXu. Brno, L A TEX dokumenty a matematika. Úvod do TEXu 3 L A TEX dokumenty a matematika. Matematický mód Matematická prostředí v PlainTEXu a L A TEXu Mezery a písma v matematickém módu Matematické značky a symboly Konstrukce v matematickém módu

Bardziej szczegółowo

L A TEX. czyli czym pisać teksty naukowe. Zbigniew Koza. Uniwersytet Wrocławski Instytut Fizyki Teoretycznej. LATEX p. 1/34

L A TEX. czyli czym pisać teksty naukowe. Zbigniew Koza. Uniwersytet Wrocławski Instytut Fizyki Teoretycznej. LATEX p. 1/34 L A TEX czyli czym pisać teksty naukowe Zbigniew Koza Uniwersytet Wrocławski Instytut Fizyki Teoretycznej LATEX p. 1/34 Trochę historii: TEX W latach 80-tych Donald Knuth opracował zbiór programów do komputerowego

Bardziej szczegółowo

Wprowadzenie do L A TEXa

Wprowadzenie do L A TEXa Wprowadzenie do L A TEXa 10 marca 2009 Streszczenie Dokument opisuje podstawowe polecenia systemu L A TEX. Należy go czytac porównując dokument źródłowy (są w nim obszerne komentarze) z plikiem wynikowym.

Bardziej szczegółowo

L A T E X- wprowadzenie

L A T E X- wprowadzenie L A T E X- wprowadzenie Katarzyna Grzelak październik 2009 K.Grzelak (IFD UW) 1 / 36 Najprostszy tekst w L A T E X u Zawartość przykładowego pliku zerowy.tex : \documentclass{article} \begin{document}

Bardziej szczegółowo

Jak napisać prace magisterską w LaTex-u?

Jak napisać prace magisterską w LaTex-u? Jak napisać prace magisterską w LaTex-u? Monika Piekarz 2006 1 Szkielet dokumentu Plikiem źródłowym L A TEX-a jest zwykły plik tekstowy, który można przygotować za pomocą dowolnego edytora tekstu np.:

Bardziej szczegółowo

Edytor tekstu MS Word 2010 PL. Edytor tekstu to program komputerowy umożliwiający wprowadzenie lub edycję tekstu.

Edytor tekstu MS Word 2010 PL. Edytor tekstu to program komputerowy umożliwiający wprowadzenie lub edycję tekstu. Edytor tekstu MS Word 2010 PL. Edytor tekstu to program komputerowy umożliwiający wprowadzenie lub edycję tekstu. SP 8 Lubin Zdjęcie: www.softonet.pl Otwieranie programu MS Word. Program MS Word można

Bardziej szczegółowo

Katolicki Uniwersytet Lubelski Wydział Instytut. pełna nazwa studiów. Magdalena Wilkołazka nr albumu:... tytuł pracy

Katolicki Uniwersytet Lubelski Wydział Instytut. pełna nazwa studiów. Magdalena Wilkołazka nr albumu:... tytuł pracy Katolicki Uniwersytet Lubelski Wydział Instytut pełna nazwa studiów Magdalena Wilkołazka nr albumu:... tytuł pracy Praca licencjacka/inżynierska/magisterska napisana na seminarium pod kierunkiem Spis tre±ci

Bardziej szczegółowo

Wprowadzenie do systemu LATEX

Wprowadzenie do systemu LATEX Karol Selwat Wprowadzenie do systemu LATEX Skrypt dla studentów Instytutu Matematycznego Uniwersytetu Wrocławskiego Instytut Matematyczny Uniwersytetu Wrocławskiego Wprowadzenie do systemu L A TEX K. Selwat

Bardziej szczegółowo

Edytor wzorów w OpenOffice Mini podręcznik

Edytor wzorów w OpenOffice Mini podręcznik Edytor wzorów w OpenOffice Mini podręcznik Autor: Marcin Klessa Wolsztyn 2012 1. Wprowadzenie Edytor wzorów w pakiecie Open Office różni się od edytora używanego w popularnym MSOffice. Z pozoru wygląda

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7. Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego

Bardziej szczegółowo

LATEX I. Grzegorz Stefanek Jan Kochanowski University. LATEX System Komputerowego Składu Tekstów Drukarskich. Grzegorz Stefanek 1

LATEX I. Grzegorz Stefanek Jan Kochanowski University. LATEX System Komputerowego Składu Tekstów Drukarskich. Grzegorz Stefanek 1 LATEX I Grzegorz Stefanek Jan Kochanowski University Grzegorz Stefanek 1 LATEX LATEX wstęp - System Komputerowego Składu Tekstów Drukarskich - oparty na systemie składu formuł matematycznych TEX (twórca

Bardziej szczegółowo

Symbole Numer Nazwa Opis Znaczenie Wygląd. Latin small "f" with hook (function, florin) Greek capital letter "alpha"

Symbole Numer Nazwa Opis Znaczenie Wygląd. Latin small f with hook (function, florin) Greek capital letter alpha Symbole Numer Nazwa Opis Znaczenie Wygląd ƒ Litery greckie ƒ Latin small "f" with hook (function, florin) Łacińskie małe "f" z "haczykiem" (funkcja, floren) Α Α "alpha" Grecka wielka litera "alfa" Α Β

Bardziej szczegółowo

21. Środowiska itemize, enumerate i description.

21. Środowiska itemize, enumerate i description. 20. Środowiska Wiele instrukcji to środowiska, mające postać: \begin{nazwa} \end{nazwa} gdzie nazwa jest nazwa środowiska. Środowiska można zagnieżdżać jedne w drugich: \begin{aaa}... \begin{bbb}... \end{bbb}...

Bardziej szczegółowo

Spis wszystkich symboli

Spis wszystkich symboli 1 Spis wszystkich symboli Symbole podstawowe - pojedyncze znaki, alfabet grecki α β γ Γ δ ξ η ε ϕ ν ρ τ θ Θ ψ Ψ φ Φ Ω Υ Σ -alfa -beta - gamma - gamma (duże) - delta (małe) - delta (duże) -ksi -eta - epsilon

Bardziej szczegółowo

Zasada indukcji matematycznej

Zasada indukcji matematycznej Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.

Bardziej szczegółowo

Wykłady... b i a i. i=1. m(d k ) inf

Wykłady... b i a i. i=1. m(d k ) inf Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem

Bardziej szczegółowo

LATEX system do składu tekstu

LATEX system do składu tekstu L A TEX system do składu tekstu 4 października 2008 Czym jest L A TEX Informacje wstępne Komendy, argumenty, opcje... L A TEX(wym. latech) jest systemem służącym do składu tekstu. W odróżnieniu od programów

Bardziej szczegółowo

L A TEX - bardzo krótkie wprowadzenie

L A TEX - bardzo krótkie wprowadzenie 1 Wstęp L A TEX - bardzo krótkie wprowadzenie (wersja 0.4) Marzena M. Sala-Tefelska L A TEXjest systemem umożliwiającym zaawansowane składanie tekstu. Daje możliwość przygotowywania zarówno prostych tekstów,

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Obliczenia Symboliczne

Obliczenia Symboliczne Lekcja Strona z Obliczenia Symboliczne MathCad pozwala na prowadzenie obliczeń zarówno numerycznych, dających w efekcie rozwiązania w postaci liczbowej, jak też obliczeń symbolicznych przeprowadzanych

Bardziej szczegółowo

Wzory wielowierszowe

Wzory wielowierszowe Wzory wielowierszowe Dział Wydawnictw IMPAN publ@impan.pl Uwaga ogólna: konstrukcje, o których niżej mowa, wymagają użycia stylu amsart lub \usepackage{amsmath} i dzielą się na dwa rodzaje: () konstrukcje

Bardziej szczegółowo

Redagujemy wzory matematyczne, piszemy w. obcych językach j wstawiamy symbole. Technologia Informacyjna Lekcja 24

Redagujemy wzory matematyczne, piszemy w. obcych językach j wstawiamy symbole. Technologia Informacyjna Lekcja 24 Redagujemy wzory matematyczne, piszemy w obcych językach j i wstawiamy symbole Technologia Informacyjna Lekcja 24 Spacja Spacja nierozdzielająca (inaczej twarda), łączy na stałe e znaki i edytor przy dzieleniu

Bardziej szczegółowo

Algebra relacji. nazywamy każdy podzbiór iloczynu karteziańskiego D 1 D 2 D n.

Algebra relacji. nazywamy każdy podzbiór iloczynu karteziańskiego D 1 D 2 D n. Algebra relacji Definicja 1 (Relacja matematyczna). Relacją R między elementami zbioru D 1 D 2 D n, gdzie przypomnijmy D 1 D 2 D n = {(d 1, d 2,..., d n ) : d i D i, i = 1, 2,..., n}, nazywamy każdy podzbiór

Bardziej szczegółowo

Ćwiczenie 2 Tekst podstawowe znaczniki.

Ćwiczenie 2 Tekst podstawowe znaczniki. Ćwiczenie 2 Tekst podstawowe znaczniki. Ćwiczenie 2 poświęcone jest formatowaniu tekstu za pomocą znaczników. AŜeby uzyskać poŝądany wygląd tekstu musimy posłuŝyć się określonymi znacznikami. Ćwiczenie

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

Wykorzystanie programów komputerowych do obliczeń matematycznych

Wykorzystanie programów komputerowych do obliczeń matematycznych Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy Przykłady: Programy wykorzystywane

Bardziej szczegółowo

Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2

Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy

Bardziej szczegółowo

Pracownia przetwarzania dokumentów 3. Matematyka w L A TEX-u

Pracownia przetwarzania dokumentów 3. Matematyka w L A TEX-u Bartosz Ziemkiewicz Joanna Karłowska-Pik Pracownia przetwarzania dokumentów 3. Matematyka w L A TEX-u Materiały dydaktyczne do kształcenia na odległość dla studentów matematyki (specjalność: matematyka

Bardziej szczegółowo

Podstawy LATEX-a. Tomasz Bielaczyc

Podstawy LATEX-a. Tomasz Bielaczyc Czym jest TEX TEX jest to komputerowy system profesjonalnego składu tekstu. Został stworzony przez Donalda Knutha i od 1982 roku, czyli momentu udostępnienia prawie się nie zmienił. Jest on natomiast intensywnie

Bardziej szczegółowo

Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2

Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania 1-100

Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania 1-100 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl Zadania 1-100 Udowodnij, że A (B C) = (A B) (A C) za pomocą diagramów Venna. Udowodnij formalnie, że (A B i A C) A B C oraz że (A

Bardziej szczegółowo

Rachunek różniczkowy i całkowy w przestrzeniach R n

Rachunek różniczkowy i całkowy w przestrzeniach R n Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań

Bardziej szczegółowo

Technologie Informacyjne Laboratorium. Ćwiczenie nr 1

Technologie Informacyjne Laboratorium. Ćwiczenie nr 1 Technologie Informacyjne Laboratorium Ćwiczenie nr 1 Zaawansowana edycja tekstu w programie Word I. Zagadnienia: 1. Automatyczne formatowanie akapitów 2. Tworzenie automatycznego spisu treści 3. Dodawanie

Bardziej szczegółowo

Writer wzory matematyczne

Writer wzory matematyczne Writer wzory matematyczne Procesor Writer pracuje zazwyczaj w trybie WYSIWYG, podczas wpisywania wzorów matematycznych nie całkiem. Wzory wpisujemy w oknie edytora wzorów w postaci tekstu. Tekst ten jest

Bardziej szczegółowo

Rozpoczynamy pracę z L A TEX-em

Rozpoczynamy pracę z L A TEX-em Rozpoczynamy pracę z L A TEX-em materiały pomocnicze do zajęć Wprowadzenie do LATEX-a Zofia Walczak Wydział Matematyki UŁ październik 2006 1. Struktura dokumentu w L A TEX-u Aby dokument tekstowy został

Bardziej szczegółowo

Technologie informacyjne: Arkusz kalkulacyjny

Technologie informacyjne: Arkusz kalkulacyjny Wrocław, 11.05.2018 Technologie informacyjne: Arkusz kalkulacyjny Wydział Matematyki Politechniki Wrocławskiej Andrzej Giniewicz Dzisiaj na zajęciach... Podstawy korzystania z arkuszy kalkulacyjnych. 1/68

Bardziej szczegółowo

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000 SYSTEMY LICZBOWE I. PODZIAŁ SYSTEMÓW LICZBOWYCH: systemy liczbowe: pozycyjne (wartośd cyfry zależy od tego jaką pozycję zajmuje ona w liczbie): niepozycyjne (addytywne) (wartośd liczby jest sumą wartości

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Stany równoważne Stany p i q są równoważne,

Bardziej szczegółowo

Wymagania edycyjne dla prac dyplomowych realizowanych w Wydziale Techniki Morskiej

Wymagania edycyjne dla prac dyplomowych realizowanych w Wydziale Techniki Morskiej Wymagania edycyjne dla prac dyplomowych realizowanych w Wydziale Techniki Morskiej Układ pracy dyplomowej: 1. Strona tytułowa (wzór strony tytułowej zamieszczony jest na końcu wymagań edycyjnych). 2. Druk

Bardziej szczegółowo

Całka Riemanna Dolna i górna suma całkowa Darboux

Całka Riemanna Dolna i górna suma całkowa Darboux Doln i górn sum cłkow Drboux π = {x 0,..., x k }, x 0 =, x k = b - podził odcink [, b]; x i = x i x i 1, i = 1, 2,..., k; P = P[, b] - rodzin podziłów odcink [, b]. m i = m i (f, π) := inf x [xi 1,x i

Bardziej szczegółowo

Wprowadzenie do Mathcada 1

Wprowadzenie do Mathcada 1 Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z matematyki dla uczniów gimnazjów województwa kujawsko-pomorskiego

Wojewódzki Konkurs Przedmiotowy z matematyki dla uczniów gimnazjów województwa kujawsko-pomorskiego Wojewódzki Konkurs Przedmiotowy z matematyki dla uczniów gimnazjów województwa kujawsko-pomorskiego Informacja o przygotowaniu zestawu dla ucznia na etapie szkolnym Dla każdego ucznia należy: 1. wydrukować

Bardziej szczegółowo

Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne

Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Metod Numerycznych Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne 1 Zadania 1. Obliczyć numerycznie

Bardziej szczegółowo

INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR

INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR 1. Algorytm XOR Operacja XOR to inaczej alternatywa wykluczająca, oznaczona symbolem ^ w języku C i symbolem w matematyce.

Bardziej szczegółowo

Ćwiczenia nr 2. Edycja tekstu (Microsoft Word)

Ćwiczenia nr 2. Edycja tekstu (Microsoft Word) Dostosowywanie paska zadań Ćwiczenia nr 2 Edycja tekstu (Microsoft Word) Domyślnie program Word proponuje paski narzędzi Standardowy oraz Formatowanie z zestawem opcji widocznym poniżej: Można jednak zmodyfikować

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel 3 kwietnia 203 Definicja (ciągu liczbowego). Ciagiem liczbowym nazywamy funkcję odwzorowuja- ca zbiór liczb naturalnych w zbiór liczb rzeczywistych. Wartość

Bardziej szczegółowo

1. Znaki dostępne na etapie projektowania formuł matematycznych w programie opracowywania kursu, zadania. a. Litery łacioskie małe, duże.

1. Znaki dostępne na etapie projektowania formuł matematycznych w programie opracowywania kursu, zadania. a. Litery łacioskie małe, duże. Nr postępowania 01/8.2/2011 Załącznik nr 1 Katowice, 21 marca 2011 roku ZAPYTANIE OFERTOWE NA OPRACOWANIE MODUŁU PRACA W GRUPIE Projekt pn. Integracja procesów e-learningowych obejmująca proces opracowywania

Bardziej szczegółowo

Temat 10 : Poznajemy zasady pracy w edytorze tekstu Word.

Temat 10 : Poznajemy zasady pracy w edytorze tekstu Word. Temat 10 : Poznajemy zasady pracy w edytorze tekstu Word. 1. Edytor tekstu WORD to program (edytor) do tworzenia dokumentów tekstowych (rozszerzenia:.doc (97-2003),.docx nowszy). 2. Budowa okna edytora

Bardziej szczegółowo

1. Narzędzia główne: WORD 2010 INTERFEJS UŻYTKOWNIKA. wycinamy tekst, grafikę

1. Narzędzia główne: WORD 2010 INTERFEJS UŻYTKOWNIKA. wycinamy tekst, grafikę 1. Narzędzia główne: wycinamy tekst, grafikę stosowanie formatowania tekstu i niektórych podstawowych elementów graficznych umieszczane są wszystkie kopiowane i wycinane pliki wklejenie zawartości schowka

Bardziej szczegółowo

ZASADY REDAGOWANIA PRACY LICENCJACKIEJ

ZASADY REDAGOWANIA PRACY LICENCJACKIEJ 1 ZASADY REDAGOWANIA PRACY LICENCJACKIEJ ZASADY OGÓLNE Praca licencjacka pisana jest samodzielnie przez studenta. Format papieru: A4. Objętość pracy: 40-90 stron. Praca drukowana jest dwustronnie. Oprawa:

Bardziej szczegółowo

Część wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B:

Część wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B: Zbiory 1 Rozważmy dowolne dwa zbiory A i B. Suma A B składa się z wszystkich elementów, które należą do zbioru A lub do zbioru B: (x A B) (x A x B). Część wspólna (przekrój) A B składa się z wszystkich

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

KONFERENCJA NAUKOWO TECHNICZNA WARSZTAT PRACY RZECZOZNAWCY BUDOWLANEGO. Wytyczne do materiałów konferencyjnych

KONFERENCJA NAUKOWO TECHNICZNA WARSZTAT PRACY RZECZOZNAWCY BUDOWLANEGO. Wytyczne do materiałów konferencyjnych XIII KONFERENCJA NAUKOWO TECHNICZNA Wytyczne do materiałów konferencyjnych Informacje organizacyjne: Referaty zamawiane - objętość do 20 stron Referaty zgłaszane - objętość do 10 stron Prace w formacie

Bardziej szczegółowo

WYDAWNICTWO UNIWERSYTETU EKONOMICZNEGO W KATOWICACH. Wskazówki dla autorów publikujących w Serii Studia Ekonomiczne Zeszyty Naukowe Wydziałowe

WYDAWNICTWO UNIWERSYTETU EKONOMICZNEGO W KATOWICACH. Wskazówki dla autorów publikujących w Serii Studia Ekonomiczne Zeszyty Naukowe Wydziałowe WYDAWNICTWO UNIWERSYTETU EKONOMICZNEGO W KATOWICACH Wskazówki dla autorów publikujących w Serii Studia Ekonomiczne Zeszyty Naukowe Wydziałowe WYMAGANIA TECHNICZNE 1. Format pliku:.doc lub.docx (format

Bardziej szczegółowo

GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.

GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. 1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość

Bardziej szczegółowo

INFORMATYKA TEST DIAGNOZUJĄCY WIEDZĘ Z ZAKRESU GIMNAZJUM

INFORMATYKA TEST DIAGNOZUJĄCY WIEDZĘ Z ZAKRESU GIMNAZJUM INFORMATYKA TEST DIAGNOZUJĄCY WIEDZĘ Z ZAKRESU GIMNAZJUM Wybierz prawidłową odpowiedź i zaznacz ją na Karcie odpowiedzi. Stawiając znak X w odpowiedniej kratce. 1. Która z wymienionych nazw nie oznacza

Bardziej szczegółowo

TABULATORY - DOKUMENTY BIUROWE

TABULATORY - DOKUMENTY BIUROWE TABULATORY - DOKUMENTY BIUROWE Autoformatowanie Znaczniki tabulacji Ćwiczenie 1 Ćwiczenie 2 Wcięcia i tabulatory Objaśnienia i podpisy Wcięcia w akapitach Ćwiczenia Tabulatory są umownymi znacznikami powodującymi

Bardziej szczegółowo

Rozpoczynamy pracę z L A TEX-em

Rozpoczynamy pracę z L A TEX-em Rozpoczynamy pracę z L A TEX-em materiały pomocnicze do zajęć Wprowadzenie do LATEX-a Zofia Walczak Wydział Matematyki UŁ październik 2006 1. Struktura dokumentu w L A TEX-u Aby dokument tekstowy został

Bardziej szczegółowo

L A TEX - bardzo krótkie wprowadzenie

L A TEX - bardzo krótkie wprowadzenie 1 Wstęp L A TEX - bardzo krótkie wprowadzenie (wersja 0.2) Marzena M. Tefelska L A TEXjest systemem umożliwiającym zaawansowane składanie tekstu. Daje możliwość przygotowywania zarówno prostych tekstów,

Bardziej szczegółowo

Uwagi dotyczące techniki pisania pracy

Uwagi dotyczące techniki pisania pracy Uwagi dotyczące techniki pisania pracy Każdy rozdział/podrozdział musi posiadać przynajmniej jeden akapit treści. Niedopuszczalne jest tworzenie tytułu rozdziału którego treść zaczyna się kolejnym podrozdziałem.

Bardziej szczegółowo

Podstawy systemu L A TEX

Podstawy systemu L A TEX systemu L A TEX wersja 0.5 27 kwietnia 2006 1 2 3 4 5 1 Zalogować się do systemu. 2 Otworzyć okienko terminala. 3 Korzystać z podstawowych komend systemowych Linuksa: tworzenie katalogów i plików, kopiowanie

Bardziej szczegółowo

Definiowanie języka przez wyrażenie regularne(wr)

Definiowanie języka przez wyrażenie regularne(wr) Wykład3,str1 Definiowanie języka przez wyrażenie regularne(wr) DEFINICJA: (wyrażenia regularne) M(specjalneznakinienależącedoalfabetu:{,},, ) literyalfabetusąwr złożeniawrsąwr: jeśliw 1 iw 2 sąwr,to{w

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA TYTUŁ PRACY PISZEMY W MIEJSCU TEGO TEKSTU

POLITECHNIKA POZNAŃSKA TYTUŁ PRACY PISZEMY W MIEJSCU TEGO TEKSTU POLITECHNIKA POZNAŃSKA WYDZIAŁ ELEKTRYCZNY Instytut Matematyki PRACA DYPLOMOWA LICENCJACKA/MAGISTERSKA TYTUŁ PRACY PISZEMY W MIEJSCU TEGO TEKSTU Imię Nazwisko Promotor: prof. dr hab. Jan Kowalski POZNAŃ,

Bardziej szczegółowo

KONFERENCJA NAUKOWO TECHNICZNA WARSZTAT PRACY RZECZOZNAWCY BUDOWLANEGO Wytyczne do materiałów reklamowych

KONFERENCJA NAUKOWO TECHNICZNA WARSZTAT PRACY RZECZOZNAWCY BUDOWLANEGO Wytyczne do materiałów reklamowych XIV KONFERENCJA NAUKOWO TECHNICZNA WARSZTAT PRACY RZECZOZNAWCY BUDOWLANEGO 2016 Wytyczne do materiałów reklamowych (zamieszczonych w materiałach konferencyjnych) Informacje organizacyjne: Przygotowane

Bardziej szczegółowo

Zależności funkcyjne

Zależności funkcyjne Zależności funkcyjne Plan wykładu Pojęcie zależności funkcyjnej Dopełnienie zbioru zależności funkcyjnych Postać minimalna zbioru zależności funkcyjnych Domknięcie atrybutu relacji względem zależności

Bardziej szczegółowo

Parsery LL(1) Teoria kompilacji. Dr inż. Janusz Majewski Katedra Informatyki

Parsery LL(1) Teoria kompilacji. Dr inż. Janusz Majewski Katedra Informatyki Parsery LL() Teoria kompilacji Dr inż. Janusz Majewski Katedra Informatyki Zadanie analizy generacyjnej (zstępującej, top-down) symbol początkowy już terminale wyprowadzenie lewostronne pierwszy od lewej

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

#$%&"!' ()*+$,% -$)%.)/ 01! *0,,2* %2, 40,-7 $$$

#$%&!' ()*+$,% -$)%.)/ 01! *0,,2* %2, 40,-7 $$$ M NM O *+ 62-3B6 8 -C 6-B7 6 * *+5 2 B9 A: 6:!"#$% '!"#$%' ()* +,-. $/0(1()*$ +,!' + -.+ -/ (* +,!' + - / +,!'0!" $(1 234.56789: $(1 ;. *; ' +,!' 1 $% )# ?@ABCDE!6 9: $(1 FGH IJ!" $/0(1 IJKL

Bardziej szczegółowo

Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu

Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu Problem Hilberta: 9 Czy istnieje ogólna mechaniczna procedura, która w zasadzie pozwoliłaby nam po kolei rozwiązać wszystkie matematyczne problemy (należące do odpowiednio zdefiniowanej klasy)? 2 Przykłady

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2016 POZIOM ROZSZERZONY 1. Rozwiązania zadań i odpowiedzi wpisuj

Bardziej szczegółowo

Lista 6. Kamil Matuszewski 13 kwietnia D n =

Lista 6. Kamil Matuszewski 13 kwietnia D n = Lista 6 Kamil Matuszewski 3 kwietnia 6 3 4 5 6 7 8 9 Zadanie Mamy Pokaż, że det(d n ) = n.... D n =.... Dowód. Okej. Dla n =, n = trywialne. Załóżmy, że dla n jest ok, sprawdzę dla n. Aby to zrobić skorzystam

Bardziej szczegółowo

Podstawy nauk przyrodniczych Matematyka Zbiory

Podstawy nauk przyrodniczych Matematyka Zbiory Podstawy nauk przyrodniczych Matematyka Zbiory Katarzyna Kluzek i Adrian Silesian Zakład Genetyki Molekularnej Człowieka tel.618295833 adrian.silesian@amu.edu.pl katarzyna.kluzek@amu.edu.pl Pokój 1.117

Bardziej szczegółowo

Ciągłość funkcji f : R R

Ciągłość funkcji f : R R Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +

Bardziej szczegółowo

This line will be in the second paragraph, too.

This line will be in the second paragraph, too. Ćwiczenia: 1. Napiszmy pierwszy plik LaTeXa: \documentclass{article} \begin{document} Hello World! This is the second paragraph. This line will be in the second paragraph, too. This is the third paragraph.

Bardziej szczegółowo

Przenoszenie, kopiowanie formuł

Przenoszenie, kopiowanie formuł Przenoszenie, kopiowanie formuł Jeżeli będziemy kopiowali komórki wypełnione tekstem lub liczbami możemy wykorzystywać tradycyjny sposób kopiowania lub przenoszenia zawartości w inne miejsce. Jednak przy

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

To jest tekst pierwszej części dokumentu. Szczególy zawarto w pracy \cite{gonzato}.

To jest tekst pierwszej części dokumentu. Szczególy zawarto w pracy \cite{gonzato}. 1. Wpisać nastepujący szablon dokumentu jako plik tekstowy pierwszy.tex: \documentclass[a4paper,12pt]{article} \usepackage[mex]{polski} \usepackage[cp1250]{inputenc} \title{mój dokument} \author{jan Kowalski}

Bardziej szczegółowo

Cw.12 JAVAScript w dokumentach HTML

Cw.12 JAVAScript w dokumentach HTML Cw.12 JAVAScript w dokumentach HTML Wstawienie skryptu do dokumentu HTML JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania.skrypty Java- Script mogą być zagnieżdżane

Bardziej szczegółowo

Stałe i zmienne znakowe. Stała znakowa: znak

Stałe i zmienne znakowe. Stała znakowa: znak Stałe i zmienne znakowe. Stała znakowa: znak Na przykład: a, 1, 0 c Każdy znak jest reprezentowany w pamięci przez swój kod. Kody alfanumerycznych znaków ASCII to liczby z przedziału [32, 127]. Liczby

Bardziej szczegółowo

Wstęp do Programowania potok funkcyjny

Wstęp do Programowania potok funkcyjny Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline Procedury wyższych rzędów 1 Procedury wyższych rzędów jako abstrakcje konstrukcji programistycznych Intuicje Procedury wyższych rzędów

Bardziej szczegółowo

10 zadań związanych z granicą i pochodną funkcji.

10 zadań związanych z granicą i pochodną funkcji. 0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()

Bardziej szczegółowo

C++ wprowadzanie zmiennych

C++ wprowadzanie zmiennych C++ wprowadzanie zmiennych Każda zmienna musi być zadeklarowana, należy określić jej nazwę (identyfikator) oraz typ. Opis_typu lista zmiennych Dla każdej zmiennej rezerwowany jest fragment pamięci o określonym

Bardziej szczegółowo

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie), Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości

Bardziej szczegółowo

INSTRUKCJA DLA AUTORÓW. INFORMATION FOR AUTHORS (Tłumaczenie tytułu artykułu w języku angielskim.)

INSTRUKCJA DLA AUTORÓW. INFORMATION FOR AUTHORS (Tłumaczenie tytułu artykułu w języku angielskim.) XVII Sympozjum Modelowanie i Symulacja Systemów Pomiarowych 20-24 września 2009r., Krynica INSTRUKCJA DLA AUTORÓW Imię i nazwisko autora(-ów) 1) STRESZCZENIE Niniejsza instrukcja dotyczy sposobu przygotowania

Bardziej szczegółowo