Studium przypadku: Church
|
|
- Bernard Mucha
- 6 lat temu
- Przeglądów:
Transkrypt
1 Studium przypadku: Church Adam Olszewski UPJP2, Copernicus Center
2 Zdanie Jestem tutaj przez przypadek.
3 Literatura Church, A. [1940]: On the concept of a random sequence, Bulletin of American Mathematical Society 46(1940): Olszewski, A. [1999]: Teza Churcha a platonizm, Zagadnienia Filozoczne w Nauce 24(1999): Urbaniak, R. [2011]: How Not To Use the Church-Turing Thesis Against Platonism, Philosophia Mathematica (III) 19(2011): 7489.
4 Schemat argumentu w oryginalnej postaci (i) (Teza Churcha) (zaªo»enie) (ii) (Platonizm) (Teza Churcha) (na podstawie opisanej funkcji) (iii) (Teza Churcha) (Teza Churcha) (podstawienie prawa logiki) (iv) (Teza Churcha) (Platonizm) (z (ii) na podstawie prawa logiki) (v) (Platonizm) (z (iii), (iv), (i) i reg. odrywania)
5 Teza Churcha Ka»da efektywnie obliczalna funkcja (w sensie intuicyjnym) jest rekurencyjna.
6 Klasa funkcji rekurencyjnych R Jest to najmniejszy zbiór funkcji speªniaj cy warunki: 1. Zawiera funkcje bazowe: O(x) = 0 S(x) = x + 1 I n i (x 1,..., x n ) = x i, (1 i n) 2. Jest zamkni ty na skªadanie funkcji tzn. je±li g 1, g 2,..., g m, h s w R, to równie» f jest w R: f (x 1,..., x n ) = h(g 1 (x 1,..., x n ),..., g m (x 1,..., x n )) 3. Jest zamkni ty na schemat rekursji prostej tzn. je±li g oraz h s w R, to równie» f jest w R: f (x 1,..., x n, 0) = g(x 1,..., x n ) f (x 1,..., x n, y + 1) = h(x 1,..., x n, y, f (x 1,..., x n, y) 4. Jest zakni ty na schemat µ-rekursji tzn. je±li g jest w R, to równie» f jest w R: x1,..., x n y(g(x 1,..., x n, y) = 0) f (x 1,..., x n ) = µy(g(x 1,..., x n, y) = 0.
7 Peªniejsze sformuªowanie przesªanek (Machine) A machine, let us call it M, generates randomly an innite sequence of 0s and 1s (or: is in the process of generating such a sequence). (Function) A function f exists such that for any x N, f (x) = y i y is the number that M produces at step x. (M F) [Function] follows from [Machine]. (f -Non-Turing) Function f is not Turing-computable. (Computable) Function f is eectively computable. (Non-CTT) Zatem: There are eectively computable functions that are not Turing-computable.
8 Krytyka Prof. Urbaniak zauwa»a,»e (M F) (wraz z (Function)) s wyrazem platonizmu, oraz»e argument ten uderza równie» w alternatywne lozoe matematyki np. pewn wersj nominalizmu oraz wersj TVR (obie twierdz,»e twierdzenia matematyki s prawdziwe). So (Machine), (Function), (M F), (f -Non-Turing), (Computable) taken together entail (Non-CTT). By contraposition, (CTT) entails the negation of their conjunction. If (CTT) is to be upheld, at least one of the premises has to be rejected. Olszewski thinks (M F) is the culprit.: A A, (A B) ( A B). (f -Non-Turing) zale»y od przyj tego poj cia losowo±ci (randomness). Wedle niektórych uj»aden ci g losowy nie jest Turing-obliczalny (np. Church).
9 Krytyka c.d. Omawiany argument (gdyby dziaªaª) mo»na by u»y przeciwko tezie Churcha. "(Machine2) A machine, let us call it M, generates randomly an innite sequence of 0s and 1s (or: is in the process of generating such a sequence), and it so happens that the function corresponding to this process is not Turing-computable." Ciekawe spostrze»enie Piccininiego Wa»na (by mo»e podstawowa) kwestia efektywnej obliczalno±ci f (Computable?) "(Repeatability) (also called duplicability by Epstein and Carnielli) for a machine to be usable it has to be possible to use it many times to compute the value for one and the same input."
10 Krytyka c.d. "(Settability) for a machine to be usable, we have to be able to set it to the original state, so that when we run it (again) it will produce the same output for the same inputs (as Piccinini points out, resettability with the repeatability of input yields repeatability)." "It seems that instead of using the notion of eective computability (Computable) relies on a related but importantly dierent loose notion that of there being a way to nd out. This is a notion akin both to veriability and falsiability (in the neopositivist's sense) and eective computability, so that among computable functions are not only eectively computable ones, but also those whose value (for any given argument) in principle can be discovered by empirical means."
11 Krytyka c.d. Poj cie efektywnej obliczalno±ci u»yte w (Computable) jest inne od tego o którym mówi teza Churcha. W zasadzie obserwowalne jest pewnym rodzajem idealizacji innego rodzaju ni» w przypadku obliczalno±ci.
12 Fizyczna wersja tezy Churcha Kwestia zycznej wersji tezy Churcha (FTC) (FTC) (Computable)? (FTC)[Teza M] (Kreisel 1965) Zachowanie dowolnego dyskretnego systemu zycznego, ewoluuj cego zgodnie z lokalnymi prawami mechaniki jest rekurencyjne. Uwaga Urbaniaka: Another issue is that actual coin tossing is a macroscopic mechanical process which is in principle predictable, whose apparent unpredictability results from its sensitivity to initial conditions and our practical inability to establish those initial conditions with sucient precision.
13 Wa»na kwestia dotycz ca tezy Churcha Now a formal denition of eective calculability, for functions of positive integers, has been proposed by the author, and the adequacy of this denition to represent the empirical notion of an eective calculation nds strong support in a recent result of Turing. (Church, s. 133)
14 Poj cie ci gu losowego wg. von Misesa Niesko«czony ci g a 1, a 2,... zer i jedynek jest ci giem losowym, gdy speªnione s warunki: (1) Je±li f (r) jest liczb jedynek pomi dzy pierwszymi r wyrazami ci gu f = a 1, a 2,..., to f (r)/r zmierza do granicy p, gdy r zmierza do niesko«czono±ci. (2) Je±li a n1, a n2,... jest dowolnym niesko«czonym podci giem ci gu a 1, a 2,..., utworzonym przez usuni cie pewnych wyrazów drugiego ci gu zgodnie z pewn reguª, wedle której usuni cie b d¹ zachowanie wyrazu a n zale»y jedynie od n oraz wyrazów a 1, a 2,..., a n 1, oraz g(r) jest liczb jedynek w±ród pierwszych r wyrazów ci gu a n1, a n2,..., to g(r)/r zmierza do tej samej granicy p, gdy r zmierza do niesko«czono±ci.
15 Poj cie ci gu losowego Churcha Niesko«czony ci g a 1, a 2,... zer i jedynek jest ci giem losowym, gdy speªnione s dwa warunki: (1) Je±li f (r) jest liczb jedynek pomi dzy pierwszymi r wyrazami ci gu f = a 1, a 2,..., to f (r)/r zmierza do granicy p, gdy r zmierza do niesko«czono±ci. (2) Je±li ϕ jest dowoln efektywnie obliczaln funkcj okre±lon w liczbach naturalnych, je±li b 1 = 1, b n+1 = 2b n + a n, c n = ϕ(b n ), oraz liczby n takie,»e c n = 1 tworz w porz dku wielko±ci niesko«czony ci g n 1, n 2,..., oraz g(r) jest liczb jedynek w±ród pierwszych r wyrazów ci gu a n1, a n2,..., to g(r)/r zmierza do tej samej granicy p, gdy r mierza do niesko«czono±ci.
16 Kwestia (f -Non-Turing) Czy funkcja f nie jest obliczalna przez»adn maszyn Turinga? Trudno sobie wyobrazi matematyczny dowód jej Turing-obliczalno±ci.
17 Miara zbioru funkcji efektywnie obliczalnych Zbiór miary zero := (w teorii miary) zbiór mierzalny rozwa»anej przestrzeni mierzalnej < X, F > nieistotny z punktu widzenia zadanej na niej miary µ: F [0, ], tzn. dowolny zbiór X F dla którego zachodzi warunek: µ(x ) = 0. Je±li przestrze«mierzalna jest taka,»e ka»dy podzbiór zbioru miary zero jest mierzalny, to zbiory miary zero s zaniedbywalne i odwrotnie. Je±li ustalimy jak ± wªasno± W przysªuguj c wyª cznie funkcjom efektywnie obliczalnym i zakªadaj c,»e ten zbiór jest miary zero, to mówimy,»e wªasno± W zachodzi prawie nigdzie, a równocze±nie W zachodzi prawie wsz dzie. W szczególno±ci wªasno± by funkcj rekurencyjn zachodzi prawie nigdzie lub u»ywaj c jezyka teorii prawdopodobie«stwa zachodzi prawie nigdy. Tutaj pojawia si znowu teza Churcha. Gdy» zaªo»enie o tym,»e zbiór funkcji efektywnie obliczalnych ma miar zero jest, konsekwencj tezy Churcha. Co wcale nie jest takie oczywiste.
18 Lu¹ne uwagi Zatem (f -Non-Turing) jest bardzo prawdopodobne, cho rzeczywi±cie nie jest pewne. Je±li faªszywe, to przez przypadek. Z Aksjomatu Wyboru wynika istnienie zbiorów liczb rzeczywistych, które s niemierzalne w sensie Lebesgue'a. Je±li przyjmie si negacj Aksjomatu Wyboru w postaci tzw. Aksjomatu Determinacji, to ka»dy podzbiór zbioru liczb rzeczywistych jest mierzalny. Pomi dzy Aksjomatem Determinacji a tez Churcha istnieje intymny zwi zek.
19 Mo»liwo± zdeniowania przypadku w terminach modalnych (Teofrast) Cp = df p p Mo»liwo± rozumiana jest tutaj w jednym z dwóch sensów Artystotelesowskich jako dopeªnienie niemo»liwo±ci.
20 Zako«czenie Dzi kuj za uwag i cierpliwo±c!!!
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski
Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej
Mierzalne liczby kardynalne
czyli o miarach mierz cych wszystko Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 26 stycznia 2007 Ogólny problem miary Pytanie Czy na pewnym zbiorze X istnieje σ-addytywna miara probabilistyczna,
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych
Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja
Ekstremalnie maªe zbiory
Maªe jest pi kne Instytut Matematyki Uniwersytetu Warszawskiego Nadarzyn, 27.08.2011 Zbiory silnie miary zero Przypomnienie Zbiór X [0, 1] jest miary Lebesgue'a zero, gdy dla ka»dego ε > 0 istnieje ci
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
Wykªad 4. Funkcje wielu zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.
Programowanie funkcyjne. Wykªad 13
Programowanie funkcyjne. Wykªad 13 Siªa wyrazu rachunku lambda Zdzisªaw Spªawski Zdzisªaw Spªawski: Programowanie funkcyjne. Wykªad 13, Siªa wyrazu rachunku lambda 1 Wst p Warto±ci logiczne Liczby naturalne
Metody dowodzenia twierdze«
Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku
i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017
i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_
Revenue Maximization. Sept. 25, 2018
Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time
ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL
Read Online and Download Ebook ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL DOWNLOAD EBOOK : ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA Click link bellow and free register
Filozofia z elementami logiki Klasyfikacja wnioskowań I część 2
Filozofia z elementami logiki Klasyfikacja wnioskowań I część 2 Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan: definicja pojęcia wnioskowania wypowiedzi inferencyjne i wypowiedzi
Zbiory ograniczone i kresy zbiorów
Zbiory ograniczone i kresy zbiorów Def.. Liczb m nazywamy ograniczeniem dolnym a liczb M ograniczeniem górnym zbioru X R gdy (i) x m; (ii) x M. Mówimy,»e zbiór X jest ograniczony z doªu (odp. z góry) gdy
JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1
J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
First-order logic. Usage. Tautologies, using rst-order logic, relations to natural language
First-order logic. Usage Tautologies, using rst-order logic, relations to natural language A few important tautologies 1 x(ϕ ψ) ( xϕ xψ); A few important tautologies 1 x(ϕ ψ) ( xϕ xψ); 2 xϕ ϕ, o ile x
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,
Stargard Szczecinski i okolice (Polish Edition)
Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz Click here if your download doesn"t start automatically Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science
Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4
Przekroje Dedekinda 1
Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2
Podstawy matematyki dla informatyków
Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru
Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout
Machine Learning for Data Science (CS4786) Lecture 24 Differential Privacy and Re-useable Holdout Defining Privacy Defining Privacy Dataset + Defining Privacy Dataset + Learning Algorithm Distribution
Maªgorzata Murat. Modele matematyczne.
WYKŠAD I Modele matematyczne Maªgorzata Murat Wiadomo±ci organizacyjne LITERATURA Lars Gårding "Spotkanie z matematyk " PWN 1993 http://moodle.cs.pollub.pl/ m.murat@pollub.pl Model matematyczny poj cia
A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.
Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta
Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)
Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,
Logika intuicjonistyczna
9 listopada 2011 Plan 1 2 3 4 Plan 1 2 3 4 Intuicjonizm Pogl d w lozoi matematyki wprowadzony w 1912 L. E. J. Brouwera. Twierdzenia matematyczne powstaj dzi ki intuicjom naszego umysªu. Skupienie si na
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
Zadania. 4 grudnia k=1
Zadania 4 grudnia 205 Zadanie. Poka»,»e dla dowolnych liczb zespolonych z,..., z n istnieje zbiór B {,..., n}, taki,»e n z k π z k. k B Zadanie 2. Jakie warunki musz speªnia ci gi a n i b n, aby istniaªy
Indeksowane rodziny zbiorów
Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T
Metodydowodzenia twierdzeń
1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych
Linear Classification and Logistic Regression. Pascal Fua IC-CVLab
Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv
Rachunek lambda, zima
Rachunek lambda, zima 2015-16 Wykład 2 12 października 2015 Tydzień temu: Własność Churcha-Rossera (CR) Jeśli a b i a c, to istnieje takie d, że b d i c d. Tydzień temu: Własność Churcha-Rossera (CR) Jeśli
Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji).
Plan Spis tre±ci 1 Granica 1 1.1 Po co?................................. 1 1.2 Denicje i twierdzenia........................ 4 1.3 Asymptotyka, granice niewªa±ciwe................. 7 2 Asymptoty 8 2.1
GRY EDUKACYJNE I ICH MOŻLIWOŚCI DZIĘKI INTERNETOWI DZIŚ I JUTRO. Internet Rzeczy w wyobraźni gracza komputerowego
GRY EDUKACYJNE I ICH MOŻLIWOŚCI DZIĘKI INTERNETOWI DZIŚ I JUTRO Internet Rzeczy w wyobraźni gracza komputerowego NAUKA PRZEZ ZABAWĘ Strategia nauczania: Planowe, Zorganizowane Lub zainicjowane przez nauczyciela
EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH
Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques
Logika i teoria mnogości Wykład 14
Teoria rekursji Teoria rekursji to dział logiki matematycznej zapoczątkowany w latach trzydziestych XX w. Inicjatorzy tej dziedziny to: Alan Turing i Stephen Kleene. Teoria rekursji bada obiekty (np. funkcje,
SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS
Piotr Mikulski 2006 Subversion is a free/open-source version control system. That is, Subversion manages files and directories over time. A tree of files is placed into a central repository. The repository
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012
Podstawy matematyki dla informatyków Wykªad 3 Funkcje 18 pa¹dziernika 2012 Deniowanie funkcji Funkcje caªkowite i cz ±ciowe Denicja wprost: f (x) = x + y f = λx. x + y Denicja warunkowa: { n/2, je±li n
Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering
Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each
Instrukcja obsługi User s manual
Instrukcja obsługi User s manual Konfigurator Lanberg Lanberg Configurator E-mail: support@lanberg.pl support@lanberg.eu www.lanberg.pl www.lanberg.eu Lanberg 2015-2018 WERSJA VERSION: 2018/11 Instrukcja
Twoje osobiste Obliczenie dla systemu ogrzewania i przygotowania c.w.u.
Twoje osobiste Obliczenie dla systemu ogrzewania i przygotowania c.w.u. Wyłączenie odpowiedzialności This Erp calculation Tool is provided by Brötje. Access to and use of this Tool shall impose the following
Strategia czy intuicja?
Strategia czy intuicja czyli o grach niesko«czonych Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 29 sierpnia 2009 Denicja gry Najprostszy przypadek: A - zbiór (na ogóª co najwy»ej przeliczalny),
MaPlan Sp. z O.O. Click here if your download doesn"t start automatically
Mierzeja Wislana, mapa turystyczna 1:50 000: Mikoszewo, Jantar, Stegna, Sztutowo, Katy Rybackie, Przebrno, Krynica Morska, Piaski, Frombork =... = Carte touristique (Polish Edition) MaPlan Sp. z O.O Click
3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka
EGZAMIN MAGISTERSKI, 26.06.2017 Biomatematyka 1. (8 punktów) Rozwój wielko±ci pewnej populacji jest opisany równaniem: dn dt = rn(t) (1 + an(t), b gdzie N(t) jest wielko±ci populacji w chwili t, natomiast
17-18 września 2016 Spółka Limited w UK. Jako Wehikuł Inwestycyjny. Marek Niedźwiedź. InvestCamp 2016 PL
17-18 września 2016 Spółka Limited w UK Jako Wehikuł Inwestycyjny InvestCamp 2016 PL Marek Niedźwiedź A G E N D A Dlaczego Spółka Ltd? Stabilność Bezpieczeństwo Narzędzia 1. Stabilność brytyjskiego systemu
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
kdpw_stream Struktura komunikatu: Status komunikatu z danymi uzupełniającymi na potrzeby ARM (auth.ste ) Data utworzenia: r.
kdpw_stream Struktura komunikatu: Status komunikatu z danymi uzupełniającymi na potrzeby ARM (auth.ste.001.01) Data utworzenia: 12.09.2017 r. : Status komunikatu z danymi uzupełniającymi na potrzeby ARM
Schematy i reguªy wnioskowania w logice rozmytej
Wybrane schematy i reguªy wnioskowania w logice rozmytej Uniwersytet l ski Letnia Szkoªa Instytutu Matematyki, Brenna, 24-28 wrze±nia 2018 w logice klasycznej Sylogizm hipotetyczny (A B) (B C) A C w logice
DOI: / /32/37
. 2015. 4 (32) 1:18 DOI: 10.17223/1998863 /32/37 -,,. - -. :,,,,., -, -.,.-.,.,.,. -., -,.,,., -, 70 80. (.,.,. ),, -,.,, -,, (1886 1980).,.,, (.,.,..), -, -,,,, ; -, - 346, -,.. :, -, -,,,,,.,,, -,,,
Few-fermion thermometry
Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl
Geometria Algebraiczna
Geometria Algebraiczna Zadania domowe: seria 1 Zadania 1-11 to powtórzenie podstawowych poj z teorii kategorii. Zapewne rozwi zywali Pa«stwo te zadania wcze±niej, dlatego nie b d one omawiane na wiczeniach.
Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.
Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór
Maksymalna liczba punktów do zdobycia: 80. Zadanie 1: a) 6 punktów, b) 3 punkty, Zadanie 2: a) 6 punktów, b) 4 punkty,
VII Wojewódzki Konkurs Matematyczny "W ±wiecie Matematyki" im. Prof. Wªodzimierza Krysickiego Etap drugi - 17 lutego 2015 r. Maksymalna liczba punktów do zdobycia: 80. 1. Drugi etap Konkursu skªada si
Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)
Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip) Embeded systems Architektura układów PSoC (Cypress) Możliwości bloków cyfrowych i analogowych Narzędzia
Installation of EuroCert software for qualified electronic signature
Installation of EuroCert software for qualified electronic signature for Microsoft Windows systems Warsaw 28.08.2019 Content 1. Downloading and running the software for the e-signature... 3 a) Installer
f(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi:
Pochodna funkcji Def 1 Pochodn wªa±ciw funkcji f w punkcie x 0 nazywamy granic f (x 0 ) := lim o ile granica ta istnieje i jest wªa±ciwa Funkcj f nazywamy wtedy ró»niczkowaln Przy zaªo»eniu,»e f jest ci
Matematyka. Justyna Winnicka. rok akademicki 2016/2017. Szkoªa Gªówna Handlowa
Matematyka Justyna Winnicka Szkoªa Gªówna Handlowa rok akademicki 2016/2017 kontakt, konsultacje, koordynator mail: justa_kowalska@yahoo.com, jkowal4@sgh.waw.pl, justyna.winnicka@sgh.waw.pl konsultacje:
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL
ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL Formanminsidemlookmatmpoliticsxmculturexmsocietymandm economyminmthemregionmofmcentralmandmeasternm EuropexmtheremismnomothermsourcemlikemNew Eastern EuropeImSincemitsmlaunchminmPw--xmthemmagazinemhasm
KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu
➏ Filozoa z elementami logiki Na podstawie wykªadów dra Mariusza Urba«skiego Sylogistyka Przypomnij sobie: stosunki mi dzy zakresami nazw KLASYCZNE ZDANIA KATEGORYCZNE Trzy znaczenia sªowa jest trzy rodzaje
Klaps za karę. Wyniki badania dotyczącego postaw i stosowania kar fizycznych. Joanna Włodarczyk
Klaps za karę Wyniki badania dotyczącego postaw i stosowania kar fizycznych Joanna Włodarczyk joanna.wlodarczyk@fdds.pl Warszawa, 1.12.2017 Fundacja Dajemy Dzieciom Siłę, 2017 Informacje o badaniu Badanie
All Saints Day. Chants of the Proper of the Mass for. Adapted to English words and Edited by. Bruce E. Ford
Chants of the Proper of the Mass for All Saints Day Adapted to English words and Edited by Bruce E. Ford Copyright 2009 by Bruce E. Ford All rights reserved. All Saints Day Introit Gaudeamus i. BzzzzacscSYÎzz7czzhzzzchzygczygcFTzzzzzcgÐkÐhczíyígzzÄzzzjUc
Gramatyka i słownictwo
WYMAGANIA PROGRAMOWE Z JĘZYKA ANGIELSKIEGO KL. 4 a/b SP4 Gramatyka i słownictwo uczeń potrafi poprawnie operować niedużą ilością struktur prostych (czasownik to be - w formie pełnej i skróconej, zaimki
INSTRUKCJE JAK AKTYWOWAĆ SWOJE KONTO PAYLUTION
INSTRUKCJE JAK AKTYWOWAĆ SWOJE KONTO PAYLUTION Kiedy otrzymana przez Ciebie z Jeunesse, karta płatnicza została zarejestrowana i aktywowana w Joffice, możesz przejść do aktywacji swojego konta płatniczego
Dominika Janik-Hornik (Uniwersytet Ekonomiczny w Katowicach) Kornelia Kamińska (ESN Akademia Górniczo-Hutnicza) Dorota Rytwińska (FRSE)
Czy mobilność pracowników uczelni jest gwarancją poprawnej realizacji mobilności studentów? Jak polskie uczelnie wykorzystują mobilność pracowników w programie Erasmus+ do poprawiania stopnia umiędzynarodowienia
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
Tychy, plan miasta: Skala 1: (Polish Edition)
Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000
aforementioned device she also has to estimate the time when the patients need the infusion to be replaced and/or disconnected. Meanwhile, however, she must cope with many other tasks. If the department
Extraclass. Football Men. Season 2009/10 - Autumn round
Extraclass Football Men Season 2009/10 - Autumn round Invitation Dear All, On the date of 29th July starts the new season of Polish Extraclass. There will be live coverage form all the matches on Canal+
Jak zasada Pareto może pomóc Ci w nauce języków obcych?
Jak zasada Pareto może pomóc Ci w nauce języków obcych? Artykuł pobrano ze strony eioba.pl Pokazuje, jak zastosowanie zasady Pareto może usprawnić Twoją naukę angielskiego. Słynna zasada Pareto mówi o
Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:
Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy
Arytmetyka pierwszego rz du
Arytmetyka pierwszego rz du B dziemy bada arytmetyk liczb naturalnych z z perspektywy logiki pierwszego rz du. Sªowo arytmetyka u»ywane jest w odniesieniu do ró»nych teorii dotycz cych liczb naturalnych.
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama
1 Poj cia pomocnicze. Przykªad 1. A A d
Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy
Podstawy matematyki a mechanika kwantowa
Podstawy matematyki a mechanika kwantowa Paweł Klimasara Uniwersytet Śląski 9 maja 2015 Paweł Klimasara (Uniwersytet Śląski) Podstawy matematyki a mechanika kwantowa 9 maja 2015 1 / 12 PLAN PREZENTACJI
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Prawdopodobie«stwo warunkowe, twierdzenie Bayesa, niezale»no± zdarze«.
Prawdopodobie«stwo warunkowe, twierdzenie Bayesa, niezale»no± zdarze«. Alicja Czy» WFTiMS April 14, 2010 Spis tre±ci 1 Wprowadzenie Denicja prawdopodobie«stwa warunkowego Twierdzenie Bayesa Niezale»no±
EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO
Miejsce na naklejkę z kodem szkoły dysleksja MJA-R1_1P-072 EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO MAJ ROK 2007 Instrukcja dla zdającego POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 120 minut 1. Sprawdź, czy
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. Strona 1 1. Please give one answer. I am: Students involved in project 69% 18 Student not involved in
Compressing the information contained in the different indexes is crucial for performance when implementing an IR system
4.2 Compression Compressing the information contained in the different indexes is crucial for performance when implementing an IR system on current hardware it is typically much faster to read compressed
Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego
Zdumiewaj cy ±wiat niesko«czono±ci Instytut Matematyki Uniwersytetu Warszawskiego Festiwal Nauki, 20.09.2011 Nasze do±wiadczenia hotelowe Fakt oczywisty Hotel nie przyjmie nowych go±ci, je»eli wszystkie
y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.
The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)
Baptist Church Records
Baptist Church Records The Baptist religion was a religious minority in Poland, making it more difficult to know when and where records of this religion might be available. In an article from Rodziny,
HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07
HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L07 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K ZW W8 W7 Ø x 6 szt. / pcs Ø7 x 70 Narzędzia / Tools DO MONTAŻU POTRZEBNE
HISZPANSKI NA POZIOMIE PDF
HISZPANSKI NA POZIOMIE PDF ==> Download: HISZPANSKI NA POZIOMIE PDF HISZPANSKI NA POZIOMIE PDF - Are you searching for Hiszpanski Na Poziomie Books? Now, you will be happy that at this time Hiszpanski
HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08
HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K O G ZW W8 W4 20 szt. / pcs 4 szt. / pcs 4 szt. / pcs 4 szt. / pcs
General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com *6378719168* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2013 2 hours Candidates
JĘZYK ANGIELSKI POZIOM PODSTAWOWY
EGZAMIN MATURALNY W ROKU SZKOLNYM 2013/2014 JĘZYK ANGIELSKI POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA MAJ 2014 ZADANIA ZAMKNIĘTE Zadanie 1. Obszar standardów Rozumienie ze słuchu 1.1. 1.2.
POLITYKA PRYWATNOŚCI / PRIVACY POLICY
POLITYKA PRYWATNOŚCI / PRIVACY POLICY TeleTrade DJ International Consulting Ltd Sierpień 2013 2011-2014 TeleTrade-DJ International Consulting Ltd. 1 Polityka Prywatności Privacy Policy Niniejsza Polityka
Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form
Formularz recenzji magazynu Review Form Identyfikator magazynu/ Journal identification number: Tytuł artykułu/ Paper title: Recenzent/ Reviewer: (imię i nazwisko, stopień naukowy/name and surname, academic
Zadania z PM II A. Strojnowski str. 1. Zadania przygotowawcze z Podstaw Matematyki seria 2
Zadania z PM II 010-011 A. Strojnowski str. 1 Zadania przygotowawcze z Podstaw Matematyki seria Zadanie 1 Niech A = {1,, 3, 4} za± T A A b dzie relacj okre±lon wzorem: (a, b) T, gdy n N a n = b. a) Ile
DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!
1 HAPPY ANIMALS B09 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K1 M M1 ZM1 Z T G1 17 szt. / pcs 13 szt. / pcs B1 13 szt. / pcs W4 13 szt. / pcs W6 14 szt. / pcs U1 1 szt. / pcs U N1
Równowano modeli oblicze
Równowano modeli oblicze Interpretacja rachunku 1 2 Twierdzenie Gödla o pełnoci Interpretacja jzyka FOL W 1931 K. Gödel udowodnił, e Jeeli formuła jest prawdziwa, to istnieje dowód tej formuły. Problem
LOGIKA ALGORYTMICZNA
LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R
Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne
Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Odwrotno±ci liczby rzeczywistej 1. 9 8 2. 0, (1) 3. 8 9 4. 0, (8) 3 4 4 4 1 jest liczba Odwrotno±ci liczby rzeczywistej 3 4 4 4
Zbiory i odwzorowania
Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):