Słownik kodów gramatykowych a spójność logiczna tekstów
|
|
- Michał Urban
- 6 lat temu
- Przeglądów:
Transkrypt
1 Słownik kodów gramatykowych a spójność logiczna tekstów Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN
2 Prawo Herdana (scałkowana wersja prawa Zipfa) Rozpatrujemy teksty w języku naturalnym (np. w j. polskim): V liczba różnych słów w tekście, n długość tekstu. Obserwuje się empiryczną zależność V n β, gdzie β waha się między 0.5 a 1 w zależności od zbioru tekstów. Władysław Kuraszkiewicz, Józef Łukaszewicz (1951), Pierre Guiraud (1954), Gustav Herdan (1964), H. S. Heaps (1978).
3 Czy prawo Herdana świadczy o ożywionym procesie? If a Martian scientist sitting before his radio in Mars accidentally received from Earth the broadcast of an extensive speech [...], what criteria would he have to determine whether the reception represented the effect of animate process [...]? It seems that [...] the only clue to the animate origin would be this: the arrangement of the occurrences would be neither of rigidly fixed regularity such as frequently found in wave emissions of purely physical origin nor yet a completely random scattering of the same. George Kingsley Zipf (1965:187)
4 Małpa przy maszynie do pisania Prawa Zipfa i Herdana zaobserwujemy, jeżeli kolejne litery i spacje tekstu będziemy uzyskiwać wciskając klawisze losowo. Benoit B. Mandelbrot (1953), George A. Miller (1957).
5 Nowe objaśnienie prawa Herdana Udowodnię twierdzenie, które można nieformalnie wyrazić w sposób następujący, przyjmując β (0, 1): Jeżeli tekst długości n opisuje n β niezależnych faktów w sposób powtarzalny, to tekst ten zawiera n β / log n różnych słów. Do formalnego wyrażenia przyjmuję trzy postulaty: 1 Słowa będą rozumiane jako symbole nieterminalne w najkrótszym gramatykowym kodowaniu tekstu. 2 Tekst jest emitowany przez mocno nieergodyczne źródło informacji o skończonej energii. 3 Fakty są niezależnymi binarnymi zmiennymi losowymi przewidywalnymi na podstawie tekstu w sposób niezmienniczy ze względu na przesunięcia.
6 Gramatyka bezkontekstowa generująca jeden tekst G = A 1 A 2 A 2 A 4 A 9 A 4 A 3 A 7 A 5 A 2 A 6 A 9 A 6 A 3 A 3 A 9 A 7 A 8,A 5 A 4 Jeszcze raz A 5 A 8 nam. A 6 Sto lat A 7 Niech A 8 żyje A 9! Sto lat! Sto lat! Niech żyje, żyje nam. Sto lat! Sto lat! Niech żyje, żyje nam. Jeszcze raz! Jeszcze raz! Niech żyje, żyje nam. Niech żyje nam.
7 Rozmiar słownika i kody gramatykowe Rozmiar słownika gramatyki: V[G] := n, jeżeli G = A 1 α 1, A 2 α 2,..., A n α n. Kod gramatykowy to funkcja postaci C = B(Γ( )), gdzie 1 transformacja gramatykowa Γ : X + G dla każdego napisu w X + zwraca gramatykę Γ(w) generującą ten napis. 2 koder B : G X + koduje tę gramatykę jako (inny) napis. John C. Kieffer, En-hui Yang (2000), Moses Charikar, Eric Lehman,..., Abhi Shelat (2005).
8 Kody dopuszczalnie minimalne Niech X = {0, 1,..., D 1}. Transformację gramatykową Γ oraz kod B(Γ( )) nazywam dopuszczalnie minimalnymi, jeżeli 1 B(Γ(w)) B(G) dla każdej gramatyki G generującej w, 2 koder ma postać B(G) = B S (B N(G)), 3 B N koduje gramatykę G = {A 1 α 1, A 2 α 2,..., A n α n } jako ciąg liczb całkowitych B N (G) := F 1 (α 1)DF 2 (α 2)D...DF n (α n)(d + 1), wykorzystując F i (x) := x, x X, F i (A j ) := D j i, 4 B S : {0} N X + jest iniekcją, zbiór B S ({0} N) jest bezprzedrostkowy, B S ( ) jest funkcją niemalejącą i spełnia lim sup B S (n) / log D n = 1. n
9 Dwie klasy procesów stochastycznych Niech (X i ) i Z będzie procesem stochastycznym na przestrzeni (Ω, J, P), gdzie X i : Ω X zaś alfabet X jest przeliczalny. Oznaczmy bloki X m:n := (X i ) m k n. Proces (X i ) i Z nazywam mocno nieergodycznym, jeżeli istnieją zmienne (Z k ) k N IID, P(Z k = 0) = P(Z k = 1) = 1 2, i funkcje s k : X {0, 1}, k N, takie, że lim P(s k(x t+1:t+n ) = Z k ) = 1, t Z. n Y = k N 2 k Z k jest mierzalna wzgl. σ-ciała niezmienniczego. Proces (X i ) i Z nazywam o skończonej energii, jeżeli P(X t+1:t+m = u X t n:t = w) Kc m, t Z.
10 Główny wynik Twierdzenie 1 U δ (n) := {k N : P (s k (X 1:n ) = Z k ) δ}. Niech (X i ) i Z będzie stacjonarnym procesem mocno nieergod. o skończ. energii nad skończ. alfabetem X. Przypuśćmy, że lim inf n card U δ (n) n β > 0 dla pewnego β (0, 1) i δ ( 1, 1). Wówczas 2 ( ) V[Γ(X1:n )] p lim sup E > 0, p > 1, n n β (log n) 1 dla każdej dopuszczalnie minimalnej transformacji gramatykowej Γ.
11 Pierwsze skojarzone stwierdzenie Oznaczmy informację wzajemną między n-blokami E(n) := I(X 1:n ; X n+1:2n ) = E log Twierdzenie 2 P(X 1:2n ) P(X 1:n )P(X n+1:2n ). Niech (X i ) i Z będzie stacjonarnym procesem mocno nieergodycznym nad skończonym alfabetem X. Przypuśćmy, że lim inf n card U δ (n) n β > 0 dla pewnego β (0, 1) i δ ( 1, 1). Wówczas 2 lim sup n E(n) n β > 0.
12 Drugie skojarzone stwierdzenie Twierdzenie 3 Niech (X i ) i Z będzie stacjonarnym procesem o skończonej energii nad skończonym alfabetem X. Przypuśćmy, że lim inf n E(n) n β > 0 dla pewnego β (0, 1). Wówczas ( ) V[Γ(X1:n )] p lim sup E > 0, p > 1, n n β (log n) 1 dla każdej dopuszczalnie minimalnej transformacji gramatykowej Γ.
13 Informacja wzajemna dla języka naturalnego W oparciu o pomiary entropii warunkowej Shannona (1950) dla tekstów w języku angielskim, Hilberg (1990) sformułował hipotezę, że dla odpowiedniego procesu stochastycznego modelującego teksty informacja wzajemna między n-blokami spełnia E(n) n β, β 1/2. Twierdzenie 2 racjonalna motywacja hipotezy Hilberga. Twierdzenie 3 z hipotezy Hilberga wynika prawo Herdana. Ponadto Twierdzenie 1 wskazuje, dlaczego prawo Herdana można zaobserwować dla tłumaczenia tego samego tekstu na różne języki, dlaczego wykładnik w prawie Herdana może do pewnego stopnia zależeć od tekstu.
14 1 Sformułowanie problemu 2 Zarys dowodu 3 Przykłady procesów 4 Podsumowanie
15 Entropia, pseudoentropia, długość kodu Określmy entropię n-bloku oraz intensywność entropii H(n) := H(X 1:n ) = E log P(X 1:n ), Oznaczmy także pseudoentropię h := lim n H(n)/n. H U (n) := hn + [log 2 η(δ)] card U δ (n). Niech X = {0, 1,..., D 1} zaś C = B(Γ( )) będzie dopuszczalnie minimalnym kodem. Oznaczmy jego długość Mamy nierówność oraz równość intensywności H C (n) := E C(X 1:n ) log D. H C (u) H(n) H U (n) lim n HC (n)/n = lim H(n)/n = lim n n HU (n)/n = h.
16 Dolne ograniczenie nadwyżki długości kodu E C (n) Niech funkcja f : N R spełnia lim k f(k)/k = 0 oraz f(n) 0 dla wszystkich oprócz skończenie wielu n. Wówczas dla nieskończenie wielu n zachodzi 2f(n) f(2n) 0. Z równości i nierówności na poprzednim slajdzie otrzymujemy lim inf n lim inf n card U δ (n) E C (n) > 0 = lim sup > 0, n β n n β (Tw. 1) card U δ (n) E(n) > 0 = lim sup > 0, n β n nβ (Tw. 2) lim inf n E(n) > 0 = lim sup nβ n E C (n) n β > 0. (Tw. 3) dla E(n) = 2H(n) H(2n) oraz E C (n) = 2H C (n) H C (2n).
17 Górne ograniczenie nadwyżki długości kodu E C (n) E C (n) = E [ C(X 1:n ) + C(X n+1:2n ) C(X 1:2n ) ] log D. Dla dopuszczalnie minimalnego kodu C = B(Γ( )), C(u) + C(v) C(w) W 0 V[Γ(w)](1 + L(w)), gdzie w = uv dla u, v X +, L(w) oznacza maksymalną długość powtórzenia w napisie w, zaś W 0 = B S (D + 1). Dla procesu o skończonej energii (X i ) i Z, sup E n N ( ) L(X1:n ) q <, q > 0. log n
18 1 Sformułowanie problemu 2 Zarys dowodu 3 Przykłady procesów 4 Podsumowanie
19 Binarny proces wymienialny Rozważmy rodzinę binarnych rozkładów IID P(X 1:n = x 1:n θ) = n i=1 θx i(1 θ) 1 x i. Skonstruujmy proces (X i ) i Z taki, że P(X 1:n = x 1:n ) = 1 0 P(X 1:n = x 1:n θ)π(θ)dθ dla rozkładu a priori π(θ) > 0. Dla Y = lim n n 1 n i=1 X i mamy P(Y y) = y 0 π(θ)dθ. Proces (X i ) i Z jest mocno nieergodyczny, ponieważ Y ma rozkład ciągły. Jednakże blok X 1:n jest warunkowo niezależny od X n+1:2n względem sumy S n := n i=1 X i. Zatem E(n) = I(X 1:n ; X n+1:2n ) = I(S n ; X n+1:2n ) H(S n ) log(n + 1).
20 Proces, który wymyśliłem w Santa Fe Institute Proces (X i ) i Z postaci X i := (K i, Z Ki ), gdzie (K i ) i Z i (Z k ) k N są niezależnymi procesami IID, P(K i = k) = k 1/β /ζ(β 1 ), β (0, 1), P(Z k = z) = 1, z {0, 1}. 2 Interpretacja lingwistyczna Proces (X i ) i Z jest ciągiem losowych stwierdzeń niesprzecznie opisujących stan wcześniej wylosowanego obiektu (Z k ) k N. X i = (k, z) stwierdza, że k-ty bit (Z k ) k N ma wartość Z k = z. Mamy card U δ (n) An β. Niestety alfabet X = N {0, 1} jest nieskończony.
21 Stacjonarne kodowanie tego procesu Funkcję f : X Y + rozszerzamy do funkcji f Z : X Z Y Z, f Z ((x i ) i Z ) :=...f(x 1 )f(x 0 ).f(x 1 )f(x 2 )..., x i X. Dla miary ν na (Y Z, Y Z ) definiujemy średnią stacjonarną ν jako n 1 1 ν(a) = lim ν T i (A), n n i=0 gdzie T((y i ) i Z ) := (y i+1 ) i Z jest przesunięciem. Twierdzenie 4 Niech µ = P((X i ) i Z ) dla procesu z poprzedniego slajdu. Weźmy Y = {0, 1, 2} oraz f(k, z) := b(k)z2, gdzie 1b(k) {0, 1} + jest rozwinięciem binarnym liczby k. Proces o rozkładzie µ (f Z ) 1 spełnia założenie Tw. 1 dla β > 0.77.
22 Proces mieszający Proces (X i ) i Z postaci X i := (K i, Z i,ki ), gdzie (K i ) i Z i (Z ik ) i Z, k N, są procesami niezależnymi, P(K i = k) = k 1/β /ζ(β 1 ), zaś (Z ik ) i Z są łańcuchami Markowa o rozkładzie P(Z ik = z) = 1 2, P(Z ik = z Z i 1,k = z) = 1 p k. (K i ) i Z IID, Obiekt (Z ik ) k N opisywany w tekście (X i ) i Z jest funkcją czasu i. Mamy lim inf n E(n)/n β > 0 dla p k P(K i = k). Stacjonarne kodowanie tego procesu jest procesem ergodycznym i także spełnia lim inf n E(n)/n β > 0.
23 1 Sformułowanie problemu 2 Zarys dowodu 3 Przykłady procesów 4 Podsumowanie
24 Czy możemy sprawdzić, które objaśnienie jest lepsze? Małpa przy maszynie do pisania Prawa Zipfa i Herdana zaobserwujemy, jeżeli kolejne litery i spacje tekstu będziemy uzyskiwać wciskając klawisze losowo. vs. Nowe objaśnienie Jeżeli tekst długości n opisuje n β niezależnych faktów w sposób powtarzalny, to tekst ten zawiera n β / log n różnych słów.
25 Czy można dobrze oszacować informację wzajemną? 1 Czy można wzmocnić Twierdzenia 1, 2 i 3? Rozpatrzeć procesy asymptotycznie średnio stacjonarne (AMS). Wyprowadzić wzrost słownika prawie na pewno. Zastąpić lim sup n przez lim inf n. 2 Niech C(u) będzie najkrótszym program generującym u. E C (n) jest informacją algorytmiczną między blokami. Niech (ω k ) k N będzie algorytmicznie losową liczbą z (0, 1). Zauważmy, że E(n) = 0 ale E C (n) n β dla X i := (K i, ω Ki ). Czy za pomocą pewnych kodów uniwersalnych można rozróżnić pewne źródła AMS o małej vs. dużej E C (n)? Czy za pomocą słownika kodów gramatykowach można rozróżnić pewne źródła AMS o małej vs. dużej E C (n)? 3 Czy istnieją kody dopuszczalnie minimalne, które są obliczalne w czasie wielomianowym? (Lub dostatecznie podobne kody?) Niech (X i ) i Z będzie binarnym processem IID. Wówczas V[Γ(X 1:n ] = Ω ( hn log n ) dla transformacji nieredukowalnych.
26 Moje prace Ł. Dębowski, (2012). Mixing, Ergodic, and Nonergodic Processes with Rapidly Growing Information between Blocks. IEEE Transactions on Information Theory, vol. 58, pp Ł. Dębowski, (2011). On the Vocabulary of Grammar-Based Codes and the Logical Consistency of Texts. IEEE Transactions on Information Theory, vol. 57, pp Ł. Dębowski, (2010). Variable-Length Coding of Two-Sided Asymptotically Mean Stationary Measures. Journal of Theoretical Probability, 23: Ł. Dębowski, (2007). Menzerath s law for the smallest grammars. In: P. Grzybek, R. Koehler, eds., Exact Methods in the Study of Language and Text. Mouton de Gruyter. (77 85)
Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej
Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN Co to jest entropia nadwyżkowa? Niech (X i ) i Z będzie procesem
Maksymalne powtórzenia w tekstach i zerowa intensywność entropii
Maksymalne powtórzenia w tekstach i zerowa intensywność entropii Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN Warszawa 1 Wprowadzenie 2 Ograniczenia górne i dolne 3 Przykłady
Maksymalne powtórzenia w tekście i hipotezy probabilistyczne
Maksymalne powtórzenia w tekście i hipotezy probabilistyczne Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN Warszawa 2 (4) Warsztat badawczy i Perypatetyczna Konferencja Modelowanie
Autoreferat. 1. Imię i nazwisko. 2. Posiadane dyplomy. 3. Zatrudnienie w jednostkach naukowych. 4. Podstawowe osiągnięcie.
Autoreferat 1. Imię i nazwisko Łukasz Dębowski 2. Posiadane dyplomy 1999 Uniwersytet Warszawski, Wydział Fizyki Dyplom ukończenia studiów magisterskich w zakresie fizyki specjalność fizyka teoretyczna
Metody probabilistyczne
Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy
Teorioinformacyjne twierdzenie Gödla,
Teorioinformacyjne twierdzenie Gödla, czyli co ma logika do statystyki? Łukasz Dębowski ldebowsk@ipipan.waw.pl Instytut Podstaw Informatyki PAN Temat referatu Twierdzenie, o którym opowiem, jest pomysłem
Dowód pierwszego twierdzenia Gödela o. Kołmogorowa
Dowód pierwszego twierdzenia Gödela o niezupełności arytmetyki oparty o złożoność Kołmogorowa Grzegorz Gutowski SMP II rok opiekun: dr inż. Jerzy Martyna II UJ 1 1 Wstęp Pierwsze twierdzenie o niezupełności
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Języki formalne i automaty Ćwiczenia 1
Języki formalne i automaty Ćwiczenia Autor: Marcin Orchel Spis treści Spis treści... Wstęp teoretyczny... 2 Wprowadzenie do teorii języków formalnych... 2 Gramatyki... 5 Rodzaje gramatyk... 7 Zadania...
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
Elementy teorii informacji i kodowania
i kodowania Entropia, nierówność Krafta, kodowanie optymalne Marcin Jenczmyk m.jenczmyk@knm.katowice.pl 17 kwietnia 2015 M. Jenczmyk Spotkanie KNM i kodowania 1 / 20 Niech S = {x 1,..., x q } oznacza alfabet,
Praktyczne i teoretyczne problemy statystycznego modelowania języka naturalnego
Praktyczne i teoretyczne problemy statystycznego modelowania języka naturalnego Część I: Historia i inżynieria Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki Polskiej Akademii Nauk
Entropia Kodowanie. Podstawy kompresji. Algorytmy kompresji danych. Sebastian Deorowicz
Algorytmy kompresji danych 2007 02 27 Plan wykładu 1 Modelowanie i kodowanie 2 Modelowanie i kodowanie Plan wykładu 1 Modelowanie i kodowanie 2 Modelowanie i kodowanie definicja stowarzyszona ze zbiorem
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła
Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła autokorelacji Łukasz Dębowski ldebowsk@ipipan.waw.pl Instytut Podstaw Informatyki PAN autokorelacji p. 1/25 Zarys referatu Co to sa procesy
Prawo Zipfa próby objaśnień
Prawo Zipfa próby objaśnień Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN 1 Prawo Zipfa (przypomnienie) 2 Klasyfikacja objaśnień 3 Model małpy przy klawiaturze 4 Losowanie ze
JAO - Wprowadzenie do Gramatyk bezkontekstowych
JAO - Wprowadzenie do Gramatyk bezkontekstowych Definicja gramatyki bezkontekstowej Podstawowymi narzędziami abstrakcyjnymi do opisu języków formalnych są gramatyki i automaty. Gramatyka bezkontekstowa
teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015
teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015 1 zakres materiału zakres materiału 1. Czym jest teoria informacji? 2. Wprowadzenie matematyczne. 3. Entropia i informacja.
System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10
System BCD z κ Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna Semestr letni 2009/10 Rozważamy system BCD ze stałą typową κ i aksjomatami ω κ κ i κ ω κ. W pierwszej części tej notatki
Hierarchia Chomsky ego Maszyna Turinga
Hierarchia Chomsky ego Maszyna Turinga Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G = V skończony zbiór
2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego
2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną G = gdzie: N zbiór symboli nieterminalnych, T zbiór symboli terminalnych, P zbiór
Geometryczna zbieżność algorytmu Gibbsa
Geometryczna zbieżność algorytmu Gibbsa Iwona Żerda Wydział Matematyki i Informatyki, Uniwersytet Jagielloński 6 grudnia 2013 6 grudnia 2013 1 / 19 Plan prezentacji 1 Algorytm Gibbsa 2 Tempo zbieżności
Zadania z Rachunku Prawdopodobieństwa III - 1
Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka
n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :
4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna
Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka
Gramatyki, wyprowadzenia, hierarchia Chomsky ego Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G =
Teoria miary. WPPT/Matematyka, rok II. Wykład 5
Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa
Granica kompresji Kodowanie Shannona Kodowanie Huffmana Kodowanie ciągów Kodowanie arytmetyczne. Kody. Marek Śmieja. Teoria informacji 1 / 35
Kody Marek Śmieja Teoria informacji 1 / 35 Entropia Entropia określa minimalną statystyczną długość kodowania (przyjmijmy dla prostoty że alfabet kodowy A = {0, 1}). Definicja Niech X = {x 1,..., x n }
Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.
3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X
Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,
Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 27 luty, 2012 Ośrodkowość procesów Dalej zakładamy, że (Ω, Σ, P) jest zupełną przestrzenią miarową. Definicja.
Hierarchia Chomsky ego
Hierarchia Chomsky ego Gramatyki nieograniczone Def. Gramatyką nieograniczoną (albo typu 0) nazywamy uporządkowaną czwórkę G= gdzie: % Σ - skończony alfabet symboli końcowych (alfabet, nad którym
Entropia to wielkość określająca liczbę bitów informacji zawartej w danej wiadomości lub źródle. Spełnia ona trzy naturalne warunki: I(s) jest
Entropia to wielkość określająca liczbę bitów informacji zawartej w danej wiadomości lub źródle. Spełnia ona trzy naturalne warunki: I(s) jest malejącą funkcją prawdopodobieństwa zajścia zdarzenia s. I(s)
Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga
RAP 412 21.01.2009 Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga Wykładowca: Andrzej Ruciński Pisarz: Łukasz Waszak 1 Wstęp Na ostatnim wykładzie przedstawiliśmy twierdzenie o zbieżności
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Rachunek Prawdopodobieństwa i Statystyka
Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne
Prawdopodobieństwo i statystyka
Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki
Algorytm Metropolisa-Hastingsa
Seminarium szkoleniowe, 25 kwietnia 2006 Plan prezentacji 1 Problem Metoda MCMC 2 Niezależny algorytm Metropolisa-Hastingsa Bła dzenie losowe Zbieżność procedury Metropolisa-Hastingsa Problem Metoda MCMC
28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126
Problem Dirichleta, proces Wienera Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 28 maja, 2012 Funkcje harmoniczne Niech będzie operatorem Laplace a w
Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa
Systemy uczace się 2009 1 / 32 Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa Hung Son Nguyen Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski email: son@mimuw.edu.pl Grudzień
Topologia zbioru Cantora a obwody logiczne
Adam Radziwończyk-Syta Michał Skrzypczak Uniwersytet Warszawski 1 lipca 2009 http://students.mimuw.edu.pl/~mskrzypczak/dokumenty/ obwody.pdf Zbiór Cantora Topologia Definicja Przez zbiór Cantora K oznaczamy
Teoria Informacji - wykład. Kodowanie wiadomości
Teoria Informacji - wykład Kodowanie wiadomości Definicja kodu Niech S={s 1, s 2,..., s q } oznacza dany zbiór elementów. Kodem nazywamy wówczas odwzorowanie zbioru wszystkich możliwych ciągów utworzonych
Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa
Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,
1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista.
Literatura P. Billingsley, Miara i prawdopodobieństwo, PWN, Warszawa 1997, P. R. Halmos, Measure theory, Springer-Verlag, 1994, W, Kołodziej, naliza matematyczna, PWN, Warszawa 1978, S. Łojasiewicz, Wstęp
Chaotyczne generatory liczb pseudolosowych
Chaotyczne generatory liczb pseudolosowych Michał Krzemiński michalkrzeminski@wp.pl Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej Chaotyczne generatory liczb pseudolosowych -
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 9: Własności języków bezkontekstowych Sławomir Lasota Uniwersytet Warszawski 27 kwietnia 2016 Plan 1 Pompowanie języków bezkontekstowych 2 Własności domknięcia 3 Obrazy
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach
teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015
teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 1 wczoraj Wprowadzenie matematyczne. Entropia i informacja. Kodowanie. Kod ASCII. Stopa kodu. Kody bezprefiksowe.
1. Funkcje monotoniczne, wahanie funkcji.
1. Funkcje monotoniczne, wahanie funkcji. Zbiór X będziemy nazywali uporządkowanym, jeśli określona jest relacja zawarta w produkcie kartezjańskim X X, która jest spójna, antysymetryczna i przechodnia.
Gramatyki rekursywne
Gramatyki bezkontekstowe, rozbiór gramatyczny eoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyki rekursywne Niech będzie dana gramatyka bezkontekstowa G =
(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α
FUNKCJE BORELOWSKIE Rodzinę F podzbiorów zbioru X (tzn. F X) będziemy nazywali ciałem gdy spełnione są warunki: (1) Jeśli zbiór Y F, to dopełnienie X \ Y też należy do rodziny F. (2) Jeśli S F jest skończoną
Wstęp do Matematyki (4)
Wstęp do Matematyki (4) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Liczby kardynalne Jerzy Pogonowski (MEG) Wstęp do Matematyki (4) Liczby kardynalne 1 / 33 Wprowadzenie
Entropia w układach dynamicznych Środowiskowe Studia Doktoranckie z Nauk Matematycznych Uniwersytet Jagielloński, Kraków, marzec-kwiecień 2013
Entropia w układach dynamicznych Środowiskowe Studia Doktoranckie z Nauk Matematycznych Uniwersytet Jagielloński, Kraków, marzec-kwiecień 2013 Tomasz Downarowicz Instytut Matematyki i Informatyki Politechniki
Prawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
Prawdopodobieństwo i statystyka
Wykład V: Zmienne losowe i ich wartości oczekiwane 25 października 2017 Definicja zmiennej losowej Definicja Zmienne losowa to charakterystyka liczbowa wyniku eksperymentu losowego. Zmienne losowa na przestrzeni
TERMODYNAMIKA I FIZYKA STATYSTYCZNA
TERMODYNAMIKA I FIZYKA STATYSTYCZNA Lech Longa pok. D.2.49, II piętro, sektor D Zakład Fizyki Statystycznej e-mail: lech.longa@uj.edu.pl Dyżury: poniedziałki 13-14 można się umówić wysyłając e-maila 1
Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015
Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20
TERMODYNAMIKA I FIZYKA STATYSTYCZNA
TERMODYNAMIKA I FIZYKA STATYSTYCZNA Lech Longa pok. D.2.49, II piętro, sektor D Zakład Fizyki Statystycznej e-mail: lech.longa@uj.edu.pl Dyżury: poniedziałki 14-15.50 można się umówić wysyłając e-maila
JĘZYKIFORMALNE IMETODYKOMPILACJI
Stefan Sokołowski JĘZYKIFORMALNE IMETODYKOMPILACJI Inst. Informatyki Stosowanej, PWSZ Elbląg, 2009/2010 JĘZYKI FORMALNE reguły gry Wykład1,2X2009,str.1 Zasadnicze informacje: http://iis.pwsz.elblag.pl/
Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:
Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n
Wykład 11: Martyngały: definicja, twierdzenia o zbieżności
RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 11: Obliczalność i nieobliczalność Sławomir Lasota Uniwersytet Warszawski 6 maja 2015 Plan 1 Problemy częściowo rozstrzygalne 2 Problemy rozstrzygalne 3 Funkcje (częściowo)
JAO - lematy o pompowaniu dla jezykow bezkontekstowy
JAO - lematy o pompowaniu dla jezykow bezkontekstowych Postać normalna Chomsky ego Gramatyka G ze zbiorem nieterminali N i zbiorem terminali T jest w postaci normalnej Chomsky ego wtw gdy każda produkcja
Podstawy Informatyki: Kody. Korekcja błędów.
Podstawy Informatyki: Kody. Korekcja błędów. Adam Kolany Instytut Techniczny adamkolany@pm.katowice.pl Adam Kolany (PWSZ Nowy Sącz, IT) Podstawy Informatyki: Kody. Korekcja błędów. 11 stycznia 2012 1 /
Statystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
Języki i operacje na językach. Teoria automatów i języków formalnych. Definicja języka
Języki i operacje na językach Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Definicja języka Definicja języka Niech Σ będzie alfabetem, Σ* - zbiorem wszystkich łańcuchów
MNRP r. 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Grzegorz Kowalczyk
MNRP 18.03.2019r. Grzegorz Kowalczyk 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Definicja (σ - ciało) Niech Ω - dowolny zbiór. Rodzinę F P (Ω), gdzie P (Ω) jest rodziną wszystkich podzbiorów
Funkcje rekurencyjne
Funkcje rekurencyjne Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Funkcje rekurencyjne Funkcje rekurencyjne 1 / 34 Wprowadzenie
Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką
z losową stopą procentową i losową składką Instytut Matematyki i Informatyki Politechniki Wrocławskiej 10 czerwca 2008 Oznaczenia Wprowadzenie ξ n liczba wypłat w (n 1, n], Oznaczenia Wprowadzenie ξ n
Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi
M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)
GRAMATYKI BEZKONTEKSTOWE
GRAMATYKI BEZKONTEKSTOWE PODSTAWOWE POJĘCIE GRAMATYK Przez gramatykę rozumie się pewien układ reguł zadający zbiór słów utworzonych z symboli języka. Słowa te mogą być i interpretowane jako obiekty językowe
Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.
3. Wykłady 3 i 4: Języki i systemy dedukcyjne. Klasyczny rachunek zdań. 3.1. Monoidy wolne. Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy
Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też. A = (A, Q, q I, F, δ)
Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też L = {vw : vuw L dla pewnego u A takiego, że u = v + w } Rozwiązanie. Niech A =
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Gramatyki bezkontekstowe I Gramatyką bezkontekstową
Struktury formalne, czyli elementy Teorii Modeli
Struktury formalne, czyli elementy Teorii Modeli Szymon Wróbel, notatki z wykładu dra Szymona Żeberskiego semestr zimowy 2016/17 1 Język 1.1 Sygnatura językowa Sygnatura językowa: L = ({f i } i I, {P j
1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
Modulacja i kodowanie. Labolatorium. Kodowanie źródłowe Kod Huffman a
Modulacja i kodowanie Labolatorium Kodowanie źródłowe Kod Huffman a W tym ćwiczeniu zajmiemy się kodowaniem źródłowym (source coding). 1. Kodowanie źródłowe Głównym celem kodowanie źródłowego jest zmniejszenie
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 1 Kody cykliczne: dekodowanie Definicja 1 (Syndrom) Niech K będzie kodem cyklicznym z wielomianem generuja- cym g(x). Resztę z dzielenia słowa
Zadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
Kody blokowe Wykład 5a;
Kody blokowe Wykład 5a; 31.03.2011 1 1 Kolorowanie hiperkostki Definicja. W teorii grafów symbol Q n oznacza kostkę n-wymiarową, czyli graf o zbiorze wierzchołków V (Q n ) = {0, 1} n i zbiorze krawędzi
czyli o szukaniu miejsc zerowych, których nie ma
zerowych, których nie ma Instytut Fizyki im. Mariana Smoluchowskiego Centrum Badania Systemów Złożonych im. Marka Kaca Uniwersytet Jagielloński Metoda Metoda dla Warszawa, 9 stycznia 2006 Metoda -Raphsona
Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x),
Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: Fx sinx, Fx a e x mogą być dystrybuantami?. Podaj twierdzenie Lindeberga
(j, k) jeśli k j w przeciwnym przypadku.
Zadanie 1. (6 punktów) Rozważmy język słów nad alfabetem {1, 2, 3}, w których podciąg z pozycji parzystych i podciąg z pozycji nieparzystych są oba niemalejące. Na przykład 121333 należy do języka, a 2111
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie
Jądrowe klasyfikatory liniowe
Jądrowe klasyfikatory liniowe Waldemar Wołyński Wydział Matematyki i Informatyki UAM Poznań Wisła, 9 grudnia 2009 Waldemar Wołyński () Jądrowe klasyfikatory liniowe Wisła, 9 grudnia 2009 1 / 19 Zagadnienie
Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące.
Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/
Teoria informacji i kodowania Ćwiczenia
Teoria informacji i kodowania Ćwiczenia Piotr Chołda, Andrzej Kamisiński Katedra Telekomunikacji Akademii Górniczo-Hutniczej Kod źródłowy Kodem źródłowym nazywamy funkcję różnowartościową, która elementom
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
PEWNE ZASTOSOWANIA TEORII DYSTRYBUCJI I RACHUNKU OPERATOROWEGO W TEORII RÓWNAŃ RÓŻNICZKOWYCH
PEWNE ZASTOSOWANIA TEORII DYSTRYBUCJI I RACHUNKU OPERATOROWEGO W TEORII RÓWNAŃ RÓŻNICZKOWYCH WŁADYSŁAW KIERAT Oliver Heaviside w latach 1893-1899 opublikował trzytomową monografię: Elektromagnetic Theory,