Podstawy astrofizyki i astronomii
|
|
- Kacper Podgórski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Podstawy astrofizyki i astronomii Andrzej Odrzywołek Zakład Teorii Względności i Astrofizyki, Instytut Fizyki UJ 17 maja Fν[cm -2 s -1 MeV -1 ] pp 8 B CNO 13 N CNO 15 O CNO 17 F 7 Be 7 Be hep Eν[MeV]
2 Układ równań różniczkowych cyklu ppi p ` p Ñ d ` e` ` ν e tempo reakcji λ pp p ` d Ñ 3 He ` γ tempo reakcji λ pd 3 He `3He Ñ α ` 2p tempo reakcji λ 33 Obliczamy tempo zmian ilości protonów n p, deuteronów n d, jąder helu-3 n 3 oraz cząstek alfa n α: 9n p 2λ ppn 2 p λ pd n pn d ` 2λ 33 n 2 3 9n d `λ ppn 2 p λ pd n pn d 9n 3 `λ pd n pn d 2λ 33 n 2 3 9n α λ 33 n 2 3 Sensowność wypisanego układu równań można sprawdzić np: za pomocą zasady zachowania liczby barionowej: lub równoważnie: 4ÿ A i n i n p ` 2n d ` 3n 3 ` 4n α const, i 1 9n p ` 2 9n d ` 3 9n 3 ` 4 9n α 0.
3 Obliczenie szybkości reakcji Wyznaczenie współczynników określających szybkość reakcji wymaga wykonania kilku kroków: 1 obliczenie lub zmierzenie przekroju czynnego na reakcję, np: σ pp 2 uwzględnienie poprawek kulombowskich 3 uśrednienie w warunkach równowagi termicznej: gazu doskonałego W obliczeniach tempa reakcji często decydujące są dwa przeciwstawnie działające wyrazy, zależne od energii E Mv 2 {2 zderzających się jąder w układzie środka masy: ż 8 λ9 e kt E σpeqede 0 ż 8 0 e kt E SpEqe 2π Z 1 Z 2 e? 2 2E{M de rozkład Boltzmanna e E kt : ilość cząstek o dużych energiach maleje wykładniczo (tzw: ogon termiczny) odpychanie elektrostatyczne: e const Z 1 Z 2? E im większa energia, tym większe prawdopodobieństwo tunelowania i zajścia reakcji
4 Pik Gamowa e -E/kT e -Z1 Z2/ E Pik Gamowa
5 Cykl CNO Zupełnie odmiennym od opisanego wcześniej mechanizmem spalania wodoru jest cykl katalityczny CNO. Dominuje w gwiazdach o masie większej niż słoneczna. Cykl CNO
6 Kwazistatyczna ewolucja Słońca Gdyby jedyną rolą reakcji termojądrowych było produkowanie energii, to wystarczyłoby obliczyć jej wydajność. Reakcje jądrowe zmieniają także powoli skład izotopowy/chemiczny materii powyższe tak naprawdę decyduje o ewolucji gwiazdy w długiej skali czasowej: życia i śmierci gwiazdy. Także wszystkie neutrina emitowane przez Słońce są pochodzenia nuklearnego.
7 Spalanie wodoru w cyklu ppi T 15 ˆ 10 6 K, ρ 150 g/cc, tempo reakcji
8 Spalanie wodoru w cyklu ppi T 15 ˆ 10 6 K, ρ 150 g/cc, tempo reakcji
9 Emisja neutrinowa Słońca Obliczenie widma energetycznego neutrin słonecznych wymaga bardzo szczegółowego rozpatrzenia spalania wodoru: cykl ppi cykl ppii cykl ppiii cykl CNO Wszystkie neutrina (w tym pp i hep) pochodzą z rozpadów β jąder. W Słońcu występują dwa typy takich reakcji, na przykład: 1 ppii : wychwyt elektronu (neutrina berylowe, pep) 7 Be ` e Ñ 7 Li ` ν e 2 ppiii : rozpad β` (neutrina borowe, pp, hep, CNO) 8 B Ñ 8 Be ` e` ` ν e
10 Cykl pp
11 Typy widma neutrinowego ze Słońca ciągłe liniowe rozpad β` 8 B, pp, hep, CNO wychwyt ɛ pep, 7 Be Reakcja hep jest analogiczna do pp: 3 He ` p Ñ 4 He ` e`ν e W cyklu CNO pojawiają się neutrina z rozpadów 13 N, 15 O oraz 17 F.
12 Widmo (anty)neutrinowe z rozpadu neutronu Funkcyjną postać widma neutrinowego można łatwo zrozumieć analizując rachunek dotyczący prostszych procesów, np: rozpad β neutronu: rozpad β mionu: n Ñ p ` e ` ν e µ Ñ e ` ν e ` ν ν W ogólności prawdopodobieństwo rozpadu β wynosi: ż 2π xin H outy 2 δpe in E outqdn edn νdn out Z rozpadu µ otrzymujemy wartość stałej sprzężenia oddziaływań słabych, stałą Fermiego G F, natomiast z czasu rozpadu neutronu wartość xin H outy 2 dla procesów z udziałem protonów, neutronów, elektronów i neutrin. Dalej zakładam, że xin H outy 2 9M 2 jest znaną wielkością liczbową.
13 Widmo (anty)neutrinowe z rozpadu neutronu Zakładam, że proton i neutron spoczywa, czyli ilość stanów końcowych protonu wynosi 1. Pozostaje całkowanie po ilości stanów końcowych elektronów dn e d 3 p e{h 3 i neutrin dn ν d 3 p ν{h 3 : ż δpm n m p E e E νqd 3 p ed 3 p ν. Przechodzimy do układu sferycznego i całkując po wszystkich kierunkach elektronów i neutrin mamy: ż δpm n m p E e E νq4πp 2 e dpe4πp2 ν dpν. Dla elektronów E 2 e p2 e m2 e, dla neutrin Eν pc (c 1). Całkowanie delty Diraca sprowadza się do wyrugowania energii elektronu, bądź neutrina. W teorii rozpadu β na ogół ruguje się E ν, my robimy odwrotnie: E e Q E ν, gdzie: Q pm n m pqc 2 czyli całkowite tempo rozpadu jest proporcjonalne do: ż Q me b λ9 pq E νq 2 me 2 pq EνqE 2 ν deν 0
14 Widmo neutrin z procesów β Wynik uogólniony na przypadek, gdy elektrony tworzą gaz Fermiego: Wychwyt elektronu: a df ν 9 E2 νpe ν Qq peν Qq 2 m 2 e ΘpE ν Q m eq (1) de ν 1 ` exp rpe ν Q µq{kt s Rozpad β`: a df ν 9 E2 νp Q Eνq peν Qq 2 m 2 e Θp Q m e E νq (2) de ν 1 ` exp pe ν Q ` µq{kt W przypadku Słońca gaz elektronowy jest niezdegenerowany (µ 0), a jego temperatura znacznie niższa niż różnice mas jąder ( Q " kt ). Powoduje to, że pierwsze widmo wygląda prawie jak δ Diraca, natomiast drugie to prosta funkcja algebraiczna (licznik we wzorze powyżej).
15 Widmo neutrin berylowych
16 Widmo neutrin berylowych Phase space factor arb. units Phase space factor arb. units
17 Widmo neutrin z rozpadu β` 13 N (cykl CNO) b df ν 9E 2 de νp Q E νq pe ν Qq 2 m 2 e ν Znormalizowane do 1 widmo ν e z rozpadu 13 N E ν [MeV]
18 Kompletne (prawie) widmo neutrin słonecznych Fν[cm -2 s -1 MeV -1 ] pp 8 B CNO 13 N CNO 15 O CNO 17 F 7 Be 7 Be hep E ν [MeV]
19 Problem neutrin słonecznych Problemem neutrin słonecznych nazywamy duży (aż do 50%) deficyt neutrin obserwowanych na Ziemi w porównaniu z teorią budowy gwiazdy. Współczesne wyjaśnienie: neutrina są produkowane zgodnie z modelem Słońca i znanymi sieciami reakcji termojądrowych neutrina posiadają masę produkowane są w stanie kwantowym ν e, który nie posiada dobrze określonej masy, a propagują się jako stany własne masy, czyli są superpozycją ν e, ν ν, ν τ po drodze od centrum stany kwantowe ulegają mieszaniu, zarówno w Słońcu (poprzez oddziaływanie z elektronami, tzw. oscylacje w materii), jak i w próżni, a także wewnątrz Ziemi część neutrin, które narodziły się jako elektronowe, staje się mionowymi/taonowymi i nie jest wykrywana w niektórych detektorach Obecnie uważa się, że problem neutrin słonecznych został (prawie) rozwiązany.
20 Propagacja neutrin 1 neutrina są produkowane i wykrywane jako ν e, ν µ, ν τ 2 neutrina poruszają się jako stany własne masy: ν 1, ν 2, ν 3 3 człon kinetyczny w funkcji Lagrange a ma postać odpowiednio: L 1 mee meµ meτ p νe, νµ, ντ 2 q m µe m µµ m µτ νe ν µ m τe m τµ m ττ ν τ lub: L 1 2 p ν 1, ν 2, ν 3 q m m m 3 ν1 ν 2 ν 3 Macierz 3 ˆ 3 opisującą przejście od stanów o określonej masie do stanów o określonym zapachu nazywamy macierzą mieszania neutrin.
21 Przybliżenie 2 zapachów Aby nie zaciemniać opisu, ograniczymy się do mieszania ν e i ν µ: ˆ ˆ ˆ νe cos θ12 sin θ 12 ν1 ν µ sin θ 12 cos θ 12 ν 2 Ponieważ neutrina są skrajnie relatywistyczne, możemy uprościć zależność: E a d ˆ p 2 ` m 2 p 1 ` m2 p 2» p 1 ` 1 m 2 2 p 2 p ` m2 2p, E» p Neutrina o masie m 1 i m 2 propagują się niezależnie, a funkcja falowa mnożona jest przez fazę. Zakładając, że pędy obu neutrin są identyczne, otrzymujemy wynik: pet p rq m2 e i» e i 2p r{c Różnica fazy jest proporcjonalna do r{l gdzie, r - odległość od Słońca, długość mieszania neutrin L hc 2Eν m 2, natomiast m 2 jest różnicą kwadratów mas neutrin. Przyjmując, że m ev, E ν 1 MeV otrzymujemy L» 10 km.
22 Geoneutrina Podobnie jak Słońce emituje neutrina elektronowe ν e w rozpadach β`, Ziemia emituje głównie antyneutrina elektronowe ν e z rozpadów β. Strumień ν e jest mały, ale niezerowy. Główne źródła: 1 szereg uranowy: kaskada rozpadów zaczynająca się od 238 U: 238 U Ñ 206 Pb ` 8α ` 6e ` 6 ν e 2 szereg torowy: kaskada rozpadów zaczynająca się od 232 Th 3 rozpad potasu 40 K: 232 Th Ñ 208 Pb ` 6α ` 4e ` 4 ν e 40 K Ñ 40 Ca ` e ` ν e p90%q, 40 K ` e Ñ 40 Ar ` ν e p10%q
23 Źródło: S. Dye, NOW 2014
24 Geoneutrina: widmo energetyczne F ν [cm -2 s -1 MeV -1 ] U Th 40 K DSNB E ν [MeV]
25 Inne gwiazdy Dosyć szczegółowo omówiliśmy zasady na jakich oparty jest model Słońca. Jak wygląda ono na tle innych gwiazd? Definicja gwiazdy Obiekt, który przez większość życia spala wodór w reakcjach termojądrowych. Minimalna masa kuli wodorowej powodująca zapłon reakcji spalania wodoru: M ą 0.08M d» 84M J Minimalna masa pozwalająca na spalanie deuteru: M b ą 0.01M d» 13M J Obiektu o masie 0.01M d ă M ă 0.08M d (13M J ă M ă 80M J ) nie zaliczamy do gwiazd. Określany jest jako brązowy karzeł. Jeszcze lżejsze obiekty gazowe zaliczamy do planet typu Jowisza (ang. Jupiters). Granice te nie są ostro zdefiniowane. Maksymalna obserwowana masa gwiazd to około 100 M d.
26 Zależność masa - jasność Charakterystyczną cechą gwiazd jest szybki wzrost jasności L z masą M: L9M 3 Jasność krytyczną, przy której przyspieszenie nadawane materii przez pochłonięte promieniowanie jest równe przyspieszeniu grawitacyjnemu nazywamy jasnością Eddingtona: g graw g rad, g graw GM R 2, g rad κ c L 4πR 2
27 Czas życia gwiazd Ponieważ ilość dostępnego paliwa jest ułamkiem rzędu 0.1 masy M, czas życia gwiazdy masywniejszej jest krótszy: np: t pm{m d q 2 rlats M 0.1M d, t = 1 bilion lat (znacznie więcej od wieku Wszechświata 14 mld lat) M 1M d, t = 10 mld lat M 10M d, t = 100 mln lat M 100M d, t = 1 mln lat Masywne gwiazdy stosują się do maksymy: żyj szybko, umieraj młodo!
28 IMF Prawdopodobieństwo powstania gwiazdy o masie w zadanym przedziale, np: 1M d ă M ă 2M d określa funkcja IMF (initial mass function). Masę gwiazdy w momencie narodzin określamy jako masę ZAMS (Zero Age Main Sequence) Konkretna postać IMF powinna wynikać z teorii powstawania gwiazd. W praktyce stosuje się rozkłady potęgowe: dn dm 9mα α 2.35 dla m ą M d (tzw. IMF Salpetera) α 1.3 dla m ă M d Ilość gwiazd gwałtownie maleje z masą. Całkując IMF od 1 do 100 M d, dostajemy że: 60% gwiazd ma masę od 1 do 2 M d, 96% poniżej 10 M d i tylko 4% powyżej 10 M d.
29 Klasyfikacja widmowa Sposobem na uporządkowanie zbioru gwiazd jest klasyfikacja widmowa. Jest ona technicznym określeniem na przypisanie oznaczeń literowoliczbowych temperaturze gwiazdy Zapamiętanie sekwencji ułatwia zdanie: Oh Be A Fine Girl Kiss Me
Podstawy astrofizyki i astronomii
Podstawy astrofizyki i astronomii Andrzej Odrzywołek Zakład Teorii Względności i Astrofizyki, Instytut Fizyki UJ 8 maja 2018 th.if.uj.edu.pl/ odrzywolek/ andrzej.odrzywolek@uj.edu.pl A&A Wykład 9 Gwiazdy:
Metamorfozy neutrin. Katarzyna Grzelak. Sympozjum IFD Zakład Czastek i Oddziaływań Fundamentalnych IFD UW. K.Grzelak (UW ZCiOF) 1 / 23
Metamorfozy neutrin Katarzyna Grzelak Zakład Czastek i Oddziaływań Fundamentalnych IFD UW Sympozjum IFD 2008 6.12.2008 K.Grzelak (UW ZCiOF) 1 / 23 PLAN Wprowadzenie Oscylacje neutrin Eksperyment MINOS
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania
Podstawy astrofizyki i astronomii
Podstawy astrofizyki i astronomii Andrzej Odrzywołek Zakład Teorii Względności i Astrofizyki, Instytut Fizyki UJ 10 maja 2016 10 11 10 9 Fν[cm -2 s -1 MeV -1 ] 10 7 10 5 1000 10 pp 8 B CNO 13 N CNO 15
Interesujące fazy ewolucji masywnej gwiazdy:
1/26 Asymetria ν ν w widmie pre-supernowej A. Odrzywołek Asymetria ν ν w (termicznym) widmie pre-supernowej IDEA: Przewidzieć wybuch supernowej opierając się na detekcji neutrin z pre-supernowej Interesujące
Widmo energetyczne neutrin i antyneutrin elektronowych w stanie NSE
Widmo energetyczne neutrin i antyneutrin elektronowych w stanie NSE Andrzej Odrzywolek Instytut Fizyki UJ, Zakład Teorii Względności i Astrofizyki 08.09.2008, środa, 13:15 Źródła neutrin i antyneutrin
Wykres Herzsprunga-Russela (H-R) Reakcje termojądrowe - B.Kamys 1
Wykres Herzsprunga-Russela (H-R) 2012-06-07 Reakcje termojądrowe - B.Kamys 1 Proto-gwiazdy na wykresie H-R 2012-06-07 Reakcje termojądrowe - B.Kamys 2 Masa-jasność, temperatura-jasność n=3.5 2012-06-07
Podstawowe własności jąder atomowych
Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii
Maria Krawczyk, Wydział Fizyki UW. Neutrina i ich mieszanie
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 12 21.12.2010 Maria Krawczyk, Wydział Fizyki UW Neutrina i ich mieszanie Neutrinos: Ghost Particles of the Universe F. Close polecam wideo i audio
BUDOWA I EWOLUCJA GWIAZD. Jadwiga Daszyńska-Daszkiewicz
BUDOWA I EWOLUCJA GWIAZD Jadwiga Daszyńska-Daszkiewicz Semestr letni, 2018/2019 równania budowy wewnętrznej (ogólne równania hydrodynamiki) własności materii (mikrofizyka) ograniczenia z obserwacji MODEL
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze
Podstawy astrofizyki i astronomii
Podstawy astrofizyki i astronomii Andrzej Odrzywołek Zakład Teorii Względności i Astrofizyki, Instytut Fizyki UJ 17 kwietnia 2018 th.if.uj.edu.pl/ odrzywolek/ andrzej.odrzywolek@uj.edu.pl A&A Wykład 7
Zderzenia relatywistyczne
Zderzenia relatywistyczne Fizyka I (B+C) Wykład XIX: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia elastyczne 2 2 Czastki rozproszone takie same jak
I etap ewolucji :od ciągu głównego do olbrzyma
I etap ewolucji :od ciągu głównego do olbrzyma Spalanie wodoru a następnie helu i cięższych jąder doprowadza do zmiany składu gwiazdy i do przesunięcia gwiazdy na wykresie H-R II etap ewolucji: od olbrzyma
BUDOWA I EWOLUCJA GWIAZD. Jadwiga Daszyńska-Daszkiewicz
BUDOWA I EWOLUCJA GWIAZD Jadwiga Daszyńska-Daszkiewicz Semestr letni, 2018/2019 Porównanie statystyk ~1/(e x -1) ~e -x ~1/(e x +1) x=(ε-µ)/kt µ - potencjał chemiczny Rozkład Maxwella dla temperatur T1
Podstawy fizyki cząstek III. Eksperymenty nieakceleratorowe Krzysztof Fiałkowski
Podstawy fizyki cząstek III Eksperymenty nieakceleratorowe Krzysztof Fiałkowski Zakres fizyki cząstek a eksperymenty nieakceleratorowe Z relacji nieoznaczoności przestrzenna zdolność rozdzielcza r 0.5fm
Reakcje z udziałem neutrin, elektronów i nukleonów w astrofizyce
Reakcje z udziałem neutrin, elektronów i nukleonów w astrofizyce Andrzej Odrzywolek Instytut Fizyki, Zakład Teorii Względności i Astrofizyki 25.11.2008, wtorek, 12:30 ν e e + γ W ± e ν e Plan referatu
Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu
Odkrycie jądra atomowego: 9, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Tor ruchu rozproszonych cząstek (fakt, że część cząstek rozprasza się pod bardzo dużym kątem) wskazuje na
Neutrina. Źródła neutrin: NATURALNE Wielki Wybuch gwiazdy atmosfera Ziemska skorupa Ziemska
Neutrina X Źródła neutrin.. Zagadki neutrinowe. Neutrina słoneczne. Neutrina atmosferyczne. Eksperymenty neutrinowe. Interpretacja pomiarów. Oscylacje neutrin. 1 Neutrina Źródła neutrin: NATURALNE Wielki
Autorzy: Zbigniew Kąkol, Piotr Morawski
Rodzaje rozpadów jądrowych Autorzy: Zbigniew Kąkol, Piotr Morawski Rozpady jądrowe zachodzą zawsze (prędzej czy później) jeśli jądro o pewnej liczbie nukleonów znajdzie się w stanie energetycznym, nie
Porównanie statystyk. ~1/(e x -1) ~e -x ~1/(e x +1) x=( - )/kt. - potencjał chemiczny
Porównanie statystyk ~1/(e x -1) ~e -x ~1/(e x +1) x=( - )/kt - potencjał chemiczny Rozkład Maxwella dla temperatur T1
Fizyka neutrin. Źródła neutrin Neutrina reliktowe Geoneutrina Neutrina z wybuchu Supernowych Neutrina słoneczne. Deficyt neutrin słonecznych
Fizyka neutrin Źródła neutrin Neutrina reliktowe Geoneutrina Neutrina z wybuchu Supernowych Neutrina słoneczne - reakcje termojądrowe źródłem neutrin słonecznych - widmo energetyczne - metody detekcji
Fizyka gwiazd. 1 Budowa gwiazd. 19 maja Stosunek r g R = 2GM
Fizyka gwiazd 19 maja 2004 1 Budowa gwiazd Stosunek r g R = 2GM c 2 R (gdzie M, R jest masa i promieniem gwiazdy) daje nam informację konieczności uwzględnienia poprawek relatywistycznych. 0-0 Rysunek
Oddziaływania elektrosłabe
Oddziaływania elektrosłabe X ODDZIAŁYWANIA ELEKTROSŁABE Fizyka elektrosłaba na LEPie Liczba pokoleń. Bardzo precyzyjne pomiary. Obserwacja przypadków. Uniwersalność leptonów. Mieszanie kwarków. Macierz
Wykłady z Geochemii Ogólnej
Wykłady z Geochemii Ogólnej III rok WGGiOŚ AGH 2010/11 dr hab. inż. Maciej Manecki A-0 p.24 www.geol.agh.edu.pl/~mmanecki ELEMENTY KOSMOCHEMII Nasza wiedza o składzie materii Wszechświata pochodzi z dwóch
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury
Podstawy Fizyki Jądrowej
Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA (zalecana): Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu
Wykład 9 - Ewolucja przed ciągiem głównym. Ciąg główny wieku zerowego (ZAMS)
Wykład 9 - Ewolucja przed ciągiem głównym. Ciąg główny wieku zerowego (ZAMS) 30.11.2017 Masa Jeansa Załóżmy, że mamy jednorodny, kulisty obłok gazu o masie M, średniej masie cząsteczkowej µ, promieniu
Naturalne źródła neutrin, czyli neutrina sa
Naturalne źródła neutrin, czyli neutrina sa wszędzie Tomasz Früboes Zakład Czastek i Oddziaływań Fundamentalnych 16 stycznia 2006 Proseminarium fizyki jadra atomowego i czastek elementarnych Tomasz Früboes
I ,11-1, 1, C, , 1, C
Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony
FIZYKA IV etap edukacyjny zakres podstawowy
FIZYKA IV etap edukacyjny zakres podstawowy Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II. Przeprowadzanie
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
Podstawy fizyki subatomowej. 3 kwietnia 2019 r.
Podstawy fizyki subatomowej Wykład 7 3 kwietnia 2019 r. Atomy, nuklidy, jądra atomowe Atomy obiekt zbudowany z jądra atomowego, w którym skupiona jest prawie cała masa i krążących wokół niego elektronów.
Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2
Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie
Masywne neutrina w teorii i praktyce
Instytut Fizyki Teoretycznej Uniwersytet Wrocławski Wrocław, 20 czerwca 2008 1 Wstęp 2 3 4 Gdzie znikają neutrina słoneczne (elektronowe)? 4p 4 2He + 2e + + 2ν e 100 miliardów neutrin przez paznokieć kciuka
Rozdział 6 Oscylacje neutrin słonecznych i atmosferycznych. Eksperymenty Superkamiokande, SNO i inne. Macierz mieszania Maki-Nakagawy- Sakaty (MNS)
Rozdział 6 Oscylacje neutrin słonecznych i atmosferycznych. Eksperymenty Superkamiokande, SNO i inne. Macierz mieszania Maki-Nakagawy- Sakaty (MNS) Kilka interesujących faktów Każdy człowiek wysyła dziennie
Oddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1
r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 Budowa jądra atomowego każde jądro atomowe składa się z dwóch rodzajów nukleonów: protonów
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd
Budowa i ewolucja gwiazd I Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Dynamiczna skala czasowa Dla Słońca: 3 h Twierdzenie o wiriale Temperatura wewnętrzna Cieplna skala
Teoria ewolucji gwiazd (najpiękniejsza z teorii) dr Tomasz Mrozek Instytut Astronomiczny Uniwersytetu Wrocławskiego
Teoria ewolucji gwiazd (najpiękniejsza z teorii) dr Tomasz Mrozek Instytut Astronomiczny Uniwersytetu Wrocławskiego Prolog Teoria z niczego Dla danego obiektu możemy określić: - Ilość światła - widmo -
Reakcje jądrowe. kanał wyjściowy
Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,
Elementy Fizyki Jądrowej. Wykład 8 Rozszczepienie jąder i fizyka neutronów
Elementy Fizyki Jądrowej Wykład 8 Rozszczepienie jąder i fizyka neutronów Rozszczepienie lata 30 XX w. poszukiwanie nowych nuklidów n + 238 92U 239 92U + reakcja przez jądro złożone 239 92 U 239 93Np +
2008/2009. Seweryn Kowalski IVp IF pok.424
2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie
Analiza oscylacji oraz weryfikacje eksperymentalne
Analiza oscylacji oraz weryfikacje eksperymentalne Formalizm oscylacji 3 zapachy Analiza oscylacji neutrin atmosferycznych Analiza oscylacji neutrin słonecznych Weryfikacja oscylacji neutrin słonecznych
Neutrina i ich oscylacje. Neutrina we Wszechświecie Oscylacje neutrin Masy neutrin
Neutrina i ich oscylacje Neutrina we Wszechświecie Oscylacje neutrin Masy neutrin Neutrina wokół nas n n n γ ν ν 410 cm 340 cm 10 10 nbaryon 3 3 Pozostałe z wielkiego wybuchu: Słoneczne Już obserwowano
PROGNOZOWANIE SUPERNOWYCH TYPU II
1/20 Prognozowanie supernowych typu II A. Odrzywoªek PROGNOZOWANIE SUPERNOWYCH TYPU II Eta Carina 2.7 kpc γ 2 Velorum 285 pc Betelgeuse 185 pc A. Odrzywoªek, M.Misiaszek, M. Kutschera Detection possibitity
Rozpady promieniotwórcze
Rozpady promieniotwórcze Przez rozpady promieniotwórcze rozumie się spontaniczne procesy, w których niestabilne jądra atomowe przekształcają się w inne jądra atomowe i emitują specyficzne promieniowanie
Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:
ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości
Cząstki elementarne i ich oddziaływania III
Cząstki elementarne i ich oddziaływania III 1. Przekrój czynny. 2. Strumień cząstek. 3. Prawdopodobieństwo procesu. 4. Szybkość reakcji. 5. Złota Reguła Fermiego 1 Oddziaływania w eksperymencie Oddziaływania
A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów
Włodzimierz Wolczyński 40 FIZYKA JĄDROWA A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów O nazwie pierwiastka decyduje liczba porządkowa Z, a więc ilość
Synteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ
Synteza jądrowa (fuzja) Cykl życia gwiazd Narodziny gwiazd: obłok molekularny Rozmiary obłoków (Giant Molecular Cloud) są rzędu setek lat świetlnych. Masa na ogół pomiędzy 10 5 a 10 7 mas Słońca. W obłoku
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Od Wielkiego Wybuchu do Gór Izerskich. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN
Od Wielkiego Wybuchu do Gór Izerskich Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Rozpad alfa. albo od stanów wzbudzonych (np. po rozpadzie beta) są to tzw. długozasięgowe cząstki alfa
Rozpad alfa Samorzutny rozpad jądra (Z,A) na cząstkę α i jądro (Z-2,A-4) tj. rozpad 2-ciałowy, stąd Widmo cząstek α jest dyskretne bo przejścia zachodzą między określonymi stanami jądra początkowego i
Elementy Fizyki Jądrowej. Wykład 3 Promieniotwórczość naturalna
Elementy Fizyki Jądrowej Wykład 3 Promieniotwórczość naturalna laboratorium Curie troje noblistów 1903 PC, MSC 1911 MSC 1935 FJ, IJC Przemiany jądrowe He X X 4 2 4 2 A Z A Z e _ 1 e X X A Z A Z e 1 e
41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY
41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V Optyka fizyczna POZIOM PODSTAWOWY Dualizm korpuskularno-falowy Atom wodoru. Widma Fizyka jądrowa Teoria względności Rozwiązanie zadań należy
WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)
WSTĘP DO FIZYKI CZĄSTEK Julia Hoffman (NCU) WSTĘP DO WSTĘPU W wykładzie zostały bardzo ogólnie przedstawione tylko niektóre zagadnienia z zakresu fizyki cząstek elementarnych. Sugestie, pytania, uwagi:
Symetrie. D. Kiełczewska, wykład9
Symetrie Symetrie a prawa zachowania Zachowanie momentu pędu (niezachowanie spinu) Parzystość, sprzężenie ładunkowe Symetria CP Skrętność (eksperyment Goldhabera) Zależność spinowa oddziaływań słabych
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 15 Janusz Andrzejewski Janusz Andrzejewski 2 Egzamin z fizyki I termin 31 stycznia2014 piątek II termin 13 luty2014 czwartek Oba egzaminy odbywać się będą: sala 301 budynek D1 Janusz Andrzejewski
Astronomia neutrinowa
Astronomia neutrinowa W ramach wykładu z fizyki cząstek elementarnych Andrzej Odrzywołek Zakład Teorii Względności i Astrofizyki Uniwersytet Jagielloński, Kraków Środa, 28.04.2010, 8:30 A. Odrzywołek (IFUJ,
Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu
J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie
SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego
SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW Szacowanie pochłoniętej energii promieniowania jonizującego W celu analizy narażenia na promieniowanie osoby, której podano radiofarmaceutyk, posłużymy się
Podstawy astrofizyki i astronomii
Podstawy astrofizyki i astronomii Andrzej Odrzywołek Zakład Teorii Względności i Astrofizyki, Instytut Fizyki UJ 20 marca 2018 th.if.uj.edu.pl/ odrzywolek/ andrzej.odrzywolek@uj.edu.pl A&A Wykład 4 Standardowy
Zderzenia relatywistyczne
Zderzenia relatywistyczne Fizyka I (B+C) Wykład XVIII: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia nieelastyczne Zderzenia elastyczne - czastki
Neutrina mają masę - Nagroda Nobla 2015 z fizyki. Tomasz Wąchała Zakład Neutrin i Ciemnej Materii (NZ16)
Neutrina mają masę - Nagroda Nobla 2015 z fizyki Tomasz Wąchała Zakład Neutrin i Ciemnej Materii (NZ16) Plan Laureaci: T. Kajita i A. B. McDonald oraz nagrodzone publikacje Krótka historia neutrina i hipoteza
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 9 Reakcje jądrowe Reakcje jądrowe Historyczne reakcje jądrowe 1919 E.Rutherford 4 He + 14 7N 17 8O + p (Q = -1.19 MeV) powietrze błyski na ekranie
Ewolucja Wszechświata Wykład 5 Pierwsze trzy minuty
Ewolucja Wszechświata Wykład 5 Pierwsze trzy minuty Historia Wszechświata Pod koniec fazy inflacji, około 10-34 s od Wielkiego Wybuchu, dochodzi do przejścia fazowego, które tworzy prawdziwą próżnię i
Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ.
Ćwiczenie nr 1 Spektrometria scyntylacyjna promieniowania γ. 3. Oddziaływanie promieniowania γ z materią: Z elektronami: zjawisko fotoelektryczne, rozpraszanie Rayleigha, zjawisko Comptona, rozpraszanie
Atom wodoru i jony wodoropodobne
Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek
Analiza spektralna widma gwiezdnego
Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe
ZTWiA: grupa prof. M. Kutschery
1/10 ZTWiA: grupa prof. M. Kutschery Wybrana do prezentacji tematyka: PRZEWIDYWANIE SUPERNOWYCH Eta Carina 2.7 kpc WR 104 1.5 kpc Betelgeuse 130 pc Mamy dobre,,medialne określenie, ale co faktycznie robimy?
Reakcje syntezy lekkich jąder
Reakcje syntezy lekkich jąder 1. Synteza jąder lekkich w gwiazdach 2. Warunki wystąpienia procesu syntezy 3. Charakterystyka procesu syntezy 4. Kontrolowana reakcja syntezy termojądrowej 5. Zasada konstrukcji
Symetrie w fizyce cząstek elementarnych
Symetrie w fizyce cząstek elementarnych Odkrycie : elektronu- koniec XIX wieku protonu początek XX neutron lata 3 XX w; mion µ -1937, mezon π 1947 Lata 5 XX w zalew nowych cząstek; łączna produkcja cząstek
NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA
ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 3 NEUTRONOWA ANALIZA AKTYWACYJNA - PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA REAKCJE JĄDROWE Rozpad promieniotwórczy: A B + y + ΔE
Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.
Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy
Jak się tego dowiedzieliśmy? Przykład: neutrino
Jak się tego dowiedzieliśmy? Przykład: neutrino Przypomnienie: hipoteza neutrina Pauli 30 Przesłanki: a) w rozpadzie β widmo energii elektronu ciągłe od 0 do E max (dla α, γ dyskretne) b) jądra przed-
doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)
1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość
Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd
Budowa i ewolucja gwiazd I Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Dynamiczna skala czasowa Dla Słońca: 3 h Twierdzenie o wiriale Temperatura wewnętrzna Cieplna skala
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii
Gwiezdna amnezja. O nuklearnej równowadze statystycznej. ( Nuclear Statistical Equilibrium, NSE) Andrzej Odrzywołek
Gwiezdna amnezja O nuklearnej równowadze statystycznej ( Nuclear Statistical Equilibrium, NSE) Andrzej Odrzywołek Zakład Teorii Względności i Astrofizyki Uniwersytet Jagielloński, Kraków Piątek, 11.12.2009,
FIZYKA KLASA I LICEUM OGÓLNOKSZTAŁCĄCEGO
2016-09-01 FIZYKA KLASA I LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY SZKOŁY BENEDYKTA 1. Cele kształcenia i wychowania Ogólne cele kształcenia zapisane w podstawie programowej dla zakresu podstawowego
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN ŚRÓROCZNYCH I ROCZNYCH FIZYKA - ZAKRES PODSTAWOWY KLASA I
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN ŚRÓROCZNYCH I ROCZNYCH FIZYKA - ZAKRES PODSTAWOWY KLASA I GRAWITACJA opowiedzieć o odkryciach Kopernika, Keplera i Newtona, opisać ruchy
Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana
Wszechświat Cząstek Elementarnych dla Humanistów Aleksander Filip Żarnecki Wykład ogólnouniwersytecki 27 listopada 2018 A.F.Żarnecki WCE Wykład 8 27 listopada 2018 1 / 28 1 Budowa materii (przypomnienie)
VI. 6 Rozpraszanie głębokonieelastyczne i kwarki
r. akad. 005/ 006 VI. 6 Rozpraszanie głębokonieelastyczne i kwarki 1. Fale materii. Rozpraszanie cząstek wysokich energii mikroskopią na bardzo małych odległościach.. Akceleratory elektronów i protonów.
Neutrina. Elementy fizyki czastek elementarnych. Wykład VIII. Oddziaływania neutrin Neutrina atmosferyczne
Neutrina Wykład VIII Oddziaływania neutrin Neutrina atmosferyczne Elementy fizyki czastek elementarnych Eksperyment Super-Kamiokande Oscylacje neutrin Neutrina słoneczne Eksperyment SNO Neutrino elektronowe
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 3 Tomasz Kwiatkowski 2010-10-20 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 3 1/22 Plan wykładu Linie widmowe Linie Fraunhofera Prawa Kirchhoffa Analiza widmowa Zjawisko
FIZYKA KLASA I LO LICEUM OGÓLNOKSZTAŁCĄCEGO wymagania edukacyjne
FIZYKA KLASA I LO LICEUM OGÓLNOKSZTAŁCĄCEGO wymagania edukacyjne TEMAT (rozumiany jako lekcja) 1.1. Kinematyka ruchu jednostajnego po okręgu 1.2. Dynamika ruchu jednostajnego po okręgu 1.3. Układ Słoneczny
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około
W2. Struktura jądra atomowego
W2. Struktura jądra atomowego Doświadczenie Rutherforda - badanie odchylania wiązki cząstek alfa w cienkiej folii metalicznej Hans Geiger, Ernest Marsden, Ernest Rutherford ( 1911r.) detektor pierwiastek
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Fizyka promieniowania jonizującego. Zygmunt Szefliński
Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 3 Ogólne własności jąder atomowych (masy ładunki, izotopy, izobary, izotony izomery). 2 Liczba atomowa i masowa Liczba nukleonów (protonów
Zadania z mechaniki kwantowej
Zadania z mechaniki kwantowej Gabriel Wlazłowski 13 maja 2016 Rachunek zaburzeń bez czasu 1. Metodą rachunku zaburzeń obliczyć pierwszą i drugą poprawkę dla poziomów energetycznych oscylatora harmonicznego
Diagram Hertzsprunga Russela. Barwa gwiazdy a jasność bezwzględna
Astrofizyka Gwiazdy, gwiazdozbiory Obserwowane własności gwiazd diagram HR Parametry gwiazd i ich relacje Modele gwiazd: gwiazdy ciągu głównego, białe karły, gwiazdy neutronowe Ewolucja gwiazd i procesy
Neutrina. Wszechświat Czastek Elementarnych. Wykład 12. prof. dr hab. Aleksander Filip Żarnecki
Neutrina Wykład 12 Neutrina i ich własności Źródła neutrin Pomiary neutrin Oscylacje neutrin prof. dr hab. Aleksander Filip Żarnecki Wszechświat Czastek Elementarnych Neutrina Promieniotwórczość Odkryta