Funkcje programu STATGRAPHICS. ACOS (x) ACOSR (x) ASIN (x) ASINR (x) ATAN (x) ATANR (x) COMPRESS (zmienna; warunek) COS (x) COSR(x)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Funkcje programu STATGRAPHICS. ACOS (x) ACOSR (x) ASIN (x) ASINR (x) ATAN (x) ATANR (x) COMPRESS (zmienna; warunek) COS (x) COSR(x)"

Transkrypt

1 ABS wartość bezwzględna ACOS funkcja arcus cosinus dla kąta podanego w stopniach ACOSR funkcja arcus cosinus dla kąta podanego w radianach ASIN funkcja arcus sinus dla kąta podanego w stopniach ASINR funkcja arcus sinus dla kąta podanego w radianach ATAN funkcja arcus tangens dla kąta podanego w stopniach ATANR funkcja arcus tangens dla kąta podanego w radianach AVG średnia arytmetyczna BETA dystrybuanta rozkładu beta w punkcie x, z parametrami m i l CELL wybór określonego wiersza z danej kolumny CHISQUARE dystrybuanta rozkładu chi-kwadrat, o n stopniach swobody, w punkcie x COMPRESS wybór wierszy spełniających określony warunek (por. SELECT) COS wartość funkcji cosinus dla kąta podanego w stopniach COSR funkcja cosinus dla kąta podanego w radianach ABS (x) ABS (A3) ACOS (x) ACOSR (x) ASIN (x) ASINR (x) ATAN (x) ATANR (x) AVG AVG (A1) 3 ACOS (A2 * 0,01) 87, , , , , ACOSR (A2 * 0,01) 1, , , , , ASIN (A2 * 0,01) 2, , , , , ASINR (A2 * 0,01) 0, , , , , ATAN (A2 * 0,01) 2, , , , , ATANR (A2 * 0,01) 0, , , , , BETA (x; m; l) BETA (0,5; 2; 5) 0, CELL CELL (A2; 3) 7 CHISQUARE (x; n) CHISQUARE (30; 20) 0, COMPRESS (zmienna; warunek) COS (x) COSR(x) COMPRESS (A2; A1 > 2) COMPRESS (A2; A7 > Acura") 5 COS (40,0) 0, COS (A1) 0, , , , , COSR (40,0) - 0, COSR (A1) 0, , , , ,283662

2 COUNT tworzenie wektora kolejnych liczb całkowitych, od liczby start do koniec, co krok CV współczynnik zmienności DATENUM zamiana zmiennej typu data na zmienną numeryczną DIFF różnica pomiędzy kolejnymi wartościami zmiennej (por. MDIFF) DROP wybranie wszystkich wierszy z pominięciem pierwszych n DROPLAST wybranie wszystkich wierszy z pominięciem ostatnich n EXP wartość stałej e podniesionej do potęgi x EXP1O wartość liczby 10 podniesionej do potęgi x FACT silnia x FIRST generowanie jedynek dla pierwszych n wierszy w zbiorze i zer dla wszystkich pozostałych wierszy FIRSTROWS wybranie pierwszych n wierszy zmiennej i zastąpienie pozostałych wartości kodami brakujących informacji GEOMEAN średnia geometryczna INVBETA kwantyl rzędu p z rozkładu beta, z parametrami m i l INVCHISQUARE kwantyl rzędu p z rozkładu chi-kwadrat, o n stopniach swobody COUNT (start; koniec; krok) COUNT (10; 20; 2) (COUNT (1; 5; 1)) CV CV (A1) 52, DATENUM DIFF DATENUM (A9) DIFF (A1) DIFF (A1*A2) DROP DROP(A1; 2) DROPLAST EXP(x) EXP1O (x) FACT (x) FIRST (n) FIRSTROWS GEOMEAN DROPLAST (A2; 2) EXP (2) 7,38905 EXP (A1) 2, , , , , EXP10 (2) 100 EXP10 (A1) FACT (3) 6 FACT (A1) FIRST (3) w zbiorze z czterema wierszami wygenerowane zostaną trzy jedynki oraz jedno zero FIRSTROWS (A2; 4) (brakująca informacja) GEOMEAN (A2) 6, INVBETA (p; m; l) INVBETA (0,9; 2; 5) 0, INVCHISQUARE (p; n) INVCHISQUARE (0,9; 20) 28,3989

3 INVNORMAL kwantyl rzędu p z rozkładu normalnego z parametrami i INVSNEDECOR kwantyl rzędu p z rozkładu F-Snedecora, o n1 i n2 stopniach swobody INVSTUDENT kwantyl rzędu p z rozkładu t-studenta, o n stopniach swobody IQR rozstęp między kwartylowy JOIN łączenie dwóch zmiennych (jedna po drugiej) JOIN3 łączenie trzech zmiennych (jedna po drugiej) JOIN4 łączenie czterech zmiennych (jedna po drugiej) JUXTAPOSE łączenie zmiennych znakowych z umieszczeniem wartość obok siebie KURTOSIS kurtoza LAG przesunięcie wartość zmiennej numerycznej o n pozycji w przód lub w tył LAST generowanie jedynek dla ostatnich n wierszy oraz zer dla wszystkich pozostałych wierszy INVNORMAL (p; ; ) INVSNEDECOR (p; n1; n2) INVNORMAL (0,9; 0; 1) 1,28155 INVSNEDECOR (0,9; 3; 20) 2,38053 INVSTUDENT (p; n) INVSTUDENT (0,9; 20) 1,32534 IQR IQR (A2) 2 JOIN (zmienna; zmienna) JOIN3 (zmienna; zmienna; zmienna) JOIN4 (zmienna; zmienna; zmienna; zmienna) JUXTAPOSE (zmienna; zmienna) KURTOSIS LAG LAST (n) JOIN (A1; A2) JOIN3 (A1; A2; A3) J0IN4(A1; A3; A1; A3) JUXTAPOSE (A5; A6) ab cd ef gh ij KURTOSIS (A2) - 1,2 LAG (A1; 2) system wstawia dwa kody brakujących informacji na początku zmiennej A1 oraz przesuwa pierwszą nie brakującą wartość tej zmiennej na trzecią pozycję LAG (A1; - 2) system odrzuca dwie pierwsze wartość zmiennej A1 oraz przesuwa pozostałe wartość wprzód LAST (3) w zbiorze z czterema wierszami utworzone zostanie zero i trzy jedynki

4 LASTROWS wybranie ostatnich n wierszy i zastąpienie pozostałych wartości kodami brakujących informacji LOG logarytm naturalny x LOG1O logarytm o podstawie dziesiętnej x MAX największa wartość zmiennej numerycznej MDIFF wielokrotna różnica retrospektywna, gdzie n jest liczbą powtarzanych różnic (zastosowanie MDIFF jest równoznaczne użyciu DIFF n razy) MEDIAN mediana MIN najmniejsza wartość zmiennej numerycznej MODE moda NORMAL dystrybuanta rozkładu normalnego w punkcie x, z parametrami i PERCENTILE n-ty percentyl Q25 dolny kwartyl (tzn. 25-ty percentyl) Q75 górny kwartyl (tzn. 75-ty percentyl) RANDOM generowanie jedynek dla n losowo wybranych wierszy i zer dla pozostałych wierszy RANGE rozstęp z próby LASTROWS LOG (x) LOG1O (x) MAX MAX (A2) 9 MDIPF MEDIAN MEDIAN (A2) 7 MIN MIN (Al) 1 MODE MODE (A4) 72 LASTROWS (A2; 4) (brakująca informacja) LOG (100) 4,60517 LOG (A1) 0 0, , , , LOG1O (100) 2 LOG1O (A1) 0,0 0, , , , MDIFF (A4; 2) (brakująca informacja) (brakująca informacja) 83,0-135,0 145,0 NORMAL (x; ; ) NORMAL (2; 0; 1) 0,97725 PERCENTILE PERCENTILE (A1; 25) 2 Q25 Q25 (A2) 6 Q75 Q75 (A2) 8 RANDOM (n) RANGE RANGE (A2) 4 RANDOM (3) w pliku z czterema wierszami wygenerowane zostaną trzy jedynki w losowo wybranych wierszach oraz zero

5 RECODE przekodowanie zmiennej numerycznej lub znakowej na typ integer REP n-krotne powtórzenie każdej wartość zmiennej REPLACE zamiana wartości RESHAPE rozszerzanie lub kompresowanie zmiennej tak, aby liczba wierszy wyniosła wskazaną wielkość n REXPOTENTIAL generowanie n liczb losowych z rozkładu wykładniczego ze średnią RGAMMA generowanie n liczb losowych z rozkładu gamma z parametrami i RINTEGER generowanie n liczb losowych o wartościach całkowitych z rozkładu jednostajnego dyskretnego na przedziale od a do b RLOGNORMAL generowanie n liczb losowych z rozkładu logarytmiczno-normalnego z parametrami i RNORMAL generowanie n liczb losowych z rozkładu normalnego z parametrami i ROUND zaokrąglenie do najbliższej liczby całkowitej RUNDTO zaokrąglenie z dokładnością do n miejsc po przecinku ROWS generowanie jedynek dla wierszy o numerach od n do m i zer dla pozostałych wierszy RUNIFORM generowanie n losowych liczb z rozkładu jednostajnego ciągłego jednorodnego na przedziale [a, b] RECODE RECODE (A4) RECODE (A7) REP REP (A1; 2) REPLACE (zmienna; stara_wartość; nowa_wartość) RESHAPE (zmienna; n) REXPONENTIAL (n; ) REPLACE (A1; 5; 6) RESHAPE (COUNT (1; 5; 1); 12) RESHAPE (A2; 3) REXPONENTIAL (5; 20) RGAMMA (n; ; ) RGAMMA (5; 1; 3) RINTEGER (n; a; b) RINTEGER (5; 10; 15) RLOGNORMAL (n; ; ) RNORMAL(n; ; ) ROUND (x) ROUNDTO ROWS (n; m) RUNIFORM (n; a; b) RLOGNORMAL (5; 7; 9) RNORMAL (5; 3,2; 4,9) - 2, , , , , ROUND (1234,5678) 1235 ROUND (A1 + 0,6) ROUNDTO (A10; 4) 1,1111 2,2222 3,3333 4,4444 5,5556 ROWS (2; 4) w pliku z dziesięcioma wierszami wygenerowane zostaną: jedno zero, trzy kolejne jedynki oraz sześć zer RUNIFORM (5; 20; 100) 39, , , , ,351437

6 RUNTOT liczności skumulowane RWEIBULL generowanie n losowych liczb z rozkładu Weibulla z parametrami i SD odchylenie standardowe SDIFF różnice sezonowe, gdzie n jest odstępem między odjemną i odjemnikiem SELECT wybór wierszy spełniający dany warunek z jednoczesnym zastąpieniem pozostałych wartość kodami brakujących informacji (por. COMPRESS) SERROR błąd standardowy SIN wartość funkcji sinus dla kąta x podanego w stopniach SINR wartość funkcji sinus dla kąta x podanego w radianach SIZE liczba obserwacji SKEWNESS współczynnik asymetrii (skośności) SKURT standaryzowana kurtoza SNEDECOR dystrybuanta rozkładu F-Snedecora w punkcie x, o n1 i n2 stopniach swobody SQRT pierwiastek kwadratowy x RUNTOT RUNTOT (A1) RWEIBULL (n; ; ) SD SD (A2) 1, SDIFF SELECT (zmienna; warunek) RWEIBULL (5; 0,2; 0,4) 0, , , , , SDIFF (A4; 2) (brakująca informacja) (brakująca informacja) 21,0-31,0-21,0 SELECT (A1; A2 = 6) wybrane zostaną te wartości zmiennej A1, dla których odpowiadające im wartości zmiennej A2 są równe 6, a pozostałe wartość zostaną zastąpione kodami brakujących informacji SERROR SERROR (A1) 0, SIN (x) SINR (x) SIZE SIZE (A1) 5 SKEWNESS SIN (30,0) 0,5 SIN (A1) 0, , , , , SINR (30,0) - 0, SINR (A1) 0, , , , , SKEWNESS (A4) - 0, SKURT SKURT (A1) - 0, SNEDECOR (x; n1; n2) SQRT (x) SNEDECOR (4; 3; 20) 0, SQRT (10000) 100 SQRT (A1) 1 1, , ,236067

7 SSKEW standaryzowany współczynnik asymetrii (standaryzowana skośność) SUM suma obserwacji STANDARDIZE standaryzowanie zmiennej (y = (x ) / ) STRIPBLANKS usuwanie podwójnych spacji w zmiennej znakowej STUDENT dystrybuanta rozkładu t-studenta w punkcie x, o n stopniach swobody TAKE wybór pierwszych n wierszy TAKELAST wybór ostatnich n wierszy TAN wartość funkcji tangens dla kąta x podanego w stopniach TANR wartość funkcji tangens dla kąta x podanego w radianach TRUNCATE największa liczba całkowita mniejsza lub równa x VARIANCE wariancja SSKEW SSKEW (A4) - 0, SUM SUM (A1) 15 STANDARDIZE STRIPBLANKS STANDARDIZE (A2) - 1, , ,0 0, , STRIPBLANKS (A8) Ford Mustang STUDENT (x; n) STUDENT (2; 20) 0, TAKE TAKE (A2; 3) TAKELAST TAN(x) TANR(x) TRUNCATE (x) VARIANCE Zmienne użyte w przykładach A1 = A6 = b d f h j A2 = A7 = Ford Chrysler Chevrolet Mazda Acura A3 = A8 = Ford Mustang A4 = A9 = 10/1/95 10/2/95 10/3/95 A5 = a c e g i A10 = 1, , , , , TAKELAST (A2; 3) TAN (30,0) 0, TAN (A1) 0, , , , , TANR (30,0) - 6, TANR (A1) 1, , , , , TRUNCATE (4,98315) 4 TRUNCATE (A1 + 10,06) VARIANCE (A2) 25

1 Podstawy rachunku prawdopodobieństwa

1 Podstawy rachunku prawdopodobieństwa 1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 4.03.06 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 05/06 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie

Bardziej szczegółowo

Pozyskiwanie wiedzy z danych

Pozyskiwanie wiedzy z danych Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy

Bardziej szczegółowo

Funkcje matematyczne w C. Programowanie w C Marek Pudełko

Funkcje matematyczne w C. Programowanie w C Marek Pudełko Funkcje matematyczne w C Programowanie w C Marek Pudełko Używanie funkcji matematycznych W standardowym ANSI C jest możliwe skorzystanie z 22 funkcji matematycznych. By to zrobić, do programu należy włączyć

Bardziej szczegółowo

Laboratorium 3 - statystyka opisowa

Laboratorium 3 - statystyka opisowa dla szeregu rozdzielczego Laboratorium 3 - statystyka opisowa Agnieszka Mensfelt 11 lutego 2019 dla szeregu rozdzielczego Statystyka opisowa dla szeregu rozdzielczego Przykład wyniki maratonu Wyniki 18.

Bardziej szczegółowo

Statystyka opisowa PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA

Statystyka opisowa PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA Statystyka opisowa PRZEDMIOT: PODSTAWY STATYSTYKI PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA Statystyka opisowa = procedury statystyczne stosowane do opisu właściwości próby (rzadziej populacji) Pojęcia:

Bardziej szczegółowo

MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy

MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy MIARY POŁOŻENIA Opisują średni lub typowy poziom wartości cechy. Określają tą wartość cechy, wokół której skupiają się wszystkie pozostałe wartości badanej cechy. Wśród nich można wyróżnić miary tendencji

Bardziej szczegółowo

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy

Bardziej szczegółowo

STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)

STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Praca z danymi zaczyna się od badania rozkładu liczebności (częstości) zmiennych. Rozkład liczebności (częstości) zmiennej to jakie wartości zmienna

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X

Bardziej szczegółowo

Inteligentna analiza danych

Inteligentna analiza danych Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich

Bardziej szczegółowo

Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)

Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące

Bardziej szczegółowo

Algebra macierzy

Algebra macierzy Algebra macierzy Definicja macierzy Macierze Macierze Macierze Działania na macierzach Działania na macierzach A + B = B + A (prawo przemienności dodawania) (A + B) + C = A + (B + C) (prawo łączności dodawania)

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41

Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41 Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna

Bardziej szczegółowo

Instalacja Pakietu R

Instalacja Pakietu R Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego: Download R for Windows opcja: install R for the first time opcja: Download R 3.3.3 for Windows uruchomienie R-3.3.3-win MAGDA

Bardziej szczegółowo

Statystyczne metody analizy danych

Statystyczne metody analizy danych Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 3.03.07 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 06/07 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie

Bardziej szczegółowo

Języki programowania wysokiego poziomu. PHP cz.2.

Języki programowania wysokiego poziomu. PHP cz.2. Języki programowania wysokiego poziomu PHP cz.2. Instrukcje strukturalne PHP Instrukcje strukturalne Instrukcja grupująca (blok instrukcji) Instrukcja warunkowa, if-else Instrukcja wyboru, switch-case

Bardziej szczegółowo

Ściągawka z funkcji i właściwości systemowych VBA. Opis działania i parametrów. Nazwa funkcji. Składnia zwracanej wartości

Ściągawka z funkcji i właściwości systemowych VBA. Opis działania i parametrów. Nazwa funkcji. Składnia zwracanej wartości Ściągawka z funkcji i właściwości systemowych VBA. Nazwa funkcji Składnia Typ zwracanej wartości Opis działania i parametrów Funkcje konwersji CBool CBool(arg) Boolean arg powinno być wartością numeryczną

Bardziej szczegółowo

STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)

STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Dla opisania rozkładu badanej zmiennej, korzystamy z pewnych charakterystyk liczbowych. Dzielimy je na cztery grupy.. Określenie przeciętnej wartości

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Wprowadzenie do Pakietu R dla kierunku Zootechnika. Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu

Wprowadzenie do Pakietu R dla kierunku Zootechnika. Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Wprowadzenie do Pakietu R dla kierunku Zootechnika Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego:

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie

Bardziej szczegółowo

Blok zawierający opis danego quizu, np. Pierwsze kolokwium z podstaw chemii. Blok definiujący czas trwania kolokwium.

Blok zawierający opis danego quizu, np. Pierwsze kolokwium z podstaw chemii. Blok definiujący czas trwania kolokwium. Instrukcja jak stworzyć quiz w Moodle (wersja 1.8.4+) Piotr Wojciechowski Quiz w Moodle tworzymy wybierać składową quiz z rozwijanej listy dodaj składową zgodnie z rysunkiem przedstawionym poniżej. Pamiętajmy,

Bardziej szczegółowo

Statystyka. Wykład 3. Magdalena Alama-Bućko. 6 marca Magdalena Alama-Bućko Statystyka 6 marca / 28

Statystyka. Wykład 3. Magdalena Alama-Bućko. 6 marca Magdalena Alama-Bućko Statystyka 6 marca / 28 Statystyka Wykład 3 Magdalena Alama-Bućko 6 marca 2017 Magdalena Alama-Bućko Statystyka 6 marca 2017 1 / 28 Szeregi rozdzielcze przedziałowe - kwartyle - przypomnienie Po ustaleniu przedziału, w którym

Bardziej szczegółowo

Statystyka. Opisowa analiza zjawisk masowych

Statystyka. Opisowa analiza zjawisk masowych Statystyka Opisowa analiza zjawisk masowych Typy rozkładów empirycznych jednej zmiennej Rozkładem empirycznym zmiennej nazywamy przyporządkowanie kolejnym wartościom zmiennej (x i ) odpowiadających im

Bardziej szczegółowo

Podstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na

Podstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony zbiór jednostek, które

Bardziej szczegółowo

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów: Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach

Bardziej szczegółowo

Rozdział 8. Regresja. Definiowanie modelu

Rozdział 8. Regresja. Definiowanie modelu Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność

Bardziej szczegółowo

Programowanie Delphi obliczenia, schematy blokowe

Programowanie Delphi obliczenia, schematy blokowe Informatyka II MPZI2 ćw.2 Programowanie Delphi obliczenia, schematy blokowe Zastosowania obliczeń numerycznych Wyrażenia arytmetyczne służą do zapisu wykonywania operacji obliczeniowych w trakcie przebiegu

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia

Bardziej szczegółowo

Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34

Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Def. Charakterystyki liczbowe to wielkości wyznaczone na podstawie danych statystycznych, charakteryzujące własności badanej cechy. Klasyfikacja

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel:

1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: Wariancja z populacji: Podstawowe miary rozproszenia: 1 1 s x x x x k 2 2 k 2 2 i i n i1 n i1 Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: 1 k 2 s xi x n 1 i1 2 Przykład 38,

Bardziej szczegółowo

Statystyki opisowe i szeregi rozdzielcze

Statystyki opisowe i szeregi rozdzielcze Statystyki opisowe i szeregi rozdzielcze - ćwiczenia ĆWICZENIA Piotr Ciskowski ramka-wąsy przykład 1. krwinki czerwone Stanisz W eksperymencie farmakologicznym analizowano oddziaływanie pewnego preparatu

Bardziej szczegółowo

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

Statystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33

Statystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33 Statystyka Wykład 4 Magdalena Alama-Bućko 19 marca 2018 Magdalena Alama-Bućko Statystyka 19 marca 2018 1 / 33 Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności (rozproszenia,

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład.03.08 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 07/08 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako

Bardziej szczegółowo

W1. Wprowadzenie. Statystyka opisowa

W1. Wprowadzenie. Statystyka opisowa W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład

Bardziej szczegółowo

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p. Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )

Bardziej szczegółowo

Statystyka. Podstawowe pojęcia: populacja (zbiorowość statystyczna), jednostka statystyczna, próba. Cechy: ilościowe (mierzalne),

Statystyka. Podstawowe pojęcia: populacja (zbiorowość statystyczna), jednostka statystyczna, próba. Cechy: ilościowe (mierzalne), Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach badania zjawisk masowych, zmienna losowa będąca funkcją próby. Podstawowe pojęcia: populacja (zbiorowość

Bardziej szczegółowo

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)

Bardziej szczegółowo

Wynik pomiaru jako zmienna losowa

Wynik pomiaru jako zmienna losowa Wynik pomiaru jako zmienna losowa Wynik pomiaru jako zmienna losowa Zmienne ciągłe i dyskretne Funkcja gęstości i dystrybuanta Wartość oczekiwana Momenty rozkładów Odchylenie standardowe Estymator zmiennej

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin. Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw

Bardziej szczegółowo

TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA. T4. Tablica kwantyli rozkładu chi-kwadrat (I część - poziomy kwantyli 0,5)

TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA. T4. Tablica kwantyli rozkładu chi-kwadrat (I część - poziomy kwantyli 0,5) TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA T1. Tablica dystrybuanty standardowego normalnego rozkładu N(0,1) T2. Tablica kwantyli standardowego normalnego rozkładu N(0,1) T3. Tablica kwantyli rozkładu

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.

dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ, wariancji momencie centralnym μ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X μ k Pr > μ + t σ ) 0. k k t σ *

Bardziej szczegółowo

OBLICZENIA NA DANYCH

OBLICZENIA NA DANYCH OBLICZENIA NA DANYCH WYRAŻENIA W JĘZYKU 4GL 1. stałe numeryczne Liczby używane w wyrażeniach SAS. Możemy je prezentować w zapisie standardowym (np. 5, 6.7, -2.1), w notacji naukowej (np. 2e5(czyli 2*10

Bardziej szczegółowo

Podstawowe wyrażenia matematyczne

Podstawowe wyrażenia matematyczne Lech Sławik Podstawy Maximy 3 Wyrażenia matematyczne.wxmx 1 / 7 Podstawowe wyrażenia matematyczne 1 Nazwy Nazwy (zmiennych, stałych, funkcji itp.) w Maximie mogą zawierać małe i duże litery alfabetu łacińskiego,

Bardziej szczegółowo

Statystyka. Wykład 5. Magdalena Alama-Bućko. 26 marca Magdalena Alama-Bućko Statystyka 26 marca / 40

Statystyka. Wykład 5. Magdalena Alama-Bućko. 26 marca Magdalena Alama-Bućko Statystyka 26 marca / 40 Statystyka Wykład 5 Magdalena Alama-Bućko 26 marca 2018 Magdalena Alama-Bućko Statystyka 26 marca 2018 1 / 40 Uwaga Gdy współczynnik zmienności jest większy niż 70%, czyli V s = s x 100% > 70% (co świadczy

Bardziej szczegółowo

1 Funkcje elementarne

1 Funkcje elementarne 1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N

Bardziej szczegółowo

Analiza niepewności pomiarów

Analiza niepewności pomiarów Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej

Bardziej szczegółowo

Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport

Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

System dokładnosci (ISO/DIS 15197) (wg miedzynarodowych standardow)

System dokładnosci (ISO/DIS 15197) (wg miedzynarodowych standardow) IDT-1245-IE -- CareSens N (A) vs. YSI 2300 -- Dokument: 1245_A_CareSensN_Sys_acc2_Y_130325.xls acc_report System dokładnosci (ISO/DIS 15197) (wg miedzynarodowych standardow) System testowany: System odniesienia:

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

Analizy wariancji ANOVA (analysis of variance)

Analizy wariancji ANOVA (analysis of variance) ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza

Bardziej szczegółowo

opracował: mgr inż. Piotr Marchel Instrukcja obsługi programu Struktura

opracował: mgr inż. Piotr Marchel Instrukcja obsługi programu Struktura POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej Bezpieczeństwo elektroenergetyczne i niezawodność zasilania laboratorium opracował: mgr inż. Piotr

Bardziej szczegółowo

Modelowanie systemów liczacych. Ćwiczenie 2.

Modelowanie systemów liczacych. Ćwiczenie 2. Modelowanie systemów liczacych. Ćwiczenie 2. 1. Rozkłady i dystrybuanty w programie MATLAB Do odczytywania wartości prawdopodobieństwa typu P(X = X a ) przy ustalonym rozkładzie oraz zadanej wartości zmiennej

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje

Bardziej szczegółowo

Statystyka opisowa. Robert Pietrzykowski.

Statystyka opisowa. Robert Pietrzykowski. Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.

Bardziej szczegółowo

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

Parametry statystyczne

Parametry statystyczne I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n

Bardziej szczegółowo

Przy Matlabie istnieje duże społeczność wymieniająca się plikami, programami i poradami http://www.mathworks.com/matlabcentral/

Przy Matlabie istnieje duże społeczność wymieniająca się plikami, programami i poradami http://www.mathworks.com/matlabcentral/ Pomimo rozwoju programów klikologicznych w ekonometrii, istnieje wiele osób, które wciąż cenią sobie programy typu Matlab, czy Gauss. W programach klikologicznych typu EViews użytkownik ma małą kontrolę

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7. Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego

Bardziej szczegółowo

Matlab, zajęcia 3. Jeszcze jeden przykład metoda eliminacji Gaussa dla macierzy 3 na 3

Matlab, zajęcia 3. Jeszcze jeden przykład metoda eliminacji Gaussa dla macierzy 3 na 3 Matlab, zajęcia 3. Pętle c.d. Przypomnijmy sobie jak działa pętla for Możemy podać normalnie w Matlabie t=cputime; for i=1:20 v(i)=i; e=cputime-t UWAGA: Taka operacja jest bardzo czasochłonna i nieoptymalna

Bardziej szczegółowo

Statystyka. Magdalena Jakubek. kwiecień 2017

Statystyka. Magdalena Jakubek. kwiecień 2017 Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:

N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: Zadanie. O niezależnych zmiennych losowych N, M M, M 2, 3 wiemy, że: N ma rozkład Poissona z wartością oczekiwaną równą 00 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: 2, 3 Pr( M = )

Bardziej szczegółowo

Statystyka to nauka o metodach badań (liczbowo wyrażalnych) własności zbiorowości. Próba. Próba Populacja. Próba

Statystyka to nauka o metodach badań (liczbowo wyrażalnych) własności zbiorowości. Próba. Próba Populacja. Próba Statystyka Opisowa Wstępna analiza danych Rodzaje prezentacji danych Miary tendencji centralnej Miary zmienności (zróżnicowania) Miara asymetrii (skośności) Miara spłaszczenia Statystyka to nauka o metodach

Bardziej szczegółowo

Tomasz Mostowski 12.marca Gauss, zajęcia 3.

Tomasz Mostowski 12.marca Gauss, zajęcia 3. Gauss, zajęcia 3. Pętle c.d. Przypomnijmy sobie jak działa pętla for Możemy podać normalnie w Gaussie v=zeros(1,10); for i(1,10,1); v[i]=i; endfor; print v; UWAGA: Lepiej jest taką operację wykonać przy

Bardziej szczegółowo

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,

Bardziej szczegółowo

1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe

1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe Zjazd 7. SGGW, dn. 28.11.10 r. Matematyka i statystyka matematyczna Tematy 1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe nna Rajfura 1 Zagadnienia Przykład porównania wielu obiektów w

Bardziej szczegółowo

ĆWICZENIE 1 Statystyka opisowa. Testowanie zgodności STATYSTYKA OPISOWA wstępna analiza danych I. Miary położenia: Mediana Moda

ĆWICZENIE 1 Statystyka opisowa. Testowanie zgodności STATYSTYKA OPISOWA wstępna analiza danych I. Miary położenia: Mediana Moda ĆWICZENIE 1 Statystyka opisowa. Testowanie zgodności Przedmiotem statystyki jest zbieranie, prezentacja oraz analiza danych opisujących zjawiska losowe. Badaniu statystycznemu podlega próbka losowa pobrana

Bardziej szczegółowo

Statystyka. Wykład 2. Magdalena Alama-Bućko. 5 marca Magdalena Alama-Bućko Statystyka 5 marca / 34

Statystyka. Wykład 2. Magdalena Alama-Bućko. 5 marca Magdalena Alama-Bućko Statystyka 5 marca / 34 Statystyka Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka 5 marca 2018 1 / 34 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: Baza Demografia : https://bdl.stat.gov.pl/

Bardziej szczegółowo

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania

Bardziej szczegółowo

Opisowa analiza struktury zjawisk statystycznych

Opisowa analiza struktury zjawisk statystycznych Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X

Bardziej szczegółowo

Zmienne losowe. Statystyka w 3

Zmienne losowe. Statystyka w 3 Zmienne losowe Statystyka w Zmienna losowa Zmienna losowa jest funkcją, w której każdej wartości R odpowiada pewien podzbiór zbioru będący zdarzeniem losowym. Zmienna losowa powstaje poprzez przyporządkowanie

Bardziej szczegółowo