POMIAR NIERÓWNOŚCI W JAKOŚCI ŻYCIA

Wielkość: px
Rozpocząć pokaz od strony:

Download "POMIAR NIERÓWNOŚCI W JAKOŚCI ŻYCIA"

Transkrypt

1 Quality of Life - identyfikacja potencjału i zasobów Dolnego Śląska oraz wytyczenie przyszłych kierunków rozwoju. Badania metodami foresight POMIAR NIERÓWNOŚCI W JAKOŚCI ŻYCIA Edyta Mazurek Uniwersytet Ekonomiczny we Wrocławiu Wydział Zarządzania, Informatyki i Finansów Katedra Statystyki Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka 1

2 PROBLEM OCENA SPRAWIEDLIWOŚCI SPOŁECZNEJ Sprawiedliwie jest: wszystkich jednakowo nagradzać jeśli wszyscy cieszyć się mogą jednakową długością życia wszystkie jednostki terytorialne obdarzać relatywnie jednakowymi środkami jednakowo długo czekać w kolejce do lekarza 2

3 Źródło: 3

4 OCENA SPRAWIEDLIWOŚCI SPOŁECZNEJ ROZKŁAD RÓWNOMIERNY Pomiar nierówności polega na ocenie stopnia odchylenia rozkładu badanej zmiennej od rozkładu równomiernego Wskaźniki nierówności (inequality) 4

5 WSPÓŁCZYNNIK GINIEGO A B Gini = 0 Gini = 1 5

6 DOCHODY BUDŻETÓW POWIATOWYCH zł NA 1 MIESZKAŃCA W 2014 R. Gini = 0,10 6

7 SPRAWIEDLIWY PODZIAŁ DODATKOWYCH ŚRODKÓW FINANSOWYCH POMIĘDZY POWIATAMI (40 TYS. ZŁ) Pojawiły się dwie propozycje podziału: Powiat 1 otrzyma 1 tys. zł 5 tys. zł Powiat 2 1 tys. zł 5 tys. zł Powiat 3 3 tys. zł 5 tys. zł Powiat 4 3 tys. zł 5 tys. zł Powiat 5 4 tys. zł 5 tys. zł Powiat 6 4 tys. zł 1 tys. zł Powiat 7 4 tys. zł 1 tys. zł Powiat 8 4 tys. zł 1 tys. zł Powiat 9 7 tys. zł 1 tys. zł Powiat 10 9 tys. zł 11 tys. zł Który podział środków jest bardziej sprawiedliwy? 7

8 RYZYKO ZMIANY RANKINGU POWIATÓW ZE WZGLĘDU NA DOCHODY POWIATY DOCHÓD PRZED PODZIAŁEM DOCHÓD PO PODZIALE Powiat Powiat Powiat Powiat

9 RYZYKO ZMIANY RANKINGU POWIATÓW ZE WZGLĘDU NA DOCHODY POWIATY DOCHÓD PRZED PODZIAŁEM DOCHÓD PO PODZIALE Powiat Powiat Powiat Powiat Współczynnik koncentracji 9

10 Analiza oceny sprawiedliwości podziału dodatkowych środków pomiędzy powiatami oparta jest na wykrywaniu zmian pozycji powiatów w rankingu ze względu na osiągany dochód przed podziałem środków, oraz po podziale. Ważnym narzędziem statystycznym w analizie sprawiedliwości podziału jest krzywa koncentracji oraz krzywa Lorenza. Załóżmy, że wektor Krzywa koncentracji X jest wektorem niemalejących dochodów przed podziałem dodatkowych środków dla n powiatów: X x x,..., 1, 2 x n x 1 x... 2 xn 10

11 Krzywa koncentracji Niech wektor t i oznacza wielkość dochodu powiatów po uzyskaniu dodatkowych środków i-tego powiatu, przy czym wartości t i posortowane są zgodnie z niemalejącym porządkiem dochodów pierwotnych powiatów x i. Dla skończonej populacji n powiatów krzywa koncentracji powiększonego dochodu T definiowana jest jako funkcja ciągła, kawałkami liniowa o wierzchołkach w punktach: p,c i T p i 11

12 Krzywa koncentracji p, C i T p i i 0,1,2,..., n gdzie p p C T oraz p i i n C T i j pi n j1 t j 1 1 t j n T i j1 t j T 1 n n j 1 t j 12

13 Współczynnik koncentracji Niech zmienna I oznacza dochód powiatów uwzględniający dodatkowo przydzielone środki. Wówczas współczynnik Giniego dla rozkładu zmiennej I definiuje się (przypomnijmy) w następujący sposób: G I 1 p 1 2 L dp 0 Natomiast współczynnik koncentracji dla rozkładu dochodu powiatów po podziale T definiuje się wzorem: I D T 1 p 1 2 C dp 0 T 13

14 Współczynnik koncentracji Współczynnik Giniego przyjmuje wartość z przedziału [0,1] Współczynnik koncentracji dla rozkładu zmiennej T ograniczony jest współczynnikiem Giniego w następujący sposób: DT [ GT, GT ] Jeśli przydział dodatkowych środków do budżetów powiatowych nie spowodował zmiany kolejności powiatów ze względu na pierwotny budżet to: DT G T 14

15 PODSUMOWANIE Poczucie sprawiedliwości ważny aspekt jakości życia Sprawiedliwie nie zawsze oznacza równo Wykorzystanie współczynnika Giniego do oceny sprawiedliwości Współczynnik koncentracji miara wykrywania rerankingów Analiza ilościowa niezbędna w ocenie jakości życia 15

MIARY NIERÓWNOŚCI. 6. Miary oparte na kwantylach rozkładu dochodu

MIARY NIERÓWNOŚCI. 6. Miary oparte na kwantylach rozkładu dochodu MIARY NIERÓWNOŚCI Charakterystyka miar nierówności 2 Własności miar nierówności 3 Miary nierówności oparte o funkcję Lorenza 3 Współczynnik Giniego 32 Współczynnik Schutza 4 Miary nierówności wykorzystujące

Bardziej szczegółowo

Prezentacja założeń i wyników projektu Z instytucji do rodziny

Prezentacja założeń i wyników projektu Z instytucji do rodziny Prezentacja założeń i wyników projektu Z instytucji do rodziny Maciej Bukowski Warszawa, 29 maja 2018. Plan wystąpienia 1. Informacja o projekcie. 2. Prezentacja wybranych wniosków z analizy ilościowej.

Bardziej szczegółowo

Pozyskiwanie wiedzy z danych

Pozyskiwanie wiedzy z danych Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy

Bardziej szczegółowo

Statystyka społeczna Redakcja naukowa Tomasz Panek

Statystyka społeczna Redakcja naukowa Tomasz Panek Statystyka społeczna Redakcja naukowa Podręcznik obejmuje wiedzę o badaniach zjawisk społecznych jako źródło wiedzy dla różnych instytucji publicznych. Zostały w nim przedstawione metody analizy ilościowej

Bardziej szczegółowo

Uniwersytet Ekonomiczny we Wrocławiu Wrocław 2011

Uniwersytet Ekonomiczny we Wrocławiu Wrocław 2011 Uniwersytet Ekonomiczny we Wrocławiu Wrocław 2011 IDENTYFIKACJA POTENCJAŁU I ZASOBÓW DOLNEGO ŚLĄSKA W OBSZARZE NAUKA I TECHNOLOGIE NA RZECZ POPRAWY JAKOŚCI ŻYCL4 (QUALITY OF LIFE) ORAZ WYTYCZENIE PRZYSZŁYCH

Bardziej szczegółowo

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki

Bardziej szczegółowo

Próba własności i parametry

Próba własności i parametry Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Statystyka. Podstawowe pojęcia: populacja (zbiorowość statystyczna), jednostka statystyczna, próba. Cechy: ilościowe (mierzalne),

Statystyka. Podstawowe pojęcia: populacja (zbiorowość statystyczna), jednostka statystyczna, próba. Cechy: ilościowe (mierzalne), Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach badania zjawisk masowych, zmienna losowa będąca funkcją próby. Podstawowe pojęcia: populacja (zbiorowość

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

Dotacje oraz pomoc finansowa po stronie dochodów

Dotacje oraz pomoc finansowa po stronie dochodów Dotacje oraz pomoc finansowa po stronie dochodów Lp Wyszczególnienie Plan na 27.10.2015r. Projekt na 2016 rok V Dotacje otrzymane z budżetu państwa na zadania bieżące oraz zadania i zakupy inwestycyjne

Bardziej szczegółowo

OBSZAR BIOTECHNOLOGIA I FARMACEUTYKA - CZĘŚĆ 1

OBSZAR BIOTECHNOLOGIA I FARMACEUTYKA - CZĘŚĆ 1 OBSZAR BIOTECHNOLOGIA I FARMACEUTYKA - CZĘŚĆ 1 Projekt Identyfikacja potencjału i zasobów Dolnego Śląska w obszarze nauka i technologie na rzecz poprawy jakości życia (Jakość Życia/Quality of Life) oraz

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Matematyka 2. dr inż. Rajmund Stasiewicz

Matematyka 2. dr inż. Rajmund Stasiewicz Matematyka 2 dr inż. Rajmund Stasiewicz Skala ocen Punkty Ocena 0 50 2,0 51 60 3,0 61 70 3,5 71 80 4,0 81 90 4,5 91-5,0 Zwolnienie z egzaminu Ocena z egzaminu liczba punktów z ćwiczeń - 5 Warunki zaliczenia

Bardziej szczegółowo

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe

Bardziej szczegółowo

Wykład 2 Zmienne losowe i ich rozkłady

Wykład 2 Zmienne losowe i ich rozkłady Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie

Bardziej szczegółowo

Systemowe zarządzanie jakością : koncepcja systemu, ocena systemu, wspomaganie decyzji / Piotr Miller. Warszawa, Spis treści

Systemowe zarządzanie jakością : koncepcja systemu, ocena systemu, wspomaganie decyzji / Piotr Miller. Warszawa, Spis treści Systemowe zarządzanie jakością : koncepcja systemu, ocena systemu, wspomaganie decyzji / Piotr Miller. Warszawa, 2011 Spis treści Szanowny Czytelniku 11 I. SYSTEMOWE I PROCESOWE PODEJŚCIE DO ZARZĄDZANIA

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami

Bardziej szczegółowo

Statystyka. Wykład 6. Magdalena Alama-Bućko. 9 kwietnia Magdalena Alama-Bućko Statystyka 9 kwietnia / 36

Statystyka. Wykład 6. Magdalena Alama-Bućko. 9 kwietnia Magdalena Alama-Bućko Statystyka 9 kwietnia / 36 Statystyka Wykład 6 Magdalena Alama-Bućko 9 kwietnia 2018 Magdalena Alama-Bućko Statystyka 9 kwietnia 2018 1 / 36 Krzywa koncentracji Lorenza w ekonometrii, ekologii, geografii ludności itp. koncentrację

Bardziej szczegółowo

1. Analiza wskaźnikowa... 3 1.1. Wskaźniki szczegółowe... 3 1.2. Wskaźniki syntetyczne... 53 1.2.1.

1. Analiza wskaźnikowa... 3 1.1. Wskaźniki szczegółowe... 3 1.2. Wskaźniki syntetyczne... 53 1.2.1. Spis treści 1. Analiza wskaźnikowa... 3 1.1. Wskaźniki szczegółowe... 3 1.2. Wskaźniki syntetyczne... 53 1.2.1. Zastosowana metodologia rangowania obiektów wielocechowych... 53 1.2.2. Potencjał innowacyjny

Bardziej szczegółowo

Jak zmierzyć rozwoju? Standardowe wskaźniki. Tomasz Poskrobko

Jak zmierzyć rozwoju? Standardowe wskaźniki. Tomasz Poskrobko Jak zmierzyć rozwoju? Standardowe wskaźniki Tomasz Poskrobko Produkt krajowy brutto (PKB) wartość rynkową wszystkich finalnych dóbr i usług produkowanych w kraju w danym okresie PKB od strony popytowej

Bardziej szczegółowo

Jak zmierzyć rozwoju? Standardowe wskaźniki. Tomasz Poskrobko

Jak zmierzyć rozwoju? Standardowe wskaźniki. Tomasz Poskrobko Jak zmierzyć rozwoju? Standardowe wskaźniki Tomasz Poskrobko Produkt krajowy brutto (PKB) wartość rynkową wszystkich finalnych dóbr i usług produkowanych w kraju w danym okresie PKB od strony popytowej

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych. Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną

Bardziej szczegółowo

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych. Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VIII: Przestrzenie statystyczne. Estymatory 1 grudnia 2014 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji r(x, Z) = 0, 986 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

RYNEK PRACY/ADAPTACYJNOŚĆ ZASOBÓW PRACY W WOJEWÓDZTWIE DOLNOŚLĄSKIM

RYNEK PRACY/ADAPTACYJNOŚĆ ZASOBÓW PRACY W WOJEWÓDZTWIE DOLNOŚLĄSKIM RYNEK PRACY/ADAPTACYJNOŚĆ ZASOBÓW PRACY W WOJEWÓDZTWIE DOLNOŚLĄSKIM Urząd Statystyczny we Wrocławiu 50-950 Wrocław, ul. Oławska 31, tel. 71 371 63 00, fax 71 371 63 60 PLAN PREZENTACJI Wprowadzenie Województwo

Bardziej szczegółowo

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Biostatystyka, # 3 /Weterynaria I/

Biostatystyka, # 3 /Weterynaria I/ Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap

Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test

Bardziej szczegółowo

Badania eksperymentalne

Badania eksperymentalne Badania eksperymentalne Analiza CONJOINT mgr Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Najpopularniejsze sposoby oceny wyników eksperymentu w schematach

Bardziej szczegółowo

Wykład 4 Wybór najlepszej procedury. Estymacja parametrów re

Wykład 4 Wybór najlepszej procedury. Estymacja parametrów re Wykład 4 Wybór najlepszej procedury. Estymacja parametrów regresji z wykorzystaniem metody bootstrap. Wrocław, 22.03.2017r Wybór najlepszej procedury - podsumowanie Co nas interesuje przed przeprowadzeniem

Bardziej szczegółowo

Zmienne losowe. Statystyka w 3

Zmienne losowe. Statystyka w 3 Zmienne losowe Statystyka w Zmienna losowa Zmienna losowa jest funkcją, w której każdej wartości R odpowiada pewien podzbiór zbioru będący zdarzeniem losowym. Zmienna losowa powstaje poprzez przyporządkowanie

Bardziej szczegółowo

Makroekonomia II Polityka fiskalna

Makroekonomia II Polityka fiskalna Makroekonomia II Polityka fiskalna D R A D A M C Z E R N I A K S Z K O Ł A G Ł Ó W N A H A N D L O W A W W A R S Z A W I E K A T E D R A E K O N O M I I I I 2 MIERNIKI RÓWNOWAGI FISKALNEJ wykład I Co składa

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Analiza niepewności pomiarów

Analiza niepewności pomiarów Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej

Bardziej szczegółowo

Budowanie macierzy danych geograficznych Procedura normalizacji Budowanie wskaźnika syntetycznego

Budowanie macierzy danych geograficznych Procedura normalizacji Budowanie wskaźnika syntetycznego Metody Analiz Przestrzennych Budowanie macierzy danych geograficznych Procedura normalizacji Budowanie wskaźnika syntetycznego mgr Marcin Semczuk Zakład Przedsiębiorczości i Gospodarki Przestrzennej Instytut

Bardziej szczegółowo

Metody Ilościowe w Socjologii

Metody Ilościowe w Socjologii Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu

Bardziej szczegółowo

Zielone powiaty województwa śląskiego

Zielone powiaty województwa śląskiego Zielone powiaty województwa śląskiego Raport analityczny opracowany w oparciu o Indeks Zielonych Powiatów Strona2 Spis treści Koncepcja Indeksu Zielonych Powiatów... 3 Metodologia badawcza... 4 Indeks

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Test lewostronny dla hipotezy zerowej:

Test lewostronny dla hipotezy zerowej: Poznajemy testowanie hipotez statystycznych w środowisku R Zajęcia z dnia 11 maja 2011 roku Najpierw teoria TESTY ISTOTNOŚCI WARTOŚCI ŚREDNIEJ W POPULACJI GENERALNEJ gdy znana jest wariancja!!! Test prawostronny

Bardziej szczegółowo

Proces badania statystycznego z wykorzystaniem miernika syntetycznego (wg procedury Z. Zioło)

Proces badania statystycznego z wykorzystaniem miernika syntetycznego (wg procedury Z. Zioło) Metody Badań w Geografii Społeczno Ekonomicznej Proces badania statystycznego z wykorzystaniem miernika syntetycznego (wg procedury Z. Zioło) uporządkowanie liniowe obiektów mgr Marcin Semczuk Zakład Przedsiębiorczości

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

ROZWÓJ EFEKTYWNEGO SYSTEMU MONITORINGU POLITYK PUBLICZNYCH W WOJEWÓDZTWIE ŚLĄSKIM

ROZWÓJ EFEKTYWNEGO SYSTEMU MONITORINGU POLITYK PUBLICZNYCH W WOJEWÓDZTWIE ŚLĄSKIM ROZWÓJ EFEKTYWNEGO SYSTEMU MONITORINGU POLITYK PUBLICZNYCH W WOJEWÓDZTWIE ŚLĄSKIM Moduł społeczny Wojciech Dąbrowa Regionalne Centrum Analiz i Planowania Strategicznego www.rcas.slaskie.pl Wydział Rozwoju

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach

Bardziej szczegółowo

Statystyka społeczna. Liczba godzin stacjonarne: Wykłady: 15 Ćwiczenia: 15. niestacjonarne: Wykłady: 9 Ćwiczenia: 9

Statystyka społeczna. Liczba godzin stacjonarne: Wykłady: 15 Ćwiczenia: 15. niestacjonarne: Wykłady: 9 Ćwiczenia: 9 Karta przedmiotu Wydział: Wydział Zarządzania Kierunek: Analityka gospodarcza I. Informacje podstawowe Nazwa przedmiotu Statystyka społeczna Nazwa przedmiotu w j. ang. Język prowadzenia przedmiotu polski

Bardziej szczegółowo

1 Podstawy rachunku prawdopodobieństwa

1 Podstawy rachunku prawdopodobieństwa 1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej

Bardziej szczegółowo

Wskaźnik asymetrii Jeżeli: rozkład jest symetryczny, to = 0, rozkład jest asymetryczny lewostronnie, to < 0. Kwartylowy wskaźnik asymetrii

Wskaźnik asymetrii Jeżeli: rozkład jest symetryczny, to = 0, rozkład jest asymetryczny lewostronnie, to < 0. Kwartylowy wskaźnik asymetrii Miary asymetrii Miary asymetrii (skośności) określają kierunek rozkładu cech zmiennych w zbiorowości (rozkład może być symetryczny lub asymetryczny lewostronnie lub prawostronnie) oraz stopień odchylenia

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje

Bardziej szczegółowo

Badanie zgodności dwóch rozkładów - test serii, test mediany, test Wilcoxona, test Kruskala-Wallisa

Badanie zgodności dwóch rozkładów - test serii, test mediany, test Wilcoxona, test Kruskala-Wallisa Badanie zgodności dwóch rozkładów - test serii, test mediany, test Wilcoxona, test Kruskala-Wallisa Test serii (test Walda-Wolfowitza) Założenie. Rozpatrywane rozkłady są ciągłe. Mamy dwa uporządkowane

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Ekonomia rozwoju wykład 2 Ubóstwo, nierówność i. dr Piotr Białowolski Katedra Ekonomii I

Ekonomia rozwoju wykład 2 Ubóstwo, nierówność i. dr Piotr Białowolski Katedra Ekonomii I Ekonomia rozwoju wykład 2 Ubóstwo, nierówność i niedorozwój dr Piotr Białowolski Katedra Ekonomii I Plan wykładu Metody pomiaru nierówności i ubóstwa Ubóstwo i nierówności a dobrobyt i wzrost gospodarczy

Bardziej szczegółowo

ŚLĄSKI ZWIĄZEK GMIN I POWIATÓW Ul. Stalmacha Katowice Tel / , Fax /

ŚLĄSKI ZWIĄZEK GMIN I POWIATÓW Ul. Stalmacha Katowice Tel / , Fax / Raport z identyfikacji dobrych praktyk w obszarze XV. Organizacja pracy urzędu w ramach projektu Benchmarking narzędzie efektywnej kontroli zarządczej w urzędach miast na prawach powiatu, urzędach gmin

Bardziej szczegółowo

Źródła finansowania Celów strategicznych Regionalnej Strategii Innowacji Województwa Opolskiego do roku 2020.

Źródła finansowania Celów strategicznych Regionalnej Strategii Innowacji Województwa Opolskiego do roku 2020. Załącznik do Uchwały Nr 2661/2016 Zarządu Województwa Opolskiego z dnia 26 września 2016 r. Załącznik do Planu działania dla Regionalnej Strategii Innowacji Województwa Opolskiego do roku 2020 przyjętego

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

ANALIZA WIELOPOZIOMOWA JAKO NARZĘDZIE WSPARCIA POLITYK PUBLICZNYCH

ANALIZA WIELOPOZIOMOWA JAKO NARZĘDZIE WSPARCIA POLITYK PUBLICZNYCH ANALIZA WIELOPOZIOMOWA JAKO NARZĘDZIE WSPARCIA POLITYK PUBLICZNYCH - Adrian Gorgosz - Paulina Tupalska ANALIZA WIELOPOZIOMOWA (AW) Multilevel Analysis Obecna od lat 80. Popularna i coraz częściej stosowana

Bardziej szczegółowo

Ankieta dla przedsiębiorstw

Ankieta dla przedsiębiorstw Ankieta dla przedsiębiorstw Złota Setka najlepsze firmy województwa opolskiego Redaktorzy Prof. Dr hab. inż. Joachim Foltys, Dziekan Wydziału Ekonomii i Zarządzania, Politechnika Opolska Dr inż. Grażyna

Bardziej szczegółowo

1 Warunkowe wartości oczekiwane

1 Warunkowe wartości oczekiwane Warunkowe wartości oczekiwane W tej serii zadań rozwiążemy różne zadania związane z problemem warunkowania.. (Eg 48/) Załóżmy, że X, X, X 3, X 4 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie

Bardziej szczegółowo

Wykład 5. Opis struktury zbiorowości. 1. Miary asymetrii.

Wykład 5. Opis struktury zbiorowości. 1. Miary asymetrii. Wykład 5. Opis struktury zbiorowości 1. Miary asymetrii. 2. Miary koncentracji. Przykład Zbadano stawkę godzinową (w zł) pracowników dwóch branŝ, otrzymując następujące charakterysty ki liczbowe: Stawka

Bardziej szczegółowo

Estymacja w regresji nieparametrycznej

Estymacja w regresji nieparametrycznej Estymacja w regresji nieparametrycznej Jakub Kolecki Politechnika Gdańska 28 listopada 2011 1 Wstęp Co to jest regresja? Przykład regresji 2 Regresja nieparametryczna Założenia modelu Estymacja i jej charakterystyki

Bardziej szczegółowo

Wnioskowanie statystyczne. Statystyka w 5

Wnioskowanie statystyczne. Statystyka w 5 Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś.

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Województwo Urodzenia według płci noworodka i województwa. ; Rok 2008; POLSKA Ogółem Miasta Wieś Pozamałżeńskie- Miasta Pozamałżeńskie-

Bardziej szczegółowo

DZIENNIK URZĘDOWY WOJEWÓDZTWA ŚLĄSKIEGO

DZIENNIK URZĘDOWY WOJEWÓDZTWA ŚLĄSKIEGO DZIENNIK URZĘDOWY WOJEWÓDZTWA ŚLĄSKIEGO Katowice, dnia 12 stycznia 2015 r. Poz. 138 UCHWAŁA NR III/16/2014 RADY MIEJSKIEJ W BIELSKU-BIAŁEJ w sprawie zmian budżetu miasta Bielska-Białej na 2014 rok Na podstawie

Bardziej szczegółowo

PROGRAM ZADAŃ NA DROGACH WOJEWÓDZKICH WSPÓŁFINANSOWANYCH W 2013 R. PRZEZ JEDNOSTKI SAMORZĄDU TERYTORIALNEGO - PROGRAM WID 2013

PROGRAM ZADAŃ NA DROGACH WOJEWÓDZKICH WSPÓŁFINANSOWANYCH W 2013 R. PRZEZ JEDNOSTKI SAMORZĄDU TERYTORIALNEGO - PROGRAM WID 2013 Załącznik do Uchwały Nr 3289/206/IV/2012 Zarządu Województwa Śląskiego z dnia 22.11.2012r. PROGRAM ZADAŃ NA DROGACH WOJEWÓDZKICH WSPÓŁFINANSOWANYCH W 2013 R. PRZEZ JEDNOSTKI SAMORZĄDU TERYTORIALNEGO -

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych. Statystyka

Wybrane rozkłady zmiennych losowych. Statystyka Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1

Bardziej szczegółowo

Ustawa. z dnia roku. o zmianie ustawy o publicznym transporcie zbiorowym. Art. 1

Ustawa. z dnia roku. o zmianie ustawy o publicznym transporcie zbiorowym. Art. 1 Projekt Ustawa z dnia. 2014 roku o zmianie ustawy o publicznym transporcie zbiorowym Art. 1 W ustawie z dnia 16 grudnia 2010 r. o publicznym transporcie zbiorowym (Dz. U. z 2011 r. nr 5, poz. 13 z późn.

Bardziej szczegółowo

Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,

Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2, Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać

Bardziej szczegółowo

U C H W A Ł A Nr 157/2009 RADY MINISTRÓW. z dnia 15 września 2009 r.

U C H W A Ł A Nr 157/2009 RADY MINISTRÓW. z dnia 15 września 2009 r. U C H W A Ł A Nr 157/2009 RADY MINISTRÓW z dnia 15 września 2009 r. zmieniająca uchwałę w sprawie ustanowienia programu wieloletniego pod nazwą "Narodowy program przebudowy dróg lokalnych 2008 2011" Na

Bardziej szczegółowo

Metody statystyczne w socjologii SYLABUS A. Informacje ogólne Opis

Metody statystyczne w socjologii SYLABUS A. Informacje ogólne Opis Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu Język przedmiotu Rodzaj przedmiotu Dziedzina i dyscyplina

Bardziej szczegółowo

Statystyka opisowa. Robert Pietrzykowski.

Statystyka opisowa. Robert Pietrzykowski. Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.

Bardziej szczegółowo

Aleksander Sobota, Grzegorz Karoń - Śląski Klaster Transportu Miejskiego Centrum Rozwoju Transportu

Aleksander Sobota, Grzegorz Karoń - Śląski Klaster Transportu Miejskiego Centrum Rozwoju Transportu Aleksander Sobota, Grzegorz Karoń - Śląski Klaster Transportu Miejskiego Centrum Rozwoju Transportu Systemy ITS w gminach województwa śląskiego analiza badań ankietowych Wstęp Działający w województwie

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, Biomatematyka

EGZAMIN MAGISTERSKI, Biomatematyka Biomatematyka 90...... Zadanie 1. (8 punktów) Liczebność pewnej populacji ryb jest opisana następującym równaniem Rickera: N n+1 = α N n exp( βn n ), (1) w którym N n oznacza liczebność populacji w n tej

Bardziej szczegółowo

kwota w zł. Załącznik Nr 1 do uchwały Nr 63/302/11 Zarządu Powiatu w Kielcach z dnia 23 listopada 2011r. DOCHODY LISTOPAD/2011

kwota w zł. Załącznik Nr 1 do uchwały Nr 63/302/11 Zarządu Powiatu w Kielcach z dnia 23 listopada 2011r. DOCHODY LISTOPAD/2011 Dział 010 - Rolnictwo i łowiectwo DOCHODY BIEŻĄCE 1 142,00 Dotacje celowe 1 142,00 Dotacje celowe otrzymane z budżetu państwa 1 142,00 Dotacje celowe otrzymane z budżetu państwa na zadania bieżące z zakresu

Bardziej szczegółowo

Statystyka. Wykład 5. Magdalena Alama-Bućko. 26 marca Magdalena Alama-Bućko Statystyka 26 marca / 40

Statystyka. Wykład 5. Magdalena Alama-Bućko. 26 marca Magdalena Alama-Bućko Statystyka 26 marca / 40 Statystyka Wykład 5 Magdalena Alama-Bućko 26 marca 2018 Magdalena Alama-Bućko Statystyka 26 marca 2018 1 / 40 Uwaga Gdy współczynnik zmienności jest większy niż 70%, czyli V s = s x 100% > 70% (co świadczy

Bardziej szczegółowo

Edukacyjna wartość dodana - wskaźnik efektywności nauczania

Edukacyjna wartość dodana - wskaźnik efektywności nauczania Edukacyjna wartość dodana - wskaźnik efektywności nauczania Jakość oświaty jako efekt zarządzania strategicznego - szkolenie dla przedstawicieli jednostek samorządu terytorialnego opracowała: Ewa Stożek

Bardziej szczegółowo

Graficzna prezentacja danych statystycznych

Graficzna prezentacja danych statystycznych Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

Emerytury nowosystemowe wypłacone w grudniu 2018 r. w wysokości niższej niż wysokość najniższej emerytury (tj. niższej niż 1029,80 zł)

Emerytury nowosystemowe wypłacone w grudniu 2018 r. w wysokości niższej niż wysokość najniższej emerytury (tj. niższej niż 1029,80 zł) Emerytury nowosystemowe wypłacone w grudniu 18 r. w wysokości niższej niż wysokość najniższej emerytury (tj. niższej niż 9,8 zł) DEPARTAMENT STATYSTYKI I PROGNOZ AKTUARIALNYCH Warszawa 19 1 Zgodnie z art.

Bardziej szczegółowo

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, mgr

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, mgr SYLLABUS na rok akademicki 010/011 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr /4 Specjalność Bez specjalności Kod katedry/zakładu w

Bardziej szczegółowo

(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008

(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008 STATYSTYKA MATEMATYCZNA - dział matematyki stosowanej oparty na rachunku prawdopodobieństwa; zajmuje się badaniem zbiorów na podstawie analizy ich części. Nauka, której przedmiotem zainteresowania są metody

Bardziej szczegółowo

W2 Podstawy rachunku prawdopodobieństwa (przypomnienie)

W2 Podstawy rachunku prawdopodobieństwa (przypomnienie) W2 Podstawy rachunku prawdopodobieństwa (przypomnienie) Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Rachunek prawdopodobieństwa - przypomnienie 1. Zdarzenia 2. Prawdopodobieństwo

Bardziej szczegółowo

Podręcznik akademicki dofinansowany przez Ministra Nauki i Szkolnictwa Wyższego

Podręcznik akademicki dofinansowany przez Ministra Nauki i Szkolnictwa Wyższego Recenzenci: dr hab. Ryszard Cichocki, prof. UAM dr hab. Jarosław Górniak, prof. UJ Redaktor prowadzący: Agnieszka Szopińska Redakcja i korekta: Anna Kaniewska Projekt okładki: Katarzyna Juras Copyright

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych. Statystyka

Wybrane rozkłady zmiennych losowych. Statystyka Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1

Bardziej szczegółowo

Analiza współzależności dwóch cech I

Analiza współzależności dwóch cech I Analiza współzależności dwóch cech I Współzależność dwóch cech W tym rozdziale pokażemy metody stosowane dla potrzeb wykrywania zależności lub współzależności między dwiema cechami. W celu wykrycia tych

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.3 Rozkłady warunkowe i warunkowa wartość oczekiwana Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Prawdopodobieństwo wyraża postawę

Bardziej szczegółowo

Sztuczna inteligencja : Zbiory rozmyte cz. III

Sztuczna inteligencja : Zbiory rozmyte cz. III Instytut Informatyki Uniwersytetu Śląskiego lab 3 Notacja Zadeha: symboliczny zapis zbioru rozmytego dla przestrzeni dyskretnej. Dla X jest przestrzenią o skończonej liczbie elementów X = {x 1, x 2,...,

Bardziej szczegółowo