POMIAR NIERÓWNOŚCI W JAKOŚCI ŻYCIA
|
|
- Władysława Krzemińska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Quality of Life - identyfikacja potencjału i zasobów Dolnego Śląska oraz wytyczenie przyszłych kierunków rozwoju. Badania metodami foresight POMIAR NIERÓWNOŚCI W JAKOŚCI ŻYCIA Edyta Mazurek Uniwersytet Ekonomiczny we Wrocławiu Wydział Zarządzania, Informatyki i Finansów Katedra Statystyki Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka 1
2 PROBLEM OCENA SPRAWIEDLIWOŚCI SPOŁECZNEJ Sprawiedliwie jest: wszystkich jednakowo nagradzać jeśli wszyscy cieszyć się mogą jednakową długością życia wszystkie jednostki terytorialne obdarzać relatywnie jednakowymi środkami jednakowo długo czekać w kolejce do lekarza 2
3 Źródło: 3
4 OCENA SPRAWIEDLIWOŚCI SPOŁECZNEJ ROZKŁAD RÓWNOMIERNY Pomiar nierówności polega na ocenie stopnia odchylenia rozkładu badanej zmiennej od rozkładu równomiernego Wskaźniki nierówności (inequality) 4
5 WSPÓŁCZYNNIK GINIEGO A B Gini = 0 Gini = 1 5
6 DOCHODY BUDŻETÓW POWIATOWYCH zł NA 1 MIESZKAŃCA W 2014 R. Gini = 0,10 6
7 SPRAWIEDLIWY PODZIAŁ DODATKOWYCH ŚRODKÓW FINANSOWYCH POMIĘDZY POWIATAMI (40 TYS. ZŁ) Pojawiły się dwie propozycje podziału: Powiat 1 otrzyma 1 tys. zł 5 tys. zł Powiat 2 1 tys. zł 5 tys. zł Powiat 3 3 tys. zł 5 tys. zł Powiat 4 3 tys. zł 5 tys. zł Powiat 5 4 tys. zł 5 tys. zł Powiat 6 4 tys. zł 1 tys. zł Powiat 7 4 tys. zł 1 tys. zł Powiat 8 4 tys. zł 1 tys. zł Powiat 9 7 tys. zł 1 tys. zł Powiat 10 9 tys. zł 11 tys. zł Który podział środków jest bardziej sprawiedliwy? 7
8 RYZYKO ZMIANY RANKINGU POWIATÓW ZE WZGLĘDU NA DOCHODY POWIATY DOCHÓD PRZED PODZIAŁEM DOCHÓD PO PODZIALE Powiat Powiat Powiat Powiat
9 RYZYKO ZMIANY RANKINGU POWIATÓW ZE WZGLĘDU NA DOCHODY POWIATY DOCHÓD PRZED PODZIAŁEM DOCHÓD PO PODZIALE Powiat Powiat Powiat Powiat Współczynnik koncentracji 9
10 Analiza oceny sprawiedliwości podziału dodatkowych środków pomiędzy powiatami oparta jest na wykrywaniu zmian pozycji powiatów w rankingu ze względu na osiągany dochód przed podziałem środków, oraz po podziale. Ważnym narzędziem statystycznym w analizie sprawiedliwości podziału jest krzywa koncentracji oraz krzywa Lorenza. Załóżmy, że wektor Krzywa koncentracji X jest wektorem niemalejących dochodów przed podziałem dodatkowych środków dla n powiatów: X x x,..., 1, 2 x n x 1 x... 2 xn 10
11 Krzywa koncentracji Niech wektor t i oznacza wielkość dochodu powiatów po uzyskaniu dodatkowych środków i-tego powiatu, przy czym wartości t i posortowane są zgodnie z niemalejącym porządkiem dochodów pierwotnych powiatów x i. Dla skończonej populacji n powiatów krzywa koncentracji powiększonego dochodu T definiowana jest jako funkcja ciągła, kawałkami liniowa o wierzchołkach w punktach: p,c i T p i 11
12 Krzywa koncentracji p, C i T p i i 0,1,2,..., n gdzie p p C T oraz p i i n C T i j pi n j1 t j 1 1 t j n T i j1 t j T 1 n n j 1 t j 12
13 Współczynnik koncentracji Niech zmienna I oznacza dochód powiatów uwzględniający dodatkowo przydzielone środki. Wówczas współczynnik Giniego dla rozkładu zmiennej I definiuje się (przypomnijmy) w następujący sposób: G I 1 p 1 2 L dp 0 Natomiast współczynnik koncentracji dla rozkładu dochodu powiatów po podziale T definiuje się wzorem: I D T 1 p 1 2 C dp 0 T 13
14 Współczynnik koncentracji Współczynnik Giniego przyjmuje wartość z przedziału [0,1] Współczynnik koncentracji dla rozkładu zmiennej T ograniczony jest współczynnikiem Giniego w następujący sposób: DT [ GT, GT ] Jeśli przydział dodatkowych środków do budżetów powiatowych nie spowodował zmiany kolejności powiatów ze względu na pierwotny budżet to: DT G T 14
15 PODSUMOWANIE Poczucie sprawiedliwości ważny aspekt jakości życia Sprawiedliwie nie zawsze oznacza równo Wykorzystanie współczynnika Giniego do oceny sprawiedliwości Współczynnik koncentracji miara wykrywania rerankingów Analiza ilościowa niezbędna w ocenie jakości życia 15
MIARY NIERÓWNOŚCI. 6. Miary oparte na kwantylach rozkładu dochodu
MIARY NIERÓWNOŚCI Charakterystyka miar nierówności 2 Własności miar nierówności 3 Miary nierówności oparte o funkcję Lorenza 3 Współczynnik Giniego 32 Współczynnik Schutza 4 Miary nierówności wykorzystujące
Prezentacja założeń i wyników projektu Z instytucji do rodziny
Prezentacja założeń i wyników projektu Z instytucji do rodziny Maciej Bukowski Warszawa, 29 maja 2018. Plan wystąpienia 1. Informacja o projekcie. 2. Prezentacja wybranych wniosków z analizy ilościowej.
Pozyskiwanie wiedzy z danych
Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy
Statystyka społeczna Redakcja naukowa Tomasz Panek
Statystyka społeczna Redakcja naukowa Podręcznik obejmuje wiedzę o badaniach zjawisk społecznych jako źródło wiedzy dla różnych instytucji publicznych. Zostały w nim przedstawione metody analizy ilościowej
Uniwersytet Ekonomiczny we Wrocławiu Wrocław 2011
Uniwersytet Ekonomiczny we Wrocławiu Wrocław 2011 IDENTYFIKACJA POTENCJAŁU I ZASOBÓW DOLNEGO ŚLĄSKA W OBSZARZE NAUKA I TECHNOLOGIE NA RZECZ POPRAWY JAKOŚCI ŻYCL4 (QUALITY OF LIFE) ORAZ WYTYCZENIE PRZYSZŁYCH
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki
Próba własności i parametry
Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
Statystyka. Podstawowe pojęcia: populacja (zbiorowość statystyczna), jednostka statystyczna, próba. Cechy: ilościowe (mierzalne),
Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach badania zjawisk masowych, zmienna losowa będąca funkcją próby. Podstawowe pojęcia: populacja (zbiorowość
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd
Dotacje oraz pomoc finansowa po stronie dochodów
Dotacje oraz pomoc finansowa po stronie dochodów Lp Wyszczególnienie Plan na 27.10.2015r. Projekt na 2016 rok V Dotacje otrzymane z budżetu państwa na zadania bieżące oraz zadania i zakupy inwestycyjne
OBSZAR BIOTECHNOLOGIA I FARMACEUTYKA - CZĘŚĆ 1
OBSZAR BIOTECHNOLOGIA I FARMACEUTYKA - CZĘŚĆ 1 Projekt Identyfikacja potencjału i zasobów Dolnego Śląska w obszarze nauka i technologie na rzecz poprawy jakości życia (Jakość Życia/Quality of Life) oraz
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Matematyka 2. dr inż. Rajmund Stasiewicz
Matematyka 2 dr inż. Rajmund Stasiewicz Skala ocen Punkty Ocena 0 50 2,0 51 60 3,0 61 70 3,5 71 80 4,0 81 90 4,5 91-5,0 Zwolnienie z egzaminu Ocena z egzaminu liczba punktów z ćwiczeń - 5 Warunki zaliczenia
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
Wykład 2 Zmienne losowe i ich rozkłady
Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie
Systemowe zarządzanie jakością : koncepcja systemu, ocena systemu, wspomaganie decyzji / Piotr Miller. Warszawa, Spis treści
Systemowe zarządzanie jakością : koncepcja systemu, ocena systemu, wspomaganie decyzji / Piotr Miller. Warszawa, 2011 Spis treści Szanowny Czytelniku 11 I. SYSTEMOWE I PROCESOWE PODEJŚCIE DO ZARZĄDZANIA
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami
Statystyka. Wykład 6. Magdalena Alama-Bućko. 9 kwietnia Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
Statystyka Wykład 6 Magdalena Alama-Bućko 9 kwietnia 2018 Magdalena Alama-Bućko Statystyka 9 kwietnia 2018 1 / 36 Krzywa koncentracji Lorenza w ekonometrii, ekologii, geografii ludności itp. koncentrację
1. Analiza wskaźnikowa... 3 1.1. Wskaźniki szczegółowe... 3 1.2. Wskaźniki syntetyczne... 53 1.2.1.
Spis treści 1. Analiza wskaźnikowa... 3 1.1. Wskaźniki szczegółowe... 3 1.2. Wskaźniki syntetyczne... 53 1.2.1. Zastosowana metodologia rangowania obiektów wielocechowych... 53 1.2.2. Potencjał innowacyjny
Jak zmierzyć rozwoju? Standardowe wskaźniki. Tomasz Poskrobko
Jak zmierzyć rozwoju? Standardowe wskaźniki Tomasz Poskrobko Produkt krajowy brutto (PKB) wartość rynkową wszystkich finalnych dóbr i usług produkowanych w kraju w danym okresie PKB od strony popytowej
Jak zmierzyć rozwoju? Standardowe wskaźniki. Tomasz Poskrobko
Jak zmierzyć rozwoju? Standardowe wskaźniki Tomasz Poskrobko Produkt krajowy brutto (PKB) wartość rynkową wszystkich finalnych dóbr i usług produkowanych w kraju w danym okresie PKB od strony popytowej
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Wykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
Wykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
Prawdopodobieństwo i statystyka
Wykład VIII: Przestrzenie statystyczne. Estymatory 1 grudnia 2014 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji r(x, Z) = 0, 986 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji
1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:
Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).
RYNEK PRACY/ADAPTACYJNOŚĆ ZASOBÓW PRACY W WOJEWÓDZTWIE DOLNOŚLĄSKIM
RYNEK PRACY/ADAPTACYJNOŚĆ ZASOBÓW PRACY W WOJEWÓDZTWIE DOLNOŚLĄSKIM Urząd Statystyczny we Wrocławiu 50-950 Wrocław, ul. Oławska 31, tel. 71 371 63 00, fax 71 371 63 60 PLAN PREZENTACJI Wprowadzenie Województwo
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Biostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody
Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015
Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20
Statystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test
Badania eksperymentalne
Badania eksperymentalne Analiza CONJOINT mgr Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Najpopularniejsze sposoby oceny wyników eksperymentu w schematach
Wykład 4 Wybór najlepszej procedury. Estymacja parametrów re
Wykład 4 Wybór najlepszej procedury. Estymacja parametrów regresji z wykorzystaniem metody bootstrap. Wrocław, 22.03.2017r Wybór najlepszej procedury - podsumowanie Co nas interesuje przed przeprowadzeniem
Zmienne losowe. Statystyka w 3
Zmienne losowe Statystyka w Zmienna losowa Zmienna losowa jest funkcją, w której każdej wartości R odpowiada pewien podzbiór zbioru będący zdarzeniem losowym. Zmienna losowa powstaje poprzez przyporządkowanie
Makroekonomia II Polityka fiskalna
Makroekonomia II Polityka fiskalna D R A D A M C Z E R N I A K S Z K O Ł A G Ł Ó W N A H A N D L O W A W W A R S Z A W I E K A T E D R A E K O N O M I I I I 2 MIERNIKI RÓWNOWAGI FISKALNEJ wykład I Co składa
Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.
Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.
Analiza niepewności pomiarów
Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej
Budowanie macierzy danych geograficznych Procedura normalizacji Budowanie wskaźnika syntetycznego
Metody Analiz Przestrzennych Budowanie macierzy danych geograficznych Procedura normalizacji Budowanie wskaźnika syntetycznego mgr Marcin Semczuk Zakład Przedsiębiorczości i Gospodarki Przestrzennej Instytut
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Zielone powiaty województwa śląskiego
Zielone powiaty województwa śląskiego Raport analityczny opracowany w oparciu o Indeks Zielonych Powiatów Strona2 Spis treści Koncepcja Indeksu Zielonych Powiatów... 3 Metodologia badawcza... 4 Indeks
Załącznik Nr 1 do Uchwały Nr IV/20/2011 Rady Powiatu Szczycieńskiego z dnia 28 lutego 2011 roku
Rozkłady zmiennych losowych
Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli
Test lewostronny dla hipotezy zerowej:
Poznajemy testowanie hipotez statystycznych w środowisku R Zajęcia z dnia 11 maja 2011 roku Najpierw teoria TESTY ISTOTNOŚCI WARTOŚCI ŚREDNIEJ W POPULACJI GENERALNEJ gdy znana jest wariancja!!! Test prawostronny
Proces badania statystycznego z wykorzystaniem miernika syntetycznego (wg procedury Z. Zioło)
Metody Badań w Geografii Społeczno Ekonomicznej Proces badania statystycznego z wykorzystaniem miernika syntetycznego (wg procedury Z. Zioło) uporządkowanie liniowe obiektów mgr Marcin Semczuk Zakład Przedsiębiorczości
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
ROZWÓJ EFEKTYWNEGO SYSTEMU MONITORINGU POLITYK PUBLICZNYCH W WOJEWÓDZTWIE ŚLĄSKIM
ROZWÓJ EFEKTYWNEGO SYSTEMU MONITORINGU POLITYK PUBLICZNYCH W WOJEWÓDZTWIE ŚLĄSKIM Moduł społeczny Wojciech Dąbrowa Regionalne Centrum Analiz i Planowania Strategicznego www.rcas.slaskie.pl Wydział Rozwoju
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach
Statystyka społeczna. Liczba godzin stacjonarne: Wykłady: 15 Ćwiczenia: 15. niestacjonarne: Wykłady: 9 Ćwiczenia: 9
Karta przedmiotu Wydział: Wydział Zarządzania Kierunek: Analityka gospodarcza I. Informacje podstawowe Nazwa przedmiotu Statystyka społeczna Nazwa przedmiotu w j. ang. Język prowadzenia przedmiotu polski
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Wskaźnik asymetrii Jeżeli: rozkład jest symetryczny, to = 0, rozkład jest asymetryczny lewostronnie, to < 0. Kwartylowy wskaźnik asymetrii
Miary asymetrii Miary asymetrii (skośności) określają kierunek rozkładu cech zmiennych w zbiorowości (rozkład może być symetryczny lub asymetryczny lewostronnie lub prawostronnie) oraz stopień odchylenia
Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje
Badanie zgodności dwóch rozkładów - test serii, test mediany, test Wilcoxona, test Kruskala-Wallisa
Badanie zgodności dwóch rozkładów - test serii, test mediany, test Wilcoxona, test Kruskala-Wallisa Test serii (test Walda-Wolfowitza) Założenie. Rozpatrywane rozkłady są ciągłe. Mamy dwa uporządkowane
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Ekonomia rozwoju wykład 2 Ubóstwo, nierówność i. dr Piotr Białowolski Katedra Ekonomii I
Ekonomia rozwoju wykład 2 Ubóstwo, nierówność i niedorozwój dr Piotr Białowolski Katedra Ekonomii I Plan wykładu Metody pomiaru nierówności i ubóstwa Ubóstwo i nierówności a dobrobyt i wzrost gospodarczy
ŚLĄSKI ZWIĄZEK GMIN I POWIATÓW Ul. Stalmacha Katowice Tel / , Fax /
Raport z identyfikacji dobrych praktyk w obszarze XV. Organizacja pracy urzędu w ramach projektu Benchmarking narzędzie efektywnej kontroli zarządczej w urzędach miast na prawach powiatu, urzędach gmin
Źródła finansowania Celów strategicznych Regionalnej Strategii Innowacji Województwa Opolskiego do roku 2020.
Załącznik do Uchwały Nr 2661/2016 Zarządu Województwa Opolskiego z dnia 26 września 2016 r. Załącznik do Planu działania dla Regionalnej Strategii Innowacji Województwa Opolskiego do roku 2020 przyjętego
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
ANALIZA WIELOPOZIOMOWA JAKO NARZĘDZIE WSPARCIA POLITYK PUBLICZNYCH
ANALIZA WIELOPOZIOMOWA JAKO NARZĘDZIE WSPARCIA POLITYK PUBLICZNYCH - Adrian Gorgosz - Paulina Tupalska ANALIZA WIELOPOZIOMOWA (AW) Multilevel Analysis Obecna od lat 80. Popularna i coraz częściej stosowana
Ankieta dla przedsiębiorstw
Ankieta dla przedsiębiorstw Złota Setka najlepsze firmy województwa opolskiego Redaktorzy Prof. Dr hab. inż. Joachim Foltys, Dziekan Wydziału Ekonomii i Zarządzania, Politechnika Opolska Dr inż. Grażyna
1 Warunkowe wartości oczekiwane
Warunkowe wartości oczekiwane W tej serii zadań rozwiążemy różne zadania związane z problemem warunkowania.. (Eg 48/) Załóżmy, że X, X, X 3, X 4 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie
Wykład 5. Opis struktury zbiorowości. 1. Miary asymetrii.
Wykład 5. Opis struktury zbiorowości 1. Miary asymetrii. 2. Miary koncentracji. Przykład Zbadano stawkę godzinową (w zł) pracowników dwóch branŝ, otrzymując następujące charakterysty ki liczbowe: Stawka
Estymacja w regresji nieparametrycznej
Estymacja w regresji nieparametrycznej Jakub Kolecki Politechnika Gdańska 28 listopada 2011 1 Wstęp Co to jest regresja? Przykład regresji 2 Regresja nieparametryczna Założenia modelu Estymacja i jej charakterystyki
Wnioskowanie statystyczne. Statystyka w 5
Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających
Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski
Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:
Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś.
Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Województwo Urodzenia według płci noworodka i województwa. ; Rok 2008; POLSKA Ogółem Miasta Wieś Pozamałżeńskie- Miasta Pozamałżeńskie-
DZIENNIK URZĘDOWY WOJEWÓDZTWA ŚLĄSKIEGO
DZIENNIK URZĘDOWY WOJEWÓDZTWA ŚLĄSKIEGO Katowice, dnia 12 stycznia 2015 r. Poz. 138 UCHWAŁA NR III/16/2014 RADY MIEJSKIEJ W BIELSKU-BIAŁEJ w sprawie zmian budżetu miasta Bielska-Białej na 2014 rok Na podstawie
PROGRAM ZADAŃ NA DROGACH WOJEWÓDZKICH WSPÓŁFINANSOWANYCH W 2013 R. PRZEZ JEDNOSTKI SAMORZĄDU TERYTORIALNEGO - PROGRAM WID 2013
Załącznik do Uchwały Nr 3289/206/IV/2012 Zarządu Województwa Śląskiego z dnia 22.11.2012r. PROGRAM ZADAŃ NA DROGACH WOJEWÓDZKICH WSPÓŁFINANSOWANYCH W 2013 R. PRZEZ JEDNOSTKI SAMORZĄDU TERYTORIALNEGO -
Wybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Ustawa. z dnia roku. o zmianie ustawy o publicznym transporcie zbiorowym. Art. 1
Projekt Ustawa z dnia. 2014 roku o zmianie ustawy o publicznym transporcie zbiorowym Art. 1 W ustawie z dnia 16 grudnia 2010 r. o publicznym transporcie zbiorowym (Dz. U. z 2011 r. nr 5, poz. 13 z późn.
Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,
Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać
U C H W A Ł A Nr 157/2009 RADY MINISTRÓW. z dnia 15 września 2009 r.
U C H W A Ł A Nr 157/2009 RADY MINISTRÓW z dnia 15 września 2009 r. zmieniająca uchwałę w sprawie ustanowienia programu wieloletniego pod nazwą "Narodowy program przebudowy dróg lokalnych 2008 2011" Na
Metody statystyczne w socjologii SYLABUS A. Informacje ogólne Opis
Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu Język przedmiotu Rodzaj przedmiotu Dziedzina i dyscyplina
Statystyka opisowa. Robert Pietrzykowski.
Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.
Aleksander Sobota, Grzegorz Karoń - Śląski Klaster Transportu Miejskiego Centrum Rozwoju Transportu
Aleksander Sobota, Grzegorz Karoń - Śląski Klaster Transportu Miejskiego Centrum Rozwoju Transportu Systemy ITS w gminach województwa śląskiego analiza badań ankietowych Wstęp Działający w województwie
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
EGZAMIN MAGISTERSKI, Biomatematyka
Biomatematyka 90...... Zadanie 1. (8 punktów) Liczebność pewnej populacji ryb jest opisana następującym równaniem Rickera: N n+1 = α N n exp( βn n ), (1) w którym N n oznacza liczebność populacji w n tej
kwota w zł. Załącznik Nr 1 do uchwały Nr 63/302/11 Zarządu Powiatu w Kielcach z dnia 23 listopada 2011r. DOCHODY LISTOPAD/2011
Dział 010 - Rolnictwo i łowiectwo DOCHODY BIEŻĄCE 1 142,00 Dotacje celowe 1 142,00 Dotacje celowe otrzymane z budżetu państwa 1 142,00 Dotacje celowe otrzymane z budżetu państwa na zadania bieżące z zakresu
Statystyka. Wykład 5. Magdalena Alama-Bućko. 26 marca Magdalena Alama-Bućko Statystyka 26 marca / 40
Statystyka Wykład 5 Magdalena Alama-Bućko 26 marca 2018 Magdalena Alama-Bućko Statystyka 26 marca 2018 1 / 40 Uwaga Gdy współczynnik zmienności jest większy niż 70%, czyli V s = s x 100% > 70% (co świadczy
Edukacyjna wartość dodana - wskaźnik efektywności nauczania
Edukacyjna wartość dodana - wskaźnik efektywności nauczania Jakość oświaty jako efekt zarządzania strategicznego - szkolenie dla przedstawicieli jednostek samorządu terytorialnego opracowała: Ewa Stożek
Graficzna prezentacja danych statystycznych
Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
Emerytury nowosystemowe wypłacone w grudniu 2018 r. w wysokości niższej niż wysokość najniższej emerytury (tj. niższej niż 1029,80 zł)
Emerytury nowosystemowe wypłacone w grudniu 18 r. w wysokości niższej niż wysokość najniższej emerytury (tj. niższej niż 9,8 zł) DEPARTAMENT STATYSTYKI I PROGNOZ AKTUARIALNYCH Warszawa 19 1 Zgodnie z art.
Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, mgr
SYLLABUS na rok akademicki 010/011 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr /4 Specjalność Bez specjalności Kod katedry/zakładu w
(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008
STATYSTYKA MATEMATYCZNA - dział matematyki stosowanej oparty na rachunku prawdopodobieństwa; zajmuje się badaniem zbiorów na podstawie analizy ich części. Nauka, której przedmiotem zainteresowania są metody
W2 Podstawy rachunku prawdopodobieństwa (przypomnienie)
W2 Podstawy rachunku prawdopodobieństwa (przypomnienie) Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Rachunek prawdopodobieństwa - przypomnienie 1. Zdarzenia 2. Prawdopodobieństwo
Podręcznik akademicki dofinansowany przez Ministra Nauki i Szkolnictwa Wyższego
Recenzenci: dr hab. Ryszard Cichocki, prof. UAM dr hab. Jarosław Górniak, prof. UJ Redaktor prowadzący: Agnieszka Szopińska Redakcja i korekta: Anna Kaniewska Projekt okładki: Katarzyna Juras Copyright
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X
Wybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Analiza współzależności dwóch cech I
Analiza współzależności dwóch cech I Współzależność dwóch cech W tym rozdziale pokażemy metody stosowane dla potrzeb wykrywania zależności lub współzależności między dwiema cechami. W celu wykrycia tych
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.3 Rozkłady warunkowe i warunkowa wartość oczekiwana Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Prawdopodobieństwo wyraża postawę
Sztuczna inteligencja : Zbiory rozmyte cz. III
Instytut Informatyki Uniwersytetu Śląskiego lab 3 Notacja Zadeha: symboliczny zapis zbioru rozmytego dla przestrzeni dyskretnej. Dla X jest przestrzenią o skończonej liczbie elementów X = {x 1, x 2,...,