Bezpieczeństwo jako kryterium eksploatacji środków transportu
|
|
- Eugeniusz Leszczyński
- 6 lat temu
- Przeglądów:
Transkrypt
1 BOJAR Potr MIGAWA Klaudusz Bezeczeństwo jako kryterum eksloatacj środków transortu WSTĘP Teora bezeczeństwa zawera os zdarzeń zagraŝających zdrowu ludz, stnenu obektów techncznych środowsku naturalnemu, oraz rzedstawa zasady analzy systemów z unktu wdzena bezeczeństwa []. W lteraturze z zakresu bezeczeństwa systemów wyróŝna sę dwa odstawowe ojęca bezeczność bezeczeństwo. Bezeczność systemu defnowana jako cecha systemu warunkująca take jego stnene funkcjonowane które ne zagraŝa Ŝycu zdrowu oeratora oraz nnych ludz znajdujących sę w zasęgu oddzaływana systemu, ne zagraŝa sam sobe, a takŝe ne zagraŝa stnenu ne zakłóca rawdłowego funkcjonowana nnych systemów oraz środowsku, które go otacza [,,, 5], bezeczność jest właścwoścą względną jej ozom zaleŝy ne tylko od wartośc cech osujących system ale takŝe od oddzaływań otoczena, oddzaływań sterujących oeratora []. Bezeczeństwo systemu defnuje sę jako jego stan. Stan systemu S T, w chwl t wyznaczają chwlowe wartośc cech xj, j,,,,k, zboru X utworzonego z unktu wdzena jego bezecznośc.. WARTOŚCI GRANICZNE CECH BEZPIECZNOŚCIOWYCH PonewaŜ system od wływem oddzaływań czynnków wymuszających zmena w czase swoje stany, to koneczne jest ustalene wartośc grancznych x gr krytycznych x kr cech wyznaczających jego stan. Bezeczność to cecha rzyjmująca róŝne wartośc w zaleŝnośc od stanów bezeczeństwa. W racy zaroonowano nastęującą klasyfkację stanów bezeczeństwa: stan ntencjonalny, w którym wartośc cech osujących system osągnęły oczekwane wartośc, stan akcetowalny, w którym wartośc cech osujących system meszczą sę w ustalonych grancach, stan granczny, w którym co najmnej jedna z cech osujących system osągnęła wartość granczną, stan krytyczny, osągnęce które oznacza moŝlwość znszczena systemu. Rys.. Interretacja grafczna stanów bezecznoścowych systemu Stan w którym osane zmenne rzyjmą nastęujące wartośc: x, y, z nazywamy ntencjonalnym stanem bezeczeństwa S,stan ten osano zaleŝnoścą (). Unwersytet Technologczno Przyrodnczy w Bydgoszczy, Wydzał InŜyner Mechancznej, Zakład Transortu Eksloatacj, al. Prof. S. Kalskego7, Bydgoszcz, bbojar@gmal.com 68
2 { x ( t ), y ( t ), z ( t ) } S () Natomast stan systemu w którym wartośc cech bezeczeństwa osujących system ne rzekraczają wartośc grancznych nazywamy stanem akcetowalnym bezeczeństwa dzałana systemu S (). { < x ( t ) < x, < y ( t ) < y, < z ( t ) z } S < gr gr gr () Stan w którym wartośc cech bezecznoścowych rzyjmą wartośc granczne lub je rzekroczą nazywamy grancznym stanem bezeczeństwa S, stan ten osano zaleŝnoścą (). { x x ( t ) < x, y y ( t ) < y z z ( t ) z } S < gr kr gr kr, gr kr () Stan systemu w którym wartośc cech bezeczeństwa osujących system osągnęły lub rzekroczyły wartość cech krytycznych nazywamy krytycznym stanem bezeczeństwa S (). S { x x, y y z z } kr kr, kr () Interretację grafczną bezeczeństwa dzałana systemu rzedstawono na rysunku. Jak wynka z rysunku stan ntencjonalny bezeczeństwa jest wówczas gdy wartośc ustalonych cech rzyjmują wartośc równe zeru. JeŜel wartośc cech bezecznoścowych rzyjmą wartośc wększe od zera lecz mnejsze od wartośc grancznych to system znajduje sę w stane akcetowalnym. Oznacza to Ŝe, od stanu systemu zaleŝy jego bezeczność. W stane system charakteryzuje sę bezecznoścą, natomast zman stanu na lub owoduję utratę bezecznośc oznacza Ŝe system znalazł sę w stane grancznym lub krytycznym. Przebywane systemu w stane grancznym oznacza Ŝe decydenc mają czas na odjęce dzałań uzdatnających orawę stanu na akcetowalny lub ntencjonalny. Brak odjęca dzałań uzdatnających sowoduję zmanę stanu na krytyczny w którym nemoŝlwa jest dalsza realzacja celu systemu.. ZDARZENIOWY MODEL BEZPIECZNOŚCI SYSTEMU Na odstawe owyŝszych rozwaŝań zaroonowano w racy zdarzenowy model bezecznośc systemu transortowego. W modelu tym wyróŝnono cztery stany bezecznoścowe: S-ntencjonalny, S-akcetowalny, S-granczny S-krytyczny. Na rysunku rzedstawono czterostanowy graf skerowany oceny bezecznośc systemu. Na którym: λ (t) - ntensywność rzejśca ze stanu ntencjonalnej bezecznośc do bezecznośc akcetowalnej λ (t) - ntensywność rzejśca ze stanu ntencjonalnej bezecznośc do bezecznośc grancznej λ (t) - ntensywność rzejśca ze stanu ntencjonalnej bezecznośc do bezecznośc krytycznej λ (t) - ntensywność rzejśca ze stanu akcetowalnej bezecznośc do bezecznośc grancznej λ5 (t) - ntensywność rzejśca ze stanu akcetowalnej bezecznośc do bezecznośc krytycznej λ6 (t) - ntensywność rzejśca ze stanu grancznej bezecznośc do bezecznośc krytycznej µ (t) - ntensywność rzejśca ze stanu akcetowalnej bezecznośc do bezecznośc ntencjonalnej µ (t) - ntensywność rzejśca ze stanu grancznej bezecznośc do bezecznośc ntencjonalnej µ (t) - ntensywność rzejśca ze stanu krytycznej bezecznośc do bezecznośc ntencjonalnej 69
3 µ (t) - ntensywność rzejśca ze stanu grancznej bezecznośc do bezecznośc akcetowalnej µ5 (t) - ntensywność rzejśca ze stanu krytycznej bezecznośc do bezecznośc akcetowalnej µ6 (t) - ntensywność rzejśca ze stanu krytycznej bezecznośc do bezecznośc grancznej (t) S S (t) (t) (t) (t) (t) (t) (t) 6(t) 5(t) S Rys.. Graf skerowany oceny bezecznośc systemu [] 5(t) S. ŁAŃCUCH MARKOWA DLA ZAPROPONOWANEGO MODELU Na odstawe grafu skerowanego rzedstawonego na rysunku została zbudowana macerz P rawdoodobeństw zman stanów dla łańcucha Markowa (5) T gdze j rawdoodobeństwo rzejśca ze stanu S do stanu S j. (6) Perwszym etaem wyznaczena rawdoodobeństw grancznych dla łańcucha Markowa jest zbudowane układu równań macerzowych T Π Π (7) 6
4 (8) Układ równań macerzowych moŝna zasać w ostac układu równań lnowych czyl j j (9) () Układ równań lnowych jest układem zaleŝnym. Aby rozwązać ten układ jedno z równań układu zostało zastąone warunkem normalzacyjnym ostac () Wówczas układ równań lnowych rzy uwzględnenu warunku normalzacyjnego został zasany w ostac () W wynku rozwązana układu równań lnowych otrzymano rawdoodobeństwa granczne rzebywana w stanach S dla łańcucha Markowa, osane nastęującym zaleŝnoścam gdze b () + ( - ) a + ( - ) b + - b - a () + ( - ) a + ( - ) b + (5) + ( - ) a + ( - ) b + a (6) + ( - ) a + ( - ) b + 6
5 a ( ) ( ) + ( + ) ( + ) ( ) ( + ) + ( + ) ( + ) (7) b a ( ) (8) + WNIOSKI W racy rzedstawono roozycję budowy czterostanowego modelu oceny bezecznośc systemu transortowego. W zaroonowanym modelu wyznaczono rawdoodobeństwa grancznych dla łańcucha Markowa. Kolejnym etaem będze wyznaczene rawdoodobeństw dla rocesu Markowa. Zaroonowany w racy model jest modelem unwersalnym który moŝe zostać wykorzystany do oceny bezecznośc dowolnego systemu transortowego. Konkretne wynk oceny realzowanego rocesu dla wybranego systemu transortowego zostaną rzedstawono w kolejnych racach autorów. Streszczene Identyfkacja wartośc brzegowych cech, które osują bezeczeństwa dzałana systemu jest kluczowym roblemem dla oceny bezeczeństwa dzałana systemu. W artykule, rzedstawono model oceny bezeczeństwa dowolnego systemu transortowego. Przedstawony model stanow nowatorske odejśce do oceny systemów transortowych z unktu wdzena kryterum jego bezeczeństwa. W modelu tym zakłada sę cztery stany bezecznośc systemu. Perwszy stan ntencjonalny, który odzwercedla sytuację bez wyadków kolzj drogowych oraz oszkodowanych w tych wyadkach. Drug stan to stan akcetowalny, w stane tym wystęują kolzje drogowe, czyl na skutek zastnałych zdarzeń ne ma ofar są tylko straty materalne. Stan granczny to stan w którym doszło do wyadku drogowego lecz na jego skutek wystąły tylko osoby ranne, ostatn z rozatrywanych stanów to stan krytyczny w którym zastnały wyadk drogowe zgnęła co najmnej jedna osoba. W racy wyznaczono rawdoodobeństwa dla zbudowanego łańcucha Markowa. Safety as the man crteron for the oeraton of transort Abstract Identfcaton of the lmt values and characterstcs that descrbe the securty of the system s a key concern for the safety assessment of the system. The artcle resents a model safety evaluaton of any transort system. The model s an nnovatve aroach to the evaluaton of transort systems from the ont of vew of ts safety. In ths model assumes four states system safety. The frst ntentonal state, whch reflects the stuaton wthout road accdents and collsons and vctms n these cases. The second condton s a condton accetable, n ths state there are road collsons, or as a result of events occurrng no eole njured, only materal losses. Lmt state s a condton n whch the accdent occurred on the road but ts effect occurred erson njured, the last of the concerned states s a crtcal state n whch accdents occurred and klled at least one erson. In the study, the robablty of the constructed Markov chan. BIBLIOGRAFIA. Bojar P., Woroay M.: Bezeczeństwo w śwetle róŝnorodnych wymuszeń. Praca zborowa od redakcją Tadeusza Dąbrowskego. Badane Wnoskowane Dagnostyczne wybrane zagadnena. Wojskowa Akadema Technczna, Warszawa. Bojar P., Woroay M.: Road transort systems safety crtera. Journal of KONES Powertran and Transort, Vol., No.. Jaźwńsk J., WaŜyńska Fok K.: Bezeczeństwo systemów. PWN, Warszawa 99.. Radkowsk S.: Podstawy bezecznej technk. Ofcyna wydawncza Poltechnk Warszawskej. Warszawa. 6
6 5. Smalko Z.: Charakterystyk soleglwośc układu Człowek - Maszyna - Otoczene. XXXV Zmowa Szkoła Nezawodnośc - Szczyrk Smalko Z.: Studum termnologczne nŝyner bezeczeństwa transortu. Ofcyna Wydawncza Poltechnk Wrocławskej. Wrocław 6
BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda
BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
ANALIZA GOTOWO CI POJAZDÓW CI AROWYCH EKSPLOATOWANYCH W SYSTEMIE MI DZYNARODOWEGO TRANSPORTU SAMOCHODOWEGO
POST PY W IN YNIERII MECHANICZNEJ DEVELOPMENTS IN MECHANICAL ENGINEERING 2(1)/2013, 5-13 Czasopsmo naukowo-technczne Scentfc-Techncal Journal Marta CZARNOWSKA, Klaudusz MIGAWA ANALIZA GOTOWO CI POJAZDÓW
EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI.
EONOMIA MENEDŻERSA Wykład 3 Funkcje rodukcj 1 FUNCJE PRODUCJI. ANAIZA OSZTÓW I ORZYŚCI SAI. MINIMAIZACJA OSZTÓW PRODUCJI. 1. FUNCJE PRODUCJI: JEDNO- I WIEOCZYNNIOWE Funkcja rodukcj określa zależność zdolnośc
OCENA EFEKTYWNOŚCI FUNKCJONOWANIA SYSTEMÓW EKSPLOATACJI POJAZDÓW I MASZYN Z WYKORZYSTANIEM PROCESÓW MARKOWA. Stanisław Niziński, Bronisław Kolator
MOROL,, 8, 8 OCN FKYWNOŚCI FUNKCJONOWNI SYSMÓW KSPLOCJI POJZDÓW I MSZYN Z WYKORZYSNIM PROCSÓW MRKOW Stansław Nzńsk, Bronsław Kolator Katedra ksloatacj Pojazdów Maszyn, Unwersytet Warmńsko-Mazursk w Olsztyne
Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A
Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe
Diagnostyka układów kombinacyjnych
Dagnostyka układów kombnacyjnych 1. Wprowadzene Dagnostyka obejmuje: stwerdzene stanu układu, systemu lub ogólne sec logcznej. Jest to tzw. kontrola stanu wykrywająca czy dzałane sec ne jest zakłócane
WYZNACZENIE CHARAKTERYSTYK DYNAMICZNYCH PRZETWORNIKÓW POMIAROWYCH
Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 6-965 POZNAŃ (budynek Centrum Mechatronk, Bomechank Nanonżyner) www.zmsp.mt.put.poznan.pl tel. +8 6 665 35 7 fa +8
Zaawansowane metody numeryczne
Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x
DOBÓR SERWOSILNIKA POSUWU. Rysunek 1 przedstawia schemat kinematyczny napędu jednej osi urządzenia.
DOBÓR SERWOSILNIKA POSUWU Rysunek 1 rzedstawa schemat knematyczny naędu jednej os urządzena. Rys. 1. Schemat knematyczny serwonaędu: rzełożene rzekładn asowej, S skok śruby ocągowej, F sła orzeczna, F
= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału
5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.
Semi-Markov model of the availability of the means of municipal transport system
Sem-Markov model of avalablty of the means of muncal transort system TRIBOLOGY 25 KLAUDIUSZ MIGAWA * SCIENTIFIC PROBLEMS OF MACHINES OPERATION AND MAINTENANCE 3 (159) 29 Sem-Markov model of the avalablty
TERMODYNAMIKA TECHNICZNA I CHEMICZNA
TRMODYNAMIKA TCHNICZNA I CHMICZNA Część IV TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potencjał chemczny - rzyomnene de G n na odstawe tego, że otencjał termodynamczny
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,
Regulamin promocji zimowa piętnastka
zmowa pętnastka strona 1/5 Regulamn promocj zmowa pętnastka 1. Organzatorem promocj zmowa pętnastka, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna
Bayesowskie testowanie modeli tobitowych w analizie spłaty kredytów detalicznych
Jerzy Marzec, Katedra Ekonometr Badań Oeracyjnych, Unwersytet Ekonomczny w Krakowe 1 Bayesowske testowane model tobtowych w analze słaty kredytów detalcznych Wstę Podstawowym narzędzem wsomagającym racę
Badania suwnicy pomostowej natorowej dwudźwigarowej
INSTYTUT KONSTRUKCJI MASZYN KIERUNEK: TRANSPORT PRZEDMIOT: TRANSPORT BLISKI LABORATORIUM Badana suwncy omostowej natorowej dwudźwgarowej Research of overhead travelng crane wth two grders. Cel zakres zajęć:
KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla
Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA Potr Konderla maj 2007 Kurs na Studach Doktoranckch Poltechnk
Kwantowa natura promieniowania elektromagnetycznego
Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny
WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO
Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono
XII. EFEKTYWNO FUNKCJONOWANIA SYSTEMÓW DZIAŁANIA
XII. EFETYWO FUCJOOWAIA SYSTEMÓW DZIAŁAIA. WSTP Modele rocesów eksloatacj obektów techncznych umolwaj odejmowane włacwych decyzj dotyczcych urzdze techncznych w zakrese nezawodnoc, trwałoc dagnozowana,
System M/M/1/L. λ = H 0 µ 1 λ 0 H 1 µ 2 λ 1 H 2 µ 3 λ 2 µ L+1 λ L H L+1. Jeli załoymy, e λ. i dla i = 1, 2,, L+1 oraz
System M/M// System ten w odrónenu do wczenej omawanych systemów osada kolejk. Jednak jest ona ogranczona, jej maksymalna ojemno jest wartoc skoczon
V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH
Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów
Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej...
Adam Waszkowsk * Adam Waszkowsk Zastosowane welowymarowej analzy porównawczej w doborze spó³ek do portfela nwestycyjnego Zastosowane welowymarowej analzy porównawczej... Wstêp Na warszawskej Ge³dze Paperów
Regulamin promocji 14 wiosna
promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30
REGIONALNE ZRÓŻNICOWANIE SYTUACJI MIESZKANIOWEJ GOSPODARSTW DOMOWYCH
Meszkalnctwo REGIONALNE ZRÓŻNICOWANIE SYTUACJI MIESZKANIOWEJ GOSPODARSTW DOMOWYCH A r t u r Z m n y 52 Śwat Neruchomośc Meszkalnctwo Wstę Celem nnejszego oracowana jest ustalene rzestrzennego zróżncowana
WIELOKRYTERIALNA OCENA WARIANTÓW ROZWIĄZAŃ TECHNOLOGICZNO- KONSTRUKCYJNYCH W CENTRACH LOGISTYCZNYCH PRZY WYKORZYSTANIU METODY PUNKTU IDEALNEGO
Marola KSIĄśEK, Mchał KRZEMIŃSKI WIELOKRYTERIALNA OCENA WARIANTÓW ROZWIĄZAŃ TECHNOLOGICZNO- KONSTRUKCYJNYCH W CENTRACH LOGISTYCZNYCH PRZY WYKORZYSTANIU METODY PUNKTU IDEALNEGO Streszczene W artykule zaprezentowano
Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.
Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można
KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO JAKOŚĆ MIERZONA WARTOŚCIĄ WSPÓŁCZYNNIKA R 2 (K)
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 Mchał Kolupa Poltechnka Radomska w Radomu Joanna Plebanak Szkoła Główna Handlowa w Warszawe KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO
Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009
Mara Konopka Katedra Ekonomk Organzacj Przedsęborstw Szkoła Główna Gospodarstwa Wejskego w Warszawe Analza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Wstęp Polska prywatyzacja
-Macierz gęstości: stany czyste i mieszane (przykłady) -równanie ruchu dla macierzy gęstości -granica klasyczna rozkładów kwantowych
WYKŁAD 4 dla zanteresowanych -Macerz gęstośc: stany czyste meszane (przykłady) -równane ruchu dla macerzy gęstośc -granca klasyczna rozkładów kwantowych Macerz gęstośc (przypomnene z poprzednch wykładów)
Regulamin promocji upalne lato 2014 2.0
upalne lato 2014 2.0 strona 1/5 Regulamn promocj upalne lato 2014 2.0 1. Organzatorem promocj upalne lato 2014 2.0, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa
STEROWANIE GOTOWOŒCI W SYSTEMACH EKSPLOATACJI ŒRODKÓW TRANSPORTU
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY IM. JANA I JÊDRZEJA ŒNIADECKICH W BYDGOSZCZY ROZPRAWY NR 68 Klaudusz Mgawa STEROWANIE GOWOŒCI W SYSTEMACH EKSPLOATACJI ŒRODKÓW TRANSPORTU BYDGOSZCZ 23 REDAKTOR NACZELNY
Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej
Przykład Wyznaczene zmany odegłośc mędzy unktam ramy trójrzegubowej Poecene: Korzystając ze wzoru axwea-ohra wyznaczyć zmanę odegłośc mędzy unktam w onższym układze Przyjąć da wszystkch rętów EI = const
Wykład 2: Uczenie nadzorowane sieci neuronowych - I
Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za
F - wypadkowa sił działających na cząstkę.
PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych
WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO
WSKAŹNIK OCENY SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO Dagmara KARBOWNICZEK 1, Kazmerz LEJDA, Ruch cała człoweka w samochodze podczas wypadku drogowego zależy od sztywnośc nadwoza
Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania
Przykład.. Beka dwukrotne statyczne newyznaczana o stałej sztywnośc zgnana Poecene: korzystając z metody sł sporządzć wykresy sł przekrojowych da ponŝszej bek. Wyznaczyć ugęce oraz wzgędną zmanę kąta w
RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH
Stansław KOWALIK e-mal: skowalk@wsb.edu.pl Wyższa Szkoła Bznesu Dąbrowa Górncza RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH Streszczene Praca dotyczy nekooperacynych sekwencynych ger dwuosobowych o sume
Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja
Modelowane oblczena technczne Metody numeryczne w modelowanu: Optymalzacja Zadane optymalzacj Optymalzacja to ulepszane lub poprawa jakośc danego rozwązana, projektu, opracowana. Celem optymalzacj jest
( n) Łańcuchy Markowa X 0, X 1,...
Łańcuchy Markowa Łańcuchy Markowa to rocesy dyskretne w czasie i o dyskretnym zbiorze stanów, "bez amięci". Zwykle będziemy zakładać, że zbiór stanów to odzbiór zbioru liczb całkowitych Z lub zbioru {,,,...}
Bryła fotometryczna i krzywa światłości.
STUDIA NIESTACJONARNE ELEKTROTECHNIKA Laboratorum PODSTAW TECHNIKI ŚWIETLNEJ Temat: WYZNACZANIE BRYŁY FOTOMETRYCZNEJ ŚWIATŁOŚCI Opracowane wykonano na podstawe: 1. Laboratorum z technk śwetlnej (praca
Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody.
F-Pow wlot / Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej
Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli)
Model odstawowe założena modelu: ceny płace mogą ulegać zmanom (w odróżnenu od poprzedno omawanych model) punktem odnesena analzy jest obserwacja pozomu produkcj cen (a ne stopy procentowej jak w modelu
FUGATYWNOŚCI I AKTYWNOŚCI
TRMODYNAMIKA TCHNICZNA I CHMICZNA Część VI TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potenjał hemzny - rzyomnene G n de,t, n j G na odstawe tego, że otenjał
RÓWNOLEGŁY ALGORYTM POPULACYJNY DLA PROBLEMU GNIAZDOWEGO Z RÓWNOLEGŁYMI MASZYNAMI
RÓWNOLEGŁY ALGORYTM POPULACYJNY DLA PROBLEMU GNIAZDOWEGO Z RÓWNOLEGŁYMI MASZYNAMI Wojcech BOŻEJKO, Marusz UCHROŃSKI, Meczysław WODECKI Streszczene: W pracy rozpatrywany jest ogólny problem kolejnoścowy
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy Eksploatacj Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwczena: PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ.
WSPÓŁCZYNNIK GOTOWOŚCI SYSTEMU LOKOMOTYW SPALINOWYCH SERII SM48
TECHNIKA TRANSPORTU SZYNOWEGO Andrzej MACIEJCZYK, Zbigniew ZDZIENNICKI WSPÓŁCZYNNIK GOTOWOŚCI SYSTEMU LOKOMOTYW SPALINOWYCH SERII SM48 Streszczenie W artykule wyznaczono współczynniki gotowości systemu
Dla dzielnej X (dividend) i dzielnika D 0 (divisor) liczby Q oraz R takie, Ŝe
zelene ekwencyjne zelene la dzelnej X (dvdend) dzelnka (dvor) lczby Q oraz R take, Ŝe X=Q R, R < nazywa ę lorazem Q (uotent) reztą R (remander) z dzelena X rzez. Równane dzelena moŝe meć rozwązana ełnające
Wykład IX Optymalizacja i minimalizacja funkcji
Wykład IX Optymalzacja mnmalzacja funkcj Postawene zadana podstawowe dee jego rozwązana Proste metody mnmalzacj Metody teracj z wykorzystanem perwszej pochodnej Metody teracj z wykorzystanem drugej pochodnej
Problem plecakowy (KNAPSACK PROBLEM).
Problem plecakowy (KNAPSACK PROBLEM). Zagadnene optymalzac zwane problemem plecakowym swą nazwę wzęło z analog do sytuac praktyczne podobne do problemu pakowana plecaka. Chodz o to, by zapakować maksymalne
Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)
Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz
APROKSYMACJA QUASIJEDNOSTAJNA
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrcal Engneerng 213 Jan PURCZYŃSKI* APROKSYMACJA QUASIJEDNOSTAJNA W pracy wykorzystano metodę aproksymacj średnokwadratowej welomanowej, przy
Analiza i diagnoza sytuacji finansowej wybranych branż notowanych na Warszawskiej Giełdzie Papierów Wartościowych w latach
Jacek Batóg Unwersytet Szczecńsk Analza dagnoza sytuacj fnansowej wybranych branż notowanych na Warszawskej Gełdze Paperów Wartoścowych w latach 997-998 W artykule podjęta została próba analzy dagnozy
TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE
POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb
XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne
XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom
OGÓLNE PODSTAWY SPEKTROSKOPII
WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/
Laboratorium ochrony danych
Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz
KONSPEKT WYKŁADU. nt. MECHANIKA OŚRODKÓW CIĄGŁYCH. Piotr Konderla
Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. MECHANIKA OŚRODKÓW CIĄGŁYCH Potr Konderla paźdzernk 2014 2 SPIS TREŚCI Oznaczena stosowane w konspekce...
Wykład 2: Uczenie nadzorowane sieci neuronowych - I
Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za
ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XVI/3, 2015, str. 248 257 ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ Sławomr
Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych
dr nż Andrze Chylńsk Katedra Bankowośc Fnansów Wyższa Szkoła Menedżerska w Warszawe Zarządzane ryzykem w rzedsęborstwe ego wływ na analzę ołacalnośc rzedsęwzęć nwestycynych w w w e - f n a n s e c o m
Regulamin promocji fiber xmas 2015
fber xmas 2015 strona 1/5 Regulamn promocj fber xmas 2015 1. Organzatorem promocj fber xmas 2015, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna 2015
Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym
Załązn nr 3 Do zzegółowyh Zasad rowadzena Rozlzeń Transa rzez KDW_CC Zasady wyznazana mnmalne wartoś środów oberanyh rzez uzestnów od osób zleaąyh zaware transa na rynu termnowym 1. Metodologa wyznazana
Prognoza oddziaływania na środowisko zmiany Studium uwarunkowań i kierunków zagospodarowania przestrzennego miasta i gminy Pisz w części wsi Kwik
Pracowna Projektowa Archtektury Krajobrazu Rewaloryzacj Środowska 80-766 Gdańsk ul. Zamejska 40/20 tel./fax 58 303 67 97 Prognoza oddzaływana na środowsko zmany Studum uwarunkowań kerunków zagospodarowana
n liczba zmiennych decyzyjnych c współczynniki funkcji celu a współczynniki przy zmienych decyzyjnych w warunkach
Problem decyzyny cel różne sposoby dzałana (decyze) warunk ogranczaące (determnuą zbór decyz dopuszczalnych) kryterum wyboru: umożlwa porównane efektywnośc różnych decyz dopuszczalnych z punktu wdzena
SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ
Jan JANKOWSKI *), Maran BOGDANIUK *),**) SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ W referace przedstawono równana ruchu statku w warunkach falowana morza oraz
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
MODELOWANIE PRZEPŁYWU POWIETRZA W KANAŁACH WENTYLACYJNYCH PIECZARKARNI
Inżynera Rolncza 10(108)/2008 MODELOWANIE PRZEPŁYWU POWIETRZA W KANAŁACH WENTYLACYJNYCH PIECZARKARNI Leonard Vorontsov, Ewa Wachowcz Katedra Automatyk, Poltechnka Koszalńska Streszczene: W pracy przedstawono
PROBLEM ODWROTNY DLA RÓWNANIA PARABOLICZNEGO W PRZESTRZENI NIESKOŃCZENIE WYMIAROWEJ THE INVERSE PARABOLIC PROBLEM IN THE INFINITE DIMENSIONAL SPACE
JAN KOOŃSKI POBLEM ODWOTNY DLA ÓWNANIA PAABOLICZNEGO W PZESTZENI NIESKOŃCZENIE WYMIAOWEJ THE INVESE PAABOLIC POBLEM IN THE INFINITE DIMENSIONAL SPACE S r e s z c z e n e A b s r a c W arykule skonsruowano
Optymalizacja belki wspornikowej
Leszek MIKULSKI Katedra Podstaw Mechank Ośrodków Cągłych, Instytut Mechank Budowl, Poltechnka Krakowska e mal: ps@pk.edu.pl Optymalzacja belk wspornkowej 1. Wprowadzene RozwaŜamy zadane optymalnego kształtowana
Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2
T A R C Z A Z E G A R O W A ASTYGMATYZM 1.Pojęca ogólne a) astygmatyzm prosty (najbardzej zgodny z pozomem) - najbardzej płask połudnk tzn. o najmnejszej mocy jest pozomy b) astygmatyzm odwrotny (najbardzej
11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.
/22/24 Dwuosobowe gry o sume zero DO NAUCZENIA I ZAPAMIĘTANIA: Defnca zaps ger o sume zero, adaptaca ogólnych defnc. Punkt sodłowy Twerdzena o zwązkach punktu sodłowego z koncepcam rozwązań PRZYPOMNIENIE:
SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA Częstochowa 4 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TWIERDZENIE BAYESA Wedza pozyskwana przez metody probablstyczne ma
Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia,
Metody gradentowe... Metody gradentowe poszukwana ekstremum Korzystają z nformacj o wartośc funkcj oraz jej gradentu. Wykazując ch zbeŝność zakłada sę, Ŝe funkcja celu jest ogranczona od dołu funkcją wypukłą
Czy ludzi można traktować jak cząstki?
Czy ludz można traktować jak cząstk? Katarzyna Sznajd-Weron Instytut Fzyk Teoretycznej Unwersytet Wrocławsk, Maj 24 Śwat oczam fzyka Czy można tłumaczyć globalne zmany modelam mkroskopowym? Czy możemy
Bada zaleŝno. nie zaleŝą. od ilości substancji. Funkcja stanu to taka wielkość. a mały y 10 cm, to: = F2 F 1 = 0,01 F 2.
Zagadnena. Parametry stanu. Cśnene, słua ceczy (gazu) o wysokośc. Prawo rcmedesa.. emeratura. 4. Knetyczna teora w zastosowanu do gazu doskonałego.. Równane gazu doskonałego, zasady termodynamk (zerowa,
MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Prokop jproko@sgh.waw.pl
MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Proko roko@sgh.waw.l Statyka dynamka olgoolstyczne struktury rynku. Modele krótkookresowe konkurenc cenowe w olgoolu.. Model ogranczonych mocy rodukcynych ako wyaśnene
Płyny nienewtonowskie i zjawisko tiksotropii
Płyny nenewtonowske zjawsko tksotrop ) Krzywa newtonowska, lnowa proporcjonalność pomędzy szybkoścą ścnana a naprężenem 2) Płyny zagęszczane ścnanem, naprężene wzrasta bardzej nż proporcjonalne do wzrostu
TERMODYNAMIKA TECHNICZNA I CHEMICZNA
TRMODYNAMIKA TCHNICZNA I CHMICZNA Część IV TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potenjał hemzny - rzyomnene de G n na odstawe tego, że otenjał termodynamzny
Analiza ryzyka jako instrument zarządzania środowiskiem
WARSZTATY 2003 z cyklu Zagrożena naturalne w górnctwe Mat. Symp. str. 461 466 Elżbeta PILECKA, Małgorzata SZCZEPAŃSKA Instytut Gospodark Surowcam Mneralnym Energą PAN, Kraków Analza ryzyka jako nstrument
3.1. ODZIAŁYWANIE DŹWIĘKÓW NA CZŁOWIEKA I OTOCZENIE
3. KRYTERIA OCENY HAŁASU I DRGAŃ Hałas to każdy dźwęk nepożądany, przeszkadzający, nezależne od jego natury, kontekstu znaczena. Podobne rzecz sę ma z drganam. Oba te zjawska oddzałują nekorzystne na człoweka
Prawdziwa ortofotomapa
Prawdzwa ortofotomapa klasyczna a prawdzwa ortofotomapa mnmalzacja przesunęć obektów wystających martwych pól na klasycznej ortofotomape wpływ rodzaju modelu na wynk ortorektyfkacj budynków stratege opracowana
Programowanie Równoległe i Rozproszone
Programowane Równoległe Rozproszone Wykład Programowane Równoległe Rozproszone Lucjan Stapp Wydzał Matematyk Nauk Informacyjnych Poltechnka Warszawska (l.stapp@mn.pw.edu.pl) /38 PRR Wykład Chcemy rozwązać
Egzamin poprawkowy z Analizy II 11 września 2013
Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy
1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ
Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz
Podstawy termodynamiki
Podstawy termodynamk Temperatura cepło Praca jaką wykonuje gaz I zasada termodynamk Przemany gazowe zotermczna zobaryczna zochoryczna adabatyczna Co to jest temperatura? 40 39 38 Temperatura (K) 8 7 6
APLIKACJA METODY BADAŃ WŁASNOŚCI DYNAMICZNYCH ZAWIESZEŃ POJAZDÓW SAMOCHODOWYCH O DMC POWYŻEJ 3,5 TONY W PROGRAMIE LABVIEW
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 015 Sera: TRANSPORT z. 86 Nr kol. 196 Jan WARCZEK, Kaml BRONCEL APLIKACJA METODY BADAŃ WŁASNOŚCI DYNAMICZNYCH ZAWIESZEŃ POJAZDÓW SAMOCHODOWYCH O DMC POWYŻEJ 3,5 TONY
Badanie energetyczne płaskiego kolektora słonecznego
Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz
5. Rezonans napięć i prądów
ezonans napęć prądów W-9 el ćwczena: 5 ezonans napęć prądów Dr hab nŝ Dorota Nowak-Woźny Wyznaczene krzywej rezonansowej dla szeregowego równoległego obwodu Zagadnena: Fzyczne podstawy zjawska rezonansu
Weryfikacja hipotez dla wielu populacji
Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w
Pattern Classification
attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the permsson of the authors and the publsher Chapter
WikiWS For Business Sharks
WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace
MOŻLIWOŚCI KSZTAŁTOWANIA POWIERZCHNI OBRABIANYCH NA TOKARKACH CNC WYNIKAJĄCE ZE ZŁOŻENIA RUCHÓW TECHNOLOGICZNYCH
4/1 Technologa Automatyzacja Montażu MOŻLIWOŚCI KSZTAŁTOWAIA POWIERZCHI OBRABIAYCH A TOKARKACH CC WYIKAJĄCE ZE ZŁOŻEIA RUCHÓW TECHOLOGICZYCH Robert JASTRZĘBSKI, Tadeusz KOWALSKI, Paweł OSÓWIAK, Anna SZEPKE
1. Wstęp. Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej
ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, wersja z dn..03.013 Studa stacjonarne, stopeń, sem.1 Laboratorum Technk Śwetlnej Ćwczene nr 6 Temat: Porównane parametrów fotometrycznych
MINISTER EDUKACJI NARODOWEJ
4 MINISTER EDUKACJI NARODOWEJ DWST WPZN 423189/BSZI13 Warszawa, 2013 -Q-4 Pan Marek Mchalak Rzecznk Praw Dzecka Szanowny Pane, w odpowedz na Pana wystąpene z dna 28 czerwca 2013 r. (znak: ZEW/500127-1/2013/MP),
Diagonalizacja macierzy kwadratowej
Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an
ZASTOSOWANIE METOD WAP DO OCENY POZIOMU PRZESTRZENNEGO ZRÓŻNICOWANIA ROZWOJU ROLNICTWA W POLSCE
Inżynera Rolncza 1(126)/2011 ZASTOSOWANIE METOD WAP DO OCENY POZIOMU PRZESTRZENNEGO ZRÓŻNICOWANIA ROZWOJU ROLNICTWA W POLSCE Katedra Zastosowań Matematyk Informatyk, Unwersytet Przyrodnczy w Lublne w Lublne