Kvantum homogenizálás
|
|
- Bożena Kowalewska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Kvantum homogenizálás Koniorczyk Mátyás Pécsi Tudományegyetem, Fizikai Intézet (jelentős részben Vladimír Bužek és Mário Ziman cikkei alapján) ELFT Elméleti Fizika Iskola, Tihany, 2010 szeptember 1.
2 Motiváció Theroetical phyiscists live in a classical world looking out in the quantum mechanical world. The latter we describe only subjectively, in terms of procedures and results in our classical domain. J. S. Bell
3 Motiváció Egyensúly (pl. hőmérsékleti) T S T R T Eq
4 Motiváció Kvantum modell Legyen egyszerű, Analitikusan megérthető, Legyen benne jelen a termalizációhoz hasonló viselkedés
5 Vázlat Ütközéses modellek Homogenizálás: definíció Homogenizálás ütközéses modellben Konstrukció Homogenizálás Összefonódottság Mester egyenlet Spingázok
6 Ütközéses modell ± ¼µ Ë Ø Ø Ø Í Í Í Ø Ø Ø ½ ½ ¼ ¾ ¾ ¼ ¼ Ê Ë ÊÎÇÁÊ ¹ ± µ Ë
7 Ütközéses modell Kvantumállapotok S(H) = {ϱ : ϱ O, tr[ϱ] = 1} Dinamika 1 lépés: n lépés: E[ϱ] = tr env [U(ϱ ξ)u ] ϱ 0 ϱ n = tr env [U(ϱ n 1 ξ)u ] = E[ϱ n 1 ] = E n [ϱ 0 ] Ω n = U n U 1 (ϱ S ξ n )U 1 U n
8 Kvantum homogenizálás Ideális homogenizálás Klónozás, nem lehet. ϱ S ξ ξ ξ S ξ ξ
9 Kvantum homogenizálás δ-homogenizálás triviális homogenizálás ξ S ξ ξ Ω n = ξ S ξ ξ konvergencia a rezervoár stabilitása j D(ϱ (n) S, ξ) δ D(ξ j, ξ) δ
10 A homogenizáló kölcsönhatás Szimmetrikus és antiszimmetrikus altér Csere-operátor H H-n: S(ϱ ξ)s = ξ ϱ H ± : SΦ = ±Φ H H = H + H
11 A homogenizáló kölcsönhatás A triviális homogenizálás miatt U ψ ψ = ψ ψ, vagyis legáltalánosabban: U = e iγ I + V
12 A homogenizáló kölcsönhatás Qubitekre 1D antiszimmetrikus altér V = e iβ U 00 = e iγ 00, U 11 = e iγ 11, U( ) = e iγ ( ), U( ) = e i(γ+β) ( ). Másként (η = β/2): U η = cos ηi + i sin ηs
13 A homogenizáló kölcsönhatás Általában U η = cos ηi + i sin ηs = e iηs megfelel, de nem a legáltalánosabb. Fennmaradt kérdések konvergencia a rezervoár stabilitása
14 A dinamika ϱ (n) S = c 2 ϱ (n 1) S + s 2 ξ + ics[ξ, ϱ (n 1) S ] ξ n = s 2 ϱ (n 1) S + c 2 ξ + ics[ϱ (n 1) S, ξ]
15 Konvergencia Kontrakciók E szigorú kontrakció, ha ( ϱ, ξ S) D(E[ϱ], E[ξ]) kd(ϱ, ξ), 0 k < 1 Hilbert-Schmidt távolság esetünkben: D(ϱ 1, ϱ 2 ) = ϱ 1 ϱ 2 = tr[ϱ 2 1 ] + tr[ϱ2 2 ] 2tr[ϱ 1ϱ 2 ] D 2 (E[ϱ 1 ], E[ϱ 2 ]) = c 2 (c 2 D 2 (ϱ 1, ϱ 2 ) + s 2 [ξ, ϱ 1 ϱ 2 ] 2 ) (mivel E[ϱ] = c 2 ϱ + s 2 ξ + ics[ξ, ϱ])
16 Konvergencia Ami bizonyítandó Az, hogy ξ fixpont, helyettesítéssel adódik. Tehát be kell látni, hogy: [ξ, ] 2 2 = D 2 (ϱ 1, ϱ 2 ) ahol = ϱ 1 ϱ 2 Ha ez teljesül, a Banach-féle fixponttétel alapján az egyértelmű fixponthoz konvergál a dinamika.
17 Konvergencia Bizonyítás ξ = k λ k k k ξ ξ 2 = tr[(ξ ξ) (ξ ξ)] = 2tr[ξ 2 2 ] 2tr[(ξ ) 2 ] = 2 j λ2 j j 2 j 2 j,k λ j λ k j k 2 = 2 j,k λ2 j j k k j 2 j,k λ j λ k j k 2 = j,k (2λ2 j 2λ j λ k ) j k 2 = j,k (λ2 j + λ 2 k 2λ j λ k ) j k 2 = j,k (λ j λ k ) 2 j k 2 j,k j k 2 = tr[ ] = 2
18 Konvergencia A kontrakció D(E[ϱ 1 ], E[ϱ 2 ]) c D(ϱ 1, ϱ 2 ), a kontrakciós együttható c = cos η, a fixpont pedig ξ.
19 A rezervoár stabilitása Vizsgálandó D(ξ j, ξ) valamint a lépések szükséges N δ száma, melyre Beláttuk, hogy és tudjuk, hogy E[ξ] = ξ, innen: de mi lehet a δ? D(ϱ (N δ) S, ξ) δ. D(E[ϱ], E[ξ]) c D(ϱ, ξ), N δ = ln(δ/ 2) ln c
20 A rezervoár stabilitása Számolás D(ξ, ξ n ) = ξ c2 ξ s 2 ϱ (n 1) S s 2 ξ ϱ (n 1) S s 2 D(ξ, ϱ (n 1) S 2 sc ( s c n 2 + 2) < 2 sc (1 + 2) δ ics[ϱ (n 1), ξ] S + cs [ϱ (n 1), ξ] S ) + 2 cs ϱ (n 1) ξ S vagyis U η -ra (2 + 2) sin η cos η δ, a szükséges lépések száma pedig N δ ln [(1 + 2) sc ] ln c
21 Összefonódottság sok qubit esetén tangle ahol τ(ω) = min ω= p j τ(ψ j ) j p j ψ j ψ j τ(ψ) = S lin (tr 1 ψ ψ ) = 2(1 tr[(tr 1 ψ ψ ) 2 ]) = 4 det tr 1 [ ψ ψ ] (lineáris entrópia) j
22 Összefonódottság sok qubit esetén C = max{0, 2 max{ λ j } j Konkurrencia λj } λ j = eig(ω(σ y σ y )ω (σ y σ y )) Monogámia Coffman-Kundu-Wootters: τ jk τ j k,k j
23 Összefonódottság a homogenizálás modellben entanglement 0.25 τ 0 τ τ 01 τ 02 τ 2 τ n
24 Mester egyenlet Diszkrét dinamikai félcsoport ϱ E 1 [ϱ] E 2 [ϱ] E n [ϱ], E k = E E = E k ahol E n E m = E n+m Interpoláció dϱ t dt = ( ) ( ) det det [ϱ 0 ] = dt dt E 1 t [ϱ t ] = G t [ϱ t ]
25 Markov dinamika generátora Lindblad-GKS alak E t = e Gt G[ϱ] = i [H, ϱ] + 1 c jk ([Λ j ϱ, Λ k ] + [Λ j, ϱλ k ]) 2 jk ahol {Λ 1,..., Λ d 2 1} ONB a spurtalan Hermitikus mátrixok terén.
26 Bloch-gömb Állapot ϱ r = tr[ϱ σ] Csatorna E kj := 1 2 tr[σ ke[σ j ]] (a spur megmaradása miatt E 00 = 1 2 tr[e[i ]] = 1 és E 0j = tr[e[σ j ]] = 0) r r = t + T r t j = E j0, T jk = E jk
27 Bloch-gömb Generátor G = g 10 g 11 g 12 g 13 g 20 g 21 g 22 g 23 g 30 g 31 g 32 g 33, g jk = 1 2 tr[σ jg[σ k ]]
28 Bloch-gömb Lindblad-GKS alak G[X ] = i h j [σ j, X ] j=x,y,z c jk ([σ j, X σ k ] + [σ j X, σ k ]) j,k=x,y,z h 1 = g 32 g 23 4, h 2 = g 13 g 31 4 c jj = g jj 1 2 k g kk, h 3 = g 21 g 12 4 c 12 = 1 2 (g 12 + g 21 ig 30 ), c 21 = 1 2 (g 12 + g 21 + ig 30 ), c 23 = 1 2 (g 23 + g 32 ig 10 ), c 32 = 1 2 (g 23 + g 32 + ig 10 ), c 13 = 1 2 (g 13 + g 31 + ig 20 ), c 31 = 1 2 (g 13 + g 31 ig 20 ).
29 Homogenizáció: mester egyenlet Diszkrét dinamika r r = c 2 r + s 2 w cs w r
30 Mester-egyenlet levezetés (1) Új bázis: S j = V σ j V : ξ = 1 2 (I + ws 3) Új paraméterek: θ = arctan(ws/c) = arctan(w tan η), q = c 2 + w 2 s 2 Ekkor: E = cq cos θ cq sin θ 0 0 cq sin θ cq cos θ 0 s 2 w 0 0 c 2
31 Mester-egyenlet levezetés (2) E n = c n q n cos nθ c n q n sin nθ 0 0 c n q n sin nθ c n q n cos nθ 0 w(1 c 2n ) 0 0 c 2n
32 Mester-egyenlet levezetés (3) Legyen (ad hoc) n = t/τ, tau valamilyen időskála! E t = Ω = θ/τ, c 2t/τ = e Γ 1t, (cq) t/τ = e Γ 2t e Γ2t cos Ωt e Γ2t sin Ωt 0 0 e Γ2t sin Ωt e Γ2t cos Ωt 0 w(1 e Γ1t ) 0 0 e Γ 1t Félcsoport, de ellenőrizni kell, hogy minden t-re CP.
33 Mester-egyenlet levezetés (4) Végül: G = Γ 2 Ω 0 0 Ω Γ 2 0 wγ Γ 1 dϱ dt = i Ω [Sz, ϱ] iwγ1(sxϱsy Sy ϱsx + iϱsz + iszϱ) Γ1(SxϱSx + Sy ϱsy 2ϱ) + 1 (2Γ2 Γ1)(SzϱSz ϱ) 4
34 Spingázok A rendszer Klasszikus részecskék Belső kvantumos szabadsági fok: qubit Különféle modellek: Véletlen párkölcsönhatás Billiárdasztal 1D diffuzív rácsgáz Q-kölcsönhatás: ha ütköznek, ill. szomszédok Diszkrét idejű dinamika Numerikus szimuláció
35 Spingázok Kölcsönhatás PSWAP generátora: Heisenberg-XXX U pswap (η) = exp ( iηĥ(xxx)) σ x σ x + σ y σ y + σ z σ z Helyette: XX : H (XX) = σ x σ x + σ y σ y. ( iηĥ(xx)) U XX (η) = exp
36 Spingázok XX tulajdonságai Invariáns altér: k = k 1 1 k 0 k N Ezen a pillanatnyi Hamilton a szomszédsági mátrix ( quantum walk) Az 1-gerjesztéses altérben a CKW teĺıtett: csak kétrészű összefonódás Ezen az altéren a sűrűségoperátor főátlója: 1 valószínűsége off-diag elemei (koherenciák): konkurrencia C k,k = 2 ϱ k,k
37 Spingázok Mennyiségek inhomogenitás σ 2 (t) = p 2 k k p k 2 k teljes konkurrencia C tot (t) = k<k C k,k (t)
38 Billiárdasztal σ A B C D No. of collisions Σ C A B 10 C D No. of collisions B): billárd szekvenciák, (C, D): random szekvenciák N = 100 egység sugarú és tömegű merev gömb. Sebesség: normál eloszás σ = Illesztés ütközés szám szerint. (A,
39 1D rácsgáz σ A B C t Σ C A B C t véletlen párok, B: 1D rácsgáz 150 hey, C: 1D rácsgáz 200 hely, 100 részecske, η = 0.1. Minden 100. időlépés ábrázolva. A:
40 Összefoglalás A dekoherencia egy egyszerű mikroszkopikus modelljének részleteit tárgyaltuk: Homogenizáció általában Dinamikai félcsoport, Mester-egyenlet Összefonódottság Spingázok: összetettebb modell
41 Irodalom M. Ziman, V. Bužek: Open system dynamics of simple collison models, quant-ph/ (2010) M. Koniorczyk, Á. Varga, P. Rapčan, V. Bužek: Quantum homogenization and state randomization in semiquantal spin systems, Phys. Rev. A 77, (2008) V. Scarani, M. Ziman, P. Štelmachovič, N. Gisin and V. Bužek: Thermalizing quantum machines: dissipation and entanglement, Phys. Rev. Lett (2002) M. Ziman, P. Štelmachovič, V. Bužek, M. Hillery, V. Scarani and N. Gisin: Diluting quantum information: An analysis of information transfer in system-reservoir interactions, Phys. Rev. A (2002) Diósi Lajos: A Short Course in Quantum Information Theory - An Approach From Theoretical Physics Lecture Notes in Physics, Vol. 713, 2. kiadás (nyomdában) Kallus Zsófia: Kvantuminformáció és irreverzibilitás: ütközéses kvantum-termalizáció mester egyenletei, szakdolgozat, ELTE TTK, 2010 (témavezető: Diósi Lajos)
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Az ideális Bose-gáz termodinamikai mennyiségei
Az ideális Bose-gáz termodinamikai mennyiségei Kiegészítés III. éves BsC fizikusok számára Cserti József Eötvös Loránd udományegyetem, Komplex Rendszerek Fizikája anszék 016. február 1. Néhány alapvető
v = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±
ń Ó Ń ś ń ś ń Ó ę ą Ż ę ą ę Ż ó Ę ą ą ę ś Ę ó Ż ę Ó
ć ń ó ą ś ą ą ż ó ó ą ż ó ś ą ś ą ś ć ż ść ó ó ą ó ą ń ą ę ą ę ż ń ą ó ś ą ą ą ń ó ą ą ą ś ą ó ż ś ęż ęś ś ń ą ęś ś ą ą ś ż ś Ę ę ń Ż ą ż ń ą ą ą ę ą ę ń Ó Ń ś ń ś ń Ó ę ą Ż ę ą ę Ż ó Ę ą ą ę ś Ę ó Ż ę
Ę Ę ĘŚ Ą Ł Ę ś ą ź ż ź ą ż ć ąż ą ś ą ń
ż ć Ę Ę ś ą ą ż ą ą ń ś ą ą Ą Ę Ą ą ą ą Ź ć ą ą ś ą ą ą Ą Ę Ą Ł ą ą ą ą Ę Ę ĘŚ Ą Ł Ę ś ą ź ż ź ą ż ć ąż ą ś ą ń Ą ą ż ż ą ą ż ś ż ź Ę ż ż ń Ę Ś Ę ś ż ą ą ą ż ś ś ś ż ż ą ą ż ą ż ś ą ą ż ś ś ą ą ś ż ś
q (s, z) = ( ) (λ T) ρc = q
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X W Y Z N A C Z A N I E O D K S Z T A C E T O W A R Z Y S Z Ą C Y C H H A R T O W A N I U P O W I E R Z C H N I O W Y M W I E
Zespół Szkół Technicznych. Badanie wyświetlaczy LCD
Zespół Szkół Technicznych Badanie wyświetlaczy LCD WYŚWIETLACZE LCD CZĘSC TEORETYCZNA ZALETY: ) mały pobór mocy, 2) ekonomiczność pod względem zużycia energii (pobór prądu przy 5V mniejszy niż 2mA), 3)
Sekantooptyki owali i ich własności
Sekantooptyki owali i ich własności Magdalena Skrzypiec Wydział Matematyki, Fizyki i Informatyki Uniwersytet Marii Curie-Skłodowskiej 19 października 2009r. Informacje wstępne Definicja Owalem nazywamy
Oddziaływanie atomu z kwantowym polem E-M: C.D.
Oddziaływanie atomu z kwantowym polem E-M: C.D. 1 atom jakoźródło 1 fotonu. Emisja spontaniczna wg. złotej reguły Fermiego. Absorpcja i emisja kolektywna ˆ E( x,t)=i λ Powtórzenie d 3 ω k k 2ǫ(2π) 3 e
Kwantowe splątanie dwóch atomów
Walne Zebranie Oddziału Poznańskiego Polskiego Towarzystwa Fizycznego Poznań, 7 grudnia 2006 Kwantowe splątanie dwóch atomów Ryszard Tanaś Uniwersytet im. Adama Mickiewicza Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl/~tanas
Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Fourier transzformáció
Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Fourier transzformáció Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. Gyakorlat 1 / 31 Fourier transzformáció
v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z)
v U = e i,..., e n ) v = n v i e i i= e i i U = {X i } i=,n v T v = = v v n v n U x y z T X,Y,Z) v v v = 2 T A, ) b = 3 4 T B, ) c = + b b d = b c c d d 2 + 3b e b c = 5 3 T b d = 5 T c c = 34 d = 26 d
Ę Ę ĘŚ Ą Ł Ę ł ł ś ą ź ż ź ą ż ć ąż ą ś ą
Ń Ę ł ó ó ł ż ć ó ś ą ą ż ą ą ń ł ś ś ąż ą Ę łó Ą Ę Ą Ó ą ż ą ł ą ź ć Ę ą ś ą ą Ł Ł ł ą Ą Ę Ą Ł ą ąż ą ż ć ą Ż ć ą Ę Ę ĘŚ Ą Ł Ę ł ł ś ą ź ż ź ą ż ć ąż ą ś ą ó ó ż ą ą ż ś ż Ę ź Ą ł ł ł ą ó ń ń Ę ż ż ń
Estymatory regresji rangowej oparte na metodzie LASSO
Estymatory regresji rangowej oparte na metodzie LASSO Wojciech Rejchel UMK Toruń Wisła 2013 Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie P X, X X R m, Y, Y R Z = (X, Y ),
Analı zis elo ada sok
Vajda Istva n Neumann Ja nos Informatika Kar O budai Egyetem / 3 Polinomok Felhaszna ljuk: Hatva nyfu ggve nyek differencia lha nyadosa. O sszeada sra, kivona sra e s konstanssal valo szorza sra vonatkozo
R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 )
5 Z N p ) a a + b)! b ) a!b! a a! b a b)!b! p n n k nn k) n ) n k) d n d n [n sin ] n nn k) sin ) n) k n nn ) n k + ) sin + lπ ) k d n d n [n sin ] n k ) n n ) n k) sin ) k) k n k ) n nn ) n k + ) sin
Ł Ł ż Ś ż Ś Ź ć
Ł Ę Ł Ł ż Ś ż Ś Ź ć ć Ść Ż ż ż ż Ś Ś Ć ć Ś Ę ĘĆ Ł Ł ŚĆ ŚĆ Ą ż ć ĘŚ Ą Ą Ę ż Ć Ś ć Ż Ż ć Ś Ą ż ż Ż Ą Ą Ś Ż ż ż Ś Ś Ę ż Ś Ś ż Ś Ż Ść Ś ż ć ż Ł ż ż ż Ł ż Ł Ż ż Ą Ą Ą ć Ś ż ż ż Ż Ś ż Ł Ś ź ż ż ź Ź ź ź Ź Ź Ę
21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126
Mocna własność Markowa procesu Wienera Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 21 maja, 2012 Mocna własność Markowa W = (W 1,..., W d ) oznaczać
Władcy Skandynawii opracował
W Ł~ D C Y S K~ N D Y N~ W I I K R Ó L O W I E D ~ N I IW. K J S O L D U N G O W I E 1 K R Ó L O W I E D ~ N I IW. K J S O L D U N G O W I E 2 Władcy Skandynawii G E N E~ L O G I~ K R Ó L Ó W D~ N O R
ż ć ż ż Ż ą Ż ą ą ą ą ń ą Ż ą ą ń ą ą ą Ż ą ć ą Ś Ż ą Ę ą ń ż ż ń ą ą ą ą Ż
ń Ś Ę Ś Ś ń Ż ą ż Ż ą ą żą ąż ż Ż Ż Ż ą ą Ż ż ą Żą ą ą ą ż Ś ą ą Ż ż ą ą ą ą Ż Ż ć ż ć ż ż Ż ą Ż ą ą ą ą ń ą Ż ą ą ń ą ą ą Ż ą ć ą Ś Ż ą Ę ą ń ż ż ń ą ą ą ą Ż ą ą ą Ż ń ą ą ń ż ń Ż Ś ą ą ż ą ą Ś Ś ż Ś
ś ę ę ęż Ć Ł ę ę ę ś ść ż ś ż ę ś ś ę Ż ć ć ś ę ż ś ę Ś Ą Ś ś ę ś ż ż
Ż ę ż ś ę Ś ć ś ść ż ę ę Ś Ą ś ź ć ę ś ć ś ę ę ś ś Ą ść ść ę Ą ż ę ś ś ę ę ć ę ę ś ż Ś Ś ę Ś Ą ś ę ć ś ę ź ś ę ę ź ż ź ść Ż ę ż ż ść ż ż Ł Ź ż ę ś ż ż ę ę ę ę ś ś ŚĆ ę ę ż ś ś ę ś ę ę ęż Ć Ł ę ę ę ś ść
Ę ó ą ż Ę Ń ó ś ź ń ś ś Ę óń ż ńó Ę ń ń ń ą ń ź ż ń ś ó Ż ó ąż ż łś ż żń ż ź ó ż ę ż ó ł Ń ń ń Ń ą Ńź óś ńńóń ń ń ń ż śż ó ś ż ż ą ó Ą Ń ż ł ń ą ż ą ż
Ę ą Ę Ń ś ź ś ś Ę Ę ą ź ś Ż ą ś Ń ź ę Ń Ń ą Ńź ś ś ś ą Ą Ń ą ą Ę ą ą Ę ąą ą Ś ą ę ą Ś ą Ł Ś ś Ń Ą ź ź Ę ź Ć ą ą ś Ść Ą Ż Ł ś ęę ę ś ś ś ć ą ą Ń ę ęś ęść ą ęść ą ą ść ź ć ć ą ś ą ę ć ź ęść ę ć ą ęść ś ść
Ą ć ę ż ż Ż ć ć Ż ć ń ę ę Ż ń ż ęż ę ę Ę ż ż ĘŚ ę Ż Ż Ż Ż Ż Ż Ż Ż ż ż ń ę ęż ęż Ó ęź Ą ń ę Ś Ż ć ę Ą ę ż ę ż ć ę ę Ż ę ż ż ę ń ń ę Ą ż ę Ł Ą ę ż ę Ą ę ę Ę Ą ę ę ęć ż Ę ęż ż ę Ą Ę ę ę Ą ę ę Ą Ą Ż ć ć Ń
Subdyfuzja w układach membranowych
Subdyfuzja w układach membranowych Tadeusz Kosztołowicz Institute of Physics, Jan Kochanowski University, ul. Świȩtokrzyska 15, 25-406 Kielce, Poland, tadeusz.kosztolowicz@ujk.edu.pl Między teorią a zastosowaniami
Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką
z losową stopą procentową i losową składką Instytut Matematyki i Informatyki Politechniki Wrocławskiej 10 czerwca 2008 Oznaczenia Wprowadzenie ξ n liczba wypłat w (n 1, n], Oznaczenia Wprowadzenie ξ n
ó ą ę ó ó Ż ć ó ó ó ę Ó ó ą ć ę ó ą ę ż Ó Ń ą ą ę ó Ę ó Ą ć ę ó ą ą ę ó
Ą ę ć Ą ą ą ą ż ż ó ą ż ć ą ą ć ż ć ó ó ą ó ą ń ą ę ą ę ż ń ą ó ą ą ą ą ą ą ą ó ż Ś ę ą ę ą ą ż ĘŚ ż ń ę ę ą ó ż ą Ą Ź ń Ó ą ą ó ą ę ó ą ę ó ó Ż ć ó ó ó ę Ó ó ą ć ę ó ą ę ż Ó Ń ą ą ę ó Ę ó Ą ć ę ó ą ą
ż Ł Ęż Ą Ę Ę ż ż ż ż Ł ń ń Ę Ę ż ż ć ż Ś ń ż ć ń ń ć ż Ł ć Ł ż Ą ń ń ć ż ż ż ć Ą Ę Ł ń Ł ć ń ń ż ż ż ż ź ż ż ż ć Ę ć ż ż ż ż ż ć ż Ą ć ż ż ć Ń ż Ę ż ż ń ć ż ż ć Ń ż ż ć ń Ę ż ż ć Ą ż ź ż ć ż Ę Ę ż ć ń
Światło widzialne a widmo elektromagnetyczne
Światło widzialne a widmo elektromagnetyczne 10 3 λ [nm] λ 10 6 10 12 fale radiowe 1 mm 10 9 10 12 10 9 10 6 mikrofale 100 µm 10 µm 10 15 10 18 10 21 10 3 1 10 3 widmo optyczne prom. X promienie gamma
latarnia morska wę d elbląg malbork an o el a z o i s olsztyn zamek krzyżacki w malborku Wisła płock żelazowa wola ęży z a me k ól.
T ę Ł ó 499 ż Y ę ą T T ą ść ż B ę ó ąż ę ąż żą ó ę ż ę ś Ś SZ ź ź S żó ż śó ś ść E ó E ń ó ó ó E ó ś ż ó Ł Gó ę ó SZ ś ż ę ę T 6 5 ó ż 6 5 : 685 75 ą ę 8 Ó ńó ę: : U 5 ó ż ó 5 Śą Gó 4 ść ę U żę ż ć Z
Ł Ł Ę Ż ć ć ą Ź ą Ś Ę ą Ź Ą Ż Ą ą ź ą Ł Ą Ś Ą ą
ą Ł Ó ą Ą ą ą Ó Ś Ó ą Ż ą Ś Ą Ł Ł Ę Ż ć ć ą Ź ą Ś Ę ą Ź Ą Ż Ą ą ź ą Ł Ą Ś Ą ą ć Ś ą ą ą ć ą ą ć ą ą Ź ą ćś ą ą ą Ż ą ą ć ą ć ą ć ą ą ć ć ą ą Ż ą ą ć Ł ĘŚĆ Ź Ść ą ą ą ą ŚŚ ć ą ą Ż Ź ą ć ć ć ą ą ąą ą ć ą
Funkcje odpowiedzi dla CCQE i wiązek MiniBooNE (cz. I)
Funkcje odpowiedzi dla CCQE i wiązek MiniBooNE (cz. I) Marcin Gonera Instytut Fizyki Teoretycznej Uniwersytet Wrocławski 23.05.2011 Oddziaływanie EM Rozpraszanie elastyczne elektron-nukleon Foton opisany
Fizyka zderzeń relatywistycznych jonów
Fizyka zderzeń relatywistycznych jonów kilka pytań i możliwe odpowiedzi Stanisław Mrówczyński Uniwersytet Jana Kochanowskiego, Kielce & Instytut Problemów Jądrowych, Warszawa 1 Programy eksperymentalne
ć ć ć Ś ć Ż
Ę ć ć ć Ś ć Ż Ę Ś ŚĆ Ś ć ć ć Ś ć ć ć ć ć ć Ś Ć ć ć ć ć ć ć ć ć ć ć ć ć Ś ć Ś Ż Ś Ę ć ć Ż ŚĆ ć ć ć ć ć Ż ć ć ć ć ć ć ć ź ć Ż ć ć ć ć ź ć ć ć ć ć ć ć Ć ć ć Ę ć ź ć ć ć ć ć ć ć Ę ź Ę ć ć ć ć ć ć ć ć ć ć ć
Różne rozkłady prawdopodobieństwa
Różne rozłady prawdopodobieństwa. Rozład dwupuntowy D(p). Zmienna losowa ξ ma rozład D(p), jeżeli P p {ξ = 0} = p oraz P p {ξ = } = p. Eξ = p D ξ = p( p). Rozład dwumianowy Bin(n, p). Zmienna losowa ξ
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Spis wszystkich symboli
1 Spis wszystkich symboli Symbole podstawowe - pojedyncze znaki, alfabet grecki α β γ Γ δ ξ η ε ϕ ν ρ τ θ Θ ψ Ψ φ Φ Ω Υ Σ -alfa -beta - gamma - gamma (duże) - delta (małe) - delta (duże) -ksi -eta - epsilon
I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona
r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A
Ś ć Ć ć ć Ź ć ć ć Ź ć ć Ś ć Ź ć Ź ć ć ć ź ć ć ć ć Ź Ć ćś ć ć Ć ć
Ł Ę Ś ć Ć ć ć Ź ć ć ć Ź ć ć Ś ć Ź ć Ź ć ć ć ź ć ć ć ć Ź Ć ćś ć ć Ć ć ć Ź ć ć ć Ś ć Ć ć Ś Ć ć ć Ś ć Ś ć Ś ć Ś Ć Ź ć ć ź Ź ć Ś Ć Ć Ą Ć Ś Ś Ś Ś Ś Ś Ś Ź Ć Ź Ź ŚĆ Ś Ę ź Ś Ź Ź Ź ć ć Ś Ś Ś Ś Ź Ź Ś Ś Ć Ś ć Ć Ą
Ż Ę ź Ó
ź ź Ę Ą Ż Ę ź Ó Ź Ó ź Ę ź Ę Ę Ą Ź Ą Ń Ź Ź Ź Ź ź Ą ź Ę Ą Ć ź ź ź Ę ź Ź ź ź Ę Ł ź Ź Ź Ź ź ź Ź Ź ź ź Ą Ł Ó Ó Ą Ą Ś Ę Ę Ą Ą Ś Ś Ł Ę Ę ź ź Ó Ą Ą Ą Ł Ą Ę Ź Ę ź ź Ę Ą Ź Ź ź Ł Ą Ł Ą ź Ą ź Ł Ą Ó ĘŚ Ą Ę Ę ź Ź Ę
Wykłady z Mechaniki Kwantowej
Wykłady z Mechaniki Kwantowej Mechanika Kwantowa, Relatywistyczna Mechanika Kwantowa Wykład dla doktorantów (2017) Wykład 7 Jesteśmy uczniami w szkole natury i kształtujemy nasze pojęcia z lekcji na lekcję.
Dyrektor oraz pracownicy Miejsko - Gminnego Ośrodka Kultury w Kowalewie Pomorskim
Wszystkim Nauczycielom i pracownikom oświaty z okazji Dnia Edukacji Narodowej moc najserdeczniejszych życzeń, spełnienia najskrytszych marzeń oraz byście mogli w pełni realizować swoje plany życiowe i
Spektroskopia mionów w badaniach wybranych materiałów magnetycznych. Piotr M. Zieliński NZ35 IFJ PAN
Spektroskopia mionów w badaniach wybranych materiałów magnetycznych Piotr M. Zieliński NZ35 IFJ PAN 1. Fundamenty spektroskopii mionów. Typowy eksperyment 3. Cel i obiekty badań 4. Przykłady otrzymanych
Eksperymenty reaktorowe drugiej generacji wyznaczenie ϑ 13
Eksperymenty reaktorowe drugiej generacji wyznaczenie ϑ 13 v Przypomnienie wyniku eksperymentu KamLAND - weryfikującego oscylacje neutrin słonecznych v Formuły na prawdopodobieństwo disappearance antyneutrin
Ł Ś ś
ż ź Ą ą ą ą ą Ł ś ż ś ś ą ż Ż ś ż ż ż ą ż Ł ą ą ą ń ą ś ś ą ą ą ż ś ą ą ż ą ą ą ą ż ń ą ść Ł Ś ś ś ś ą ś ś ą ń ż ą ś ź Ż ą ą ż ś ż ś ść Ź ż ż ś ą ń ą ś ż Ź Ź ż ż ż ą Ó Ż Ź ą Ś ż ść ż ą ź ż ą ą Ź ą Ś Ż
Projekt silnika bezszczotkowego prądu przemiennego. 1. Wstęp. 1.1 Dane wejściowe. 1.2 Obliczenia pomocnicze
projekt_pmsm_v.xmcd 01-04-1 Projekt silnika bezszczotkowego prądu przemiennego 1. Wstęp Projekt silnika bezszczotkowego prądu przemiennego - z sinusoidalnym rozkładem indukcji w szczelinie powietrznej.
4.1. Lecture 4 & 5. Riemann. f(t)dt. a = t 0 <t 1 < <t n 1 <b= t n (4.1) , n [t i 1,t i ] t i t i 1 (i =1,...,n) f(ξ i )(t i t i 1 ) (4.
Lecture 4 & 5 4 4.1 Riemnn t f(t) [, b] (Riemnn ) f(t)dt [, b] n 1 t 1,...,t n 1 t 0
Komputery Kwantowe. Sprawy organizacyjne Literatura Plan. Komputery Kwantowe. Ravindra W. Chhajlany. 27 listopada 2006
Sprawy organizacyjne Literatura Plan Ravindra W. Chhajlany 27 listopada 2006 Ogólne Sprawy organizacyjne Literatura Plan Współrzędne: Pokój 207, Zakład Elektroniki Kwantowej. Telefon: (0-61)-8295005 Email:
Nadawanie uprawnieo i logowanie
Nadawanie uprawnieo i logowanie Rejestracja Każdy kierownik jednostki posiada wcześniej założone konto konta zakładane są przez pracownika Działu Informacji Naukowej BG osoba odpowiedzialna: Zofia Kukurowska,
Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I
Aerodynamika I Ściśliwy opływ profilu transoniczny przepływ wokół RAE-8 M = 0.73, Re = 6.5 10 6, α = 3.19 Ściśliwe przepływy potencjalne Teoria pełnego potencjału Wprowadźmy potencjał prędkości (zakładamy
Ż ą Ę
----- -- ---- ------ ------- Ż---- -------- --- ---- -- -------- -------- ------------ --ą------ - ---------- --- ----------- -----Ę-- - ------- ------------ --- ------- -- ------ -------- ---------- --------
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 13, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 13, 6.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 1 - przypomnienie stosy
Strings on Celestial Sphere. Stephan Stieberger, MPP München
Strings on Celestial Sphere Stephan Stieberger, MPP München String Theory from a Worldsheet Perspective Galileo Galilei Institute, Firenze April 15-19, 2019 based on: St.St., T.R. Taylor: Strings on Celestial
ń ń ś ń ę ę Ś ę Ż ę ę ś ń ę ż ń ęś ę ż ń ń Ą Ę ś ś ś ż Ż ś Ś ś ę ś Ś
ę ę Ą Ą ń Ó ś ś ś ń ń Ż ń Ą Ż śó ŚĆ ś ę ę ś ś ś Ż ś ść ń Ż Ś ń ń ś ń ę ę Ś ę Ż ę ę ś ń ę ż ń ęś ę ż ń ń Ą Ę ś ś ś ż Ż ś Ś ś ę ś Ś ę ę ś ń Ż Ż Ż ę ś ć Ą Ż Ż ś Ś Ą Ż ś Ś Ą Ż ś ś ś Ę Ą ę ń ś ę ż Ż ć Ś ń ę
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 13, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 13, 16.11.017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 1 - przypomnienie
Stany związane. Andrzej Baran 18 stycznia 2017 UMCS
Stany związane Andrzej Baran 18 stycznia 2017 UMCS Macierzowy algorytm Numerowa Algorytm macierzowy Numerowa I Algorytm Numerowa dla równania ψ (x) = f(x)ψ(x), (1) (dla równania Schroedingera f(x) = 2m(E
Mody sprzężone plazmon-fonon w silnych polach magnetycznych
Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Antoni Paja Zakład Fizyki Ciała Stałego Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza w Krakowie
Transport elektronowy w metalicznych materiałach nieuporządkowanych Antoni Paja Zakład Fizyki Ciała Stałego Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza w Krakowie Plan wystąpienia.
Numeryczne aproksymacje prawdopodobieństwa ruiny
Numeryczne aproksymacje prawdopodobieństwa ruiny Krzysztof Burnecki Aleksander Weron Centrum Metod Stochastycznych im. Hugona Steinhausa Instytut Matematyki i Informatyki Politechnika Wrocławska www.im.pwr.wroc.pl/
Rozdział 4 Zasady zachowania w fizyce cząstek Zachowanie zapachów: S, C, B, T Wnioski z zasady zachowania izospinu w oddziaływaniach silnych
Rozdział 4 Zasady zachowania w fizyce cząstek Zachowanie zapachów: S, C, B, T Wnioski z zasady zachowania izospinu w oddziaływaniach silnych (formalizm Szmuszkiewicza) Parzystość P, parzystość ładunkowa
O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego
O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego Jan Ligęza Instytut Matematyki Wisła Letnia Szkoła Instytutu Matematyki wrzesień 2010 r. [1] S. Łojasiewicz, J. Wloka, Z. Zieleżny; Über eine
POLITECHNIKA LUBELSKA KARTA MODUŁU (SYLABUS)
STOPIEŃ STUDIÓW: RODZAJ STUDIÓW: KIERUNEK STUDIÓW: KARTA MODUŁU (SYLABUS) Studia I stopnia (inżynierskie) studia stacjonarne MECHATRONIKA (MT) PRZEDMIOT: ROK STUDIÓW: SEMESTR: RODZAJ ZAJĘĆ I LICZBA GODZIN:
ć ć ć ć ć ź Ź ć ć Ń Ę ź ź Ą ć ć
Ł Ł ź Ą Ź ć Ź ć Ę ć ź Ż ć ć Ń Ę Ę Ś ć ć ć ć Ć ć ć ć ć ć ź Ź ć ć Ń Ę ź ź Ą ć ć ć Ź Ż ć Ą ć Ł Ó Ł Ę Ę ĘŚĆ Ę ĘŚ ź Ę Ą Ą Ą ĘŚ Ź Ź Ź Ź Ż Ź ć ć Ź ć Ź Ł Ź Ź Ź ć ć Ą ć ć ć ć ć ć ć Ź Ź ź ć ć ć ć ć ć ć Ź ć Ą Ę Ą
(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i)
(3) (e) sin( θ) sin θ cos( θ) cos θ sin(θ + π/) cos θ cos(θ + π/) sin θ sin(θ π/) cos θ cos(θ π/) sin θ sin(θ ± π) sin θ cos(θ ± π) cos θ sin(θ ± π) sin θ cos(θ ± π) cos θ (f) cos x cos y (g) sin x sin
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Ę ż Ł ś ą ł ść ó ą ż ę ł Ł ś ą ś Ż ż ż ń ż ł ś ń ż żę Ł ż ó ń ę ż ł ńó ó ł ń ą ż ę ż ą ą ż Ń ż ż ż óź ź ź ż Ę ż ś ż ł ó ń ż ć óź ż ę ż ż ńś ś ó ń ó ś
Ę Ł ś ą ł ść ą ę ł Ł ś ą ś Ż ł ś ę Ł ę ł ł ą ę ą ą Ń ź ź ź Ę ś ł ć Ź ę ś ś ś Ę ł ś ć Ę ś ł ś ą ź ą ą ą ą ą ą ą ą ś ą ęń ś ł ą ś Ł ś ś ź Ą ł ć ą ą Ę ą ś ź Ł ź ć ś ę ę ź ą Ż ć ć Ą ć ć ł ł ś ł ś ę ą łą ć
/ / * ** ***
91 / / * ** *** 93/3/31 : 9/11/0 :. 1385. 1390... :.P51 C61 G1:JEL 139 / 51 Email: kiaee@isu.ac.ir. Email: abrihami@u.ac.ir. Email: sobhanihs@u.ac.ir..7.*..**..*** 136. 1363 30.... Dynamic Sochasic ) (Opimizaion....
VI. Równania różniczkowe liniowe wyższych rzędów
VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych
1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2
Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,
Ł ś ś ń ń ś
Ę ń Ł ś ś ń ń ś ść ę ę ś ż ś ś ś ę ę ś ę ś ę ć ź ż ś ęś ż ę ś ś ś ć ź ę ę ś ś ść ć ę ę ś ś ę ę ę ę ś Ł Ł Ł Ł Ł ś ć ę ę ę ę ń Ą Ą ż ę ę Ł Ś ę Ł Ł ę ę ę ś Ą ę ę ę Ł Ł ń ń ś Ą Ń ś Ł Ó Ł ść ń ń ą ę ść ń
Ń
ź Ś ź ć Ń ŁĄ ĘŚ ć Ń Ś Ą ć ć ź ć Ń Ą ć ć ć Ń Ł Ą ć ć ć ć ć Ą Ń ć ź ć ź Ą ć Ł ć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ć Ń ć ć ć ć ź ć ć ć ŁĘ Ę ć ć ć ć ć ć ć ć ć ć ć ć ć Ń ć ć ć ć ź ć ć ć ć ć ć ć ć ć ć ź
Ś Ó Ź Ś Ś
Ą Ł Ś ĄŻ Ó Ó Ę Ś Ó Ź Ś Ś Ś ć Ó Ć ć Ó Ą ć ć ć ć ć ć Ż Ą Ó Ź ć Ó ć ć ź ć ć Ą Ż ć ć Ó ć Ó ć Ń ć Ż Ż Ż ć Ę ć ć ć ć Ż Ż Ó Ć Ś Ż ŻĄ Ź Ź Ż Ż Ź Ź ć Ź Ś Ć ć Ś Ż ć ć Ó ć Ó ć Ć Ć ć Ó ć ć Ó ć Ć Ź Ó Ó ć ć ć Ó Ź Ś Ź
Nieliniowa Optyczna Spektroskopia Supermolekuł
Nieliniowa Optyczna Spektroskopia Supermolekuł Tadeusz Bancewicz Zakład Optyki Nieliniowej, Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu, http://zon8.physd.amu.edu.pl/~tbancewi 6 marca
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne
POLITECHNIKA LUBELSKA KARTA MODUŁU (SYLABUS)
STOPIEŃ STUDIÓW: RODZAJ STUDIÓW: KIERUNEK STUDIÓW: KARTA MODUŁU (SYLABUS) Studia I stopnia (inżynierskie) studia stacjonarne MECHATRONIKA (MT) PRZEDMIOT: ROK STUDIÓW: SEMESTR: RODZAJ ZAJĘĆ I LICZBA GODZIN:
Rezonanse w deekscytacji molekuł mionowych i rozpraszanie elastyczne atomów mionowych helu. Wilhelm Czapliński Katedra Zastosowań Fizyki Jądrowej
ezonanse w deekscytacj moekuł monowych ozpaszane eastyczne atomów monowych heu Whem Czapńsk Kateda Zastosowań Fzyk Jądowej . ezonanse w deekscytacj moekuł monowych µ He ++ h ++ Heµ h J ν h p d t otacyjna
imię, nazwisko, nr indeksu (drukowanymi lit.) grupa inicjały wynik Egzamin 18L3. Test (90 min) Algebra i teoria mnogości 7 września 2018 O0
imię, azwisko, r ideksu drukowaymi lit.) grupa iicjały wyik Egzami 8L. Test 9 mi) 7 wrześia 8 O ϕx) : x > 4 x R \, ) ϕx) : y > x y b przyjmujemy
ź -- ć ł ź ł -ł ł --
------ --------- --ł ----ć -------- --------------- ---ę- --- ----------- ------- ------ó- ------------ ----- --- -- ----- - ------------ --ó- --ś -- -- ------- --------- ------ ---- --------- -------ą
Egzaminy, styczeń/luty 2004
Egzaminy, styczeń/luty 2004 Trzeci termin Trzeci termin egzaminu poniedziałek 8/03/04 godz. 11.30-13.30 (4-5 osób) i 15.00-16.30 (4-5 osób). Zainteresowane osoby proszę o wysłanie mail a z określeniem,
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Klasyczny przykład pośredniego oddziaływania pola magnetycznego na wzbudzenia fononowe Schemat: pole magnetyczne (siła Lorentza) nośniki (oddziaływanie
Zastosowanie techniki μsr w badaniach własności magnetyków molekularnych. Piotr M. Zieliński NZ35 IFJ PAN
Zastosowanie techniki μsr w badaniach własności magnetyków molekularnych. Piotr M. Zieliński NZ35 IFJ PAN 1. Fundamenty spektroskopii mionów. Typowy eksperyment 3. Zjawiska krytyczne i SR 4. Przykłady