Ekonometria dla III roku studiów licencjackich dr Stanisław Cichocki dr Natalia Nehrebecka
|
|
- Oskar Piekarski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Ekonometria dla III roku studiów licencjackich dr Stanisław Cichocki dr Natalia Nehrebecka Wykład 30 godz. Ćwiczenia 30 godz. Cel zajęć Wykład i ćwiczenia z ekonometrii mają zapoznać studentów z technikami ekonometrycznymi, ich własnościami i najważniejszymi zastosowaniami. Głównym celem wykładów jest zapoznanie studentów z teorią ekonometrii. Wykłady ilustrowane są prostymi przykładami empirycznymi. Bardziej rozbudowane przykłady empiryczne omawiana będą na ćwiczeniach. Na wykładzie omawiana będzie problematyka estymacji w Klasycznym Modelu Regresji Liniowej za pomocą Metody Najmniejszych Kwadratów. Pierwsza część kursu poświęcona zostanie na przedstawienie modelu, jego założeń i sposobu estymacji oraz interpretacji. W drugiej części studenci zostaną zapoznani ze sposobami testowania hipotez, diagnostyki modelu i konsekwencjami braku spełnienia poszczególnych założeń. Po wykładzie student powinien potrafić prawidłowo przebadać związki między zmiennymi w próbie przekrojowej oraz zinterpretować wyniki prostego badania statystycznego. Ćwiczenia do wykładu służą zapoznaniu się zastosowaniami narzędzi ekonometrycznych omawianych na wykładzie oraz sprawdzania na bieżąco wiedzy studentów. Celem ćwiczeń nie jest powtarzanie wykładu. W ramach ćwiczeń studenci powinni opanować formułowanie modeli ekonometrycznych, ich estymację za pomocą pakietów statystycznego STATA oraz interpretację wyników badań empirycznych. Istotną częścią ćwiczeń będzie tworzenie przez studenta modelu ekonometrycznego.
2 Wymagania wstępne: Analiza i algebra: mnożenie macierzy, odwracanie macierzy, ślad macierzy i jego własności, liczenie pochodnych względem wektora parametrów, maksymalizacja funkcji wielu zmiennych warunki konieczne Rachunek p-stwa: Wartość oczekiwana i jej własności, wariancja i jej własności,. Pojęcie wektora losowego, pojęcie macierzy wariancji kowariancji, własności rozkładu normalnego. Statystyka: Pojęcie estymatora, nieobciążoność estymatora, pojęcie zgodności estymatora i asymptotycznego rozkładu estymatora. Testowanie hipotez: hipoteza zerowa i alternatywna, poziom istotności, błąd I i II rodzaju, p-value. Wprowadzenie [1] Przedmiot ekonometrii Pojęcie modelu ekonometrycznego Metoda Najmniejszych Kwadratów (MNK) [2-4] Wyprowadzenie estymatora MNK Własności hiperpłaszczyzny regresji, dekompozycja sumy kwadratów reszt, miary dopasowania i ich własności Interpretacja parametrów modelu [5] Zmienne zerojedynkowe Formy liniowe względem przekształconych zmiennych (logarytmiczna, odcinkamiliniowa) Klasyczny Model Regresji Liniowej (KMRL) [6-7] Założenia Klasycznego Modelu Regresji Liniowej (KMRL). Własności estymatora MNK w KMRL: wartość oczekiwana i wariancja. Estymator liniowej funkcji parametrów i jego wariancja. Prognozowanie w MNK: wariancja prognozy i błędu prognoz. Efektywność estymatora MNK w KMRL: twierdzenie Gaussa-Markowa. Wnioskowanie statystyczne w KMRL [8-9] Założenia na temat rozkładu błędu losowego Rozkłady estymatorów MNK w KMRL. Testowanie liniowych hipotez prostych i złożonych: testy t i F. Testy diagnostyczne [10] Rola testów diagnostycznych w analizie modelu. Testowane założeń KMRL: o postać funkcyjna (test RESET) o normalność rozkładu (test Jarque-Berra) o stabilność parametrów (test Chowa) o homoskedastyczność (test Breusch-Pagana, White a) o autokorelacja (test Durbina-Watsona, Breuscha-Godfreya) Podstawowe problemy estymacji za pomocą MNK [11-12] Zmiennych pominięte (zmienne interweniujące): przykład empiryczny Zmienne nieistotne Obserwacje nietypowe i outliery wykrywanie i postępowanie Współliniowość Asymptotyczne własności MNK i równoczesność Heteroskedastyczność i autokorelacja [13-14] Przyczyny występowania heteroskedastyczności i autokorelacji Konsekwencje heteroskedastyczności i autokorelacji
3 Uogólniona Metoda Najmniejszych Kwadratów (UMNK) Przekształcenie modelu UMNK do MNK Stosowalne UMNK (Ważona MNK) Odporne na heteroskedastyczność i autokorelacje estymatory macierzy wariancjikowariancji. Kryteria oceny Pisemny egzamin końcowy pod koniec semestru. Ocena końcowa wystawiana jest jako średnia ważona z ocen z egzaminu i ćwiczeń z wagami odpowiednio 2/3 i 1/3. Do egzaminu końcowego dopuszczone będą wyłącznie osoby, które zaliczyły ćwiczenia. Forma egzaminu Egzamin trwa 90 min, składa się z 4 pytań teoretycznych i 3 zadań. Pytania teoretyczne będą pytaniami znajdującymi się w skrypcie (lub będą modyfikacją tych pytań). Forma egzaminu poprawkowego jest identyczna do formy egzaminu końcowego. Do zaliczenia egzaminu konieczne jest uzyskanie przynajmniej 50% punktów z zadań i 50% punktów z pytań. Materiały do wykładu Skrypt do wykładu oraz zbiór zadań do wykładu zostanie udostępniony w punkcie ksero na wydziale. Dodatkowe materiały do wykładu znajdują się na stronie Na stronie tej umieszczane będą sukcesywnie slajdy do wykładu. W odpowiednim dziale na powyższej stronie znajdują się materiały do nauki STAT y oraz dane, które można użyć przy tworzeniu modelu. Na stronie tej znajdują się także najlepsze modele studenckie z zeszłych lat (dostęp jedynie przy znajomości hasła). Ćwiczenia Grupy ćwiczeniowe tworzone są przez dziekanat. Zmiana grup ćwiczeniowych jest możliwa tylko za zgodą dziekanatu i po wprowadzeniu zmian do systemu USOS. Zaliczenie i ocena z ćwiczeń Warunkiem dopuszczenia do egzaminu jest zaliczenie ćwiczeń. Uzyskanie zaliczenia z ćwiczeń weryfikowane jest przed egzaminem na podstawie list z USOS-a. Warunkami zaliczenia ćwiczeń są zaliczenie kartkówek, kolokwium oraz modelu. Kolokwium poprawkowe odbywa się w trakcie sesji poprawkowej. Na ćwiczeniach odbywać się będą kartkówki. Dopuszczalna liczba niezaliczonych kartkówek to dwie kartkówki. Kartkówki nie zaliczone ponad tą liczbę należy zaliczyć na koniec semestru u prowadzącego ćwiczenia. Osoby, które będą miały więcej niż 3 nieobecności uzyskają ocenę NK. Dalszą procedurę (usprawiedliwienia, podania, prośby etc.) określa Regulamin Studiów na Uniwersytecie Warszawskim oraz Uchwała Rady Wydziału Nauk Ekonomicznych Uniwersytetu Warszawskiego numer 6/2010 z dnia 16 czerwca 2010 r. w sprawie szczegółowych zasad studiowania na Wydziale Nauk Ekonomicznych Uniwersytetu Warszawskiego. Ocena z ćwiczeń jest w 40% wynikiem oceny z kolokwiów, 20% wynikiem ocen z kartkówek i aktywności na ćwiczeniach a w 40% oceny z modelu. Spośród dostarczonych przez ćwiczeniowców modeli wybranych zostanie ok. 7 najlepszych, których autorzy zostaną zwolnieni z egzaminu z oceną bardzo dobrą pod warunkiem zaliczenia w terminie kolokwium semestralnego na co najmniej ocenę dobrą.
4 Model Model budowany w trakcie ćwiczeń będzie jednym z podstawowych kryteriów oceny z ćwiczeń. Modele są budowane przez co najwyżej 3 osobowe grupy studenckie. Opis wyników badania empirycznego powinien zawierać następujące elementy: Opis hipotezy badawczej i jej związek z teorią ekonomii i innymi badaniami empirycznymi Opis bazy danych i definicje zmiennych zastosowanych w estymacji Interpretację wyników przeprowadzonych estymacji oraz wyników testów statystycznych Omówienie wniosków z badania i ich związku z postawioną na wstępie hipotezą badawczą Załącznik z wydrukami wyników ze STAT y Oddając model należy oddać: Wydruk opisu wyników badania W formie cyfrowej: o opis wyników badania (plik.doc lub.pdf) o dane na których przeprowadzono badanie w formacie STAT y o plik wsadowy (.do) z komendami, które zostały użyte w trakcie badania Modele nie wykorzystujące przynajmniej 2 pozycji anglojęzycznych oceniane będą na ndst. Do oceny przyjmowane będą jedynie te modele, których temat i wstępne wyniki zostały wcześniej skonsultowane z prowadzącym ćwiczenia. Model - co jest uważane jest za prace niesamodzielną Za pracę niesamodzielną uważa się pracę, która jest częściowo lub w całości autorstwa osób innych niż te podpisane na pracy. Za prace niesamodzielne będą uważane te prace, które: są plagiatem. zostały częściowo lub w całości napisane przez inną osobę/osoby niż te podpisane na pracy. Za plagiat uważamy prace, które zawierają modele, dla których wyniki estymacji są numerycznie identycznie do wyników uzyskanych przez inną osobę. W szczególności dotyczy to wyników opublikowanych w Internecie lub opublikowanych w inny sposób, oraz wyników uzyskanych przez innych studentów naszej lub innej uczelni. W razie oddawania modelu będącego modyfikacją modelu wyestymowanego przez kogoś innego (modyfikacja taka może polegać np. na zwiększeniu próby lub dodaniu zmiennej do modelu) należy bezwzględnie podać odnośnik do pracy, na której student się wzoruje, oraz szczegółowo określić, na czym polegają dokonane zmiany. Odnośniki należy także umieszczać w przypadku umieszczania w pracy fragmentów tekstu pochodzących z prac innych autorów. Praca bez takich odnośników będzie również traktowana jako plagiat. Dostarczenie pracy niesamodzielnej ma te same skutki, co ściąganie i automatycznie pociąga za sobą nie zaliczenie przedmiotu i sprawę w komisji dyscyplinarnej. Kierunek Informatyka i Ekonometria i Międzykierunkowe Studia Ekonomiczno- Matematyczne Studenci kierunku Informatyka i Ekonometria oraz studenci Międzykierunkowych Studiów Ekonomiczno-Matematycznych będą mieli wykład wspólny z pozostałymi specjalizacjami. Egzamin będzie miał taką samą formę jak w przypadku pozostałych specjalizacji, ale będzie obejmował poza standardowymi zadaniami i pytaniami także pytania oznaczone w skrypcie i
5 zbiorze zadań gwiazdką. Modele w przypadku studentów z grup IiE oraz studentów z grup JSEMAT pisane są jednoosobowo. Pozostałe warunki zaliczenia są takie same jak w przypadku pozostałych kierunków. Literatura obowiązkowa Zbiór zdań z ekonometrii, Jerzy Mycielski, 2011 Ekonometria, Jerzy Mycielski, 2010 Wooldridge, Introductory Econometrics, 2002 (lub wydania późniejsze) Materiały do nauki STAT y, K.Kuhl, M. Kurcewicz, G. Ogonek, P. Strawiński, J. Tyrowicz, 2005 Literatura dodatkowa 1. Chow, Ekonometria, PWN Davidson, McKinnon, Estimation and Inference in Econometrics, OUP, Greene, Econometric Analysis, Prentice Hall 2003 (lub wydania póżniejsze) 4. Goldberger, Teoria Ekonometrii, PWE, Steward, Econometrics, Philip Allan Theil, Zasady ekonometrii, PWN, Wooldridge, Econometric Analysis of Cross Section and Panel Data, MIT Press, 2002
Ekonometria Dla III roku studiów dziennych Dr Jerzy Mycielski, Dr Paweł Strawiński
Ekonometria Dla III roku studiów dziennych Dr Jerzy Mycielski, Dr Paweł Strawiński Wykład 60 godz. Ćwiczenia 60 godz. Cel zajęć Wykład i ćwiczenia z ekonometrii mają zapoznać studentów z technikami ekonometrycznymi,
Ekonometria Dla III roku studiów dziennych Dr Jerzy Mycielski
Ekonometria Dla III roku studiów dziennych Dr Jerzy Mycielski Wykład 60 godz. Ćwiczenia 60 godz. Cel zajęć Wykład i ćwiczenia z ekonometrii mają zapoznać studentów z technikami ekonometrycznymi, ich własnościami
Ekonometria Dla III roku studiów dziennych Dr Jerzy Mycielski
Ekonometria Dla III roku studiów dziennych Dr Jerzy Mycielski Wykład 60 godz. Ćwiczenia 60 godz. Cel zajęć Wykład i ćwiczenia z ekonometrii mają zapoznać studentów z technikami ekonometrycznymi, ich własnościami
Stanisław Cichocki Natalia Nehrebecka. Wykład 1
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Ćwiczenia Literatura 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8
Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka - adres mailowy: nnehrebecka@wne.uw.edu.pl - strona internetowa: www.wne.uw.edu.pl/nnehrebecka - dyżur: wtorek 18.30-19.30 sala 302 lub 303 - 80% oceny: egzaminy -
Stanisław Cichocki Natalia Nehrebecka. Wykład 1
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Ćwiczenia Literatura 2. Formy danych statystycznych 3. Czym zajmuje się ekonometria? Model ekonometryczny 2 1.
Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada
Stanisław Cichocki Natalia Nehrebecka Katarzyna Rosiak-Lada 1. Sprawy organizacyjne Zasady zaliczenia 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2 1. Sprawy
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka - adres mailowy: scichocki@o2.pl - strona internetowa: www.wne.uw.edu.pl/scichocki - dyżur: po zajęciach lub po umówieniu mailowo - 80% oceny: egzaminy - 20% oceny:
Stanisław Cichocki Natalia Nehrebecka. Wykład 1
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Ćwiczenia Literatura 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów 5. Testowanie
przedmiotu Nazwa Pierwsza studia drugiego stopnia
Nazwa przedmiotu K A R T A P R Z E D M I O T U ( S Y L L A B U S ) O p i s p r z e d m i o t u Kod przedmiotu EKONOMETRIA UTH/I/O/MT/zmi/ /C 1/ST/2(m)/1Z/C1.1.5 Język wykładowy ECONOMETRICS JĘZYK POLSKI
Ekonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Wprowadzenie do modelowania ekonometrycznego Estymator Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 1 Estymator 1 / 16 Agenda 1 Literatura Zaliczenie przedmiotu 2 Model
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie
Stanisław Cichocki Natalia Nehrebecka. Wykład 1
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Ćwiczenia Literatura 2. Obciążenie Lovella 3. Metoda od ogólnego do szczególnego 4. Kryteria informacyjne 2 1.
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Autokorelacja Konsekwencje Testowanie autokorelacji 2. Metody radzenia sobie z heteroskedastycznością i autokorelacją Uogólniona Metoda Najmniejszych
Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk
Natalia Neherbecka. 11 czerwca 2010
Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje
Stanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichocki Natalia Nehrebecka Wykład 10 1 1. Testy diagnostyczne Testowanie prawidłowości formy funkcyjnej: test RESET Testowanie normalności składników losowych: test Jarque-Berra Testowanie stabilności
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Przedmiot ekonometrii
Informacje ogólne Egzamin Kryteria oceny Ćwiczenia Literatura po polsku Literatura po angielsku Wykładowca: dr Paweł Strawiński Dyżur: wtorek 17:00-18:00(?), katedra Statystyki i Ekonometrii Materiały
Ekonometria. Własności składnika losowego. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Własności składnika losowego Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 3 Własności składnika losowego 1 / 31 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4
Przedmiot ekonometrii
Model ekonometryczny Informacje ogólne Egzamin Kryteria oceny Literatura uzupełniająca w języku polskim Literatura uzupełniająca w języku angielskm Wykładowca: dr hab. Paweł Strawiński Dyżur: wtorek 17:00-18:00,
Ekonometria Ćwiczenia 19/01/05
Oszacowano regresję stopy bezrobocia (unemp) na wzroście realnego PKB (pkb) i stopie inflacji (cpi) oraz na zmiennych zero-jedynkowych związanymi z kwartałami (season). Regresję przeprowadzono na danych
Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13
Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): II stopnia
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Mikroekonometria 3. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 3 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.hedonic.dta przygotuj model oszacowujący wartość kosztów zewnętrznych rolnictwa 1. Przeprowadź regresję objaśniającą
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie
Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Egzamin z ekonometrii - wersja ogólna
Egzamin z ekonometrii - wersja ogólna 06-02-2019 Regulamin egzaminu 1. Egzamin trwa 90 min. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Statystyka matematyczna SYLABUS
Statystyka matematyczna nazwa przedmiotu SYLABUS B. Informacje szczegółowe Elementy składowe sylabusu Nazwa przedmiotu Statystyka matematyczna Kod przedmiotu 0600-FS1-2SM Nazwa jednostki prowadzącej Wydział
Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe
Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje
Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015
Tryb studiów Niestacjonarne Nazwa kierunku studiów Finanse i Rachunkowość Poziom studiów Stopień pierwszy Rok studiów/ semestr II/4 Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki
KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Ekonometria 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6 5. LICZBA PUNKTÓW ECTS: 5 6. LICZBA GODZIN: 30 / 30 7. TYP PRZEDMIOTU
Ekonometria, 3 rok. Jerzy Mycielski. Uwniwersytet Warszawski, Wydzia Nauk Ekonomicznych. Jerzy Mycielski (Institute) Ekonometria, 3 rok / 15
Ekonometria, 3 rok Jerzy Mycielski Uwniwersytet Warszawski, Wydzia Nauk Ekonomicznych 2009 Jerzy Mycielski (Institute) Ekonometria, 3 rok 2009 1 / 15 Sprawy organizacyjne Dy zur: wtorek godz. 14-15 w sali
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA MATEMATYCZNA (EiT stopień) Nazwa w języku angielskim Mathematical Statistics Kierunek studiów (jeśli dotyczy): Specjalność
Natalia Nehrebecka. Wykład 1
Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Dwiczenia Literatura 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2 1. Sprawy organizacyjne
Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
STATYSTYKA MATEMATYCZNA
Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA MATEMATYCZNA Nazwa w języku angielskim Mathematical Statistics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli
Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 01/02/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski
Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:
Statystyka SYLABUS A. Informacje ogólne
Statystyka SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Dziedzina
Ekonometria egzamin 07/03/2018
imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Metody komputerowe statystyki Computer Methods in Statistics. Matematyka. Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W, 3L
Nazwa przedmiotu: Kierunek: Metody komputerowe statystyki Computer Methods in Statistics Matematyka Rodzaj przedmiotu: przedmiot obowiązkowy dla specjalności matematyka przemysłowa Rodzaj zajęć: wykład,
METODY ILOŚCIOWE W ZARZĄDZANIU
1.1.1 Metody ilościowe w zarządzaniu I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE METODY ILOŚCIOWE W ZARZĄDZANIU Nazwa jednostki organizacyjnej prowadzącej kierunek: Kod przedmiotu: RiAF_PS5 Wydział Zamiejscowy
Stanisław Cichocki Natalia Nehrebecka. Wykład 7
Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności
NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Wprowadzenie do teorii ekonometrii. Część A
NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Autor: 1. Dobromił Serwa 2. Tytuł przedmiotu Sygnatura (będzie nadana, po akceptacji przez Senacką Komisję Programową) Wprowadzenie do teorii
Imię, nazwisko i tytuł/stopień KOORDYNATORA przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, dr
Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu w systemie USOS 1000-ES1-3EC1 Liczba
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011
SYLLABUS na rok akademicki 00/0 Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu
Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1
Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów
Stanisław Cihcocki. Natalia Nehrebecka
Stanisław Cihcocki Natalia Nehrebecka 1 1. Kryteria informacyjne 2. Testowanie autokorelacji w modelu 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach
Uczelnia Łazarskiego. Sylabus. 1. Nazwa przedmiotu EKONOMETRIA 2. Kod przedmiotu
Uczelnia Łazarskiego Sylabus 1. Nazwa przedmiotu EKONOMETRIA 2. Kod przedmiotu 3. Język wykładowy Język polski 4. Status przedmiotu podstawowy do wyboru Języki X kierunkowy specjalistyczny Inne 5. Cel
Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda
KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Statystyka matematyczna (STA230) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Statystyka matematyczna (STA230) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/5 5. LICZBA PUNKTÓW ECTS: 6 6. LICZBA GODZIN: 30
Ekonometria i prognozowanie Econometrics and prediction
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Ekonometria i prognozowanie Econometrics and prediction A. USYTUOWANIE
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
WYDZIAŁ GEOINŻYNIERII, GÓRNICTWA I GEOLOGII KARTA PRZEDMIOTU Nazwa w języku polskim: Statystyka matematyczna Nazwa w języku angielskim: Mathematical Statistics Kierunek studiów (jeśli dotyczy): Górnictwo
Ekonometria dla IiE i MSEMat Z12
Ekonometria dla IiE i MSEMat Z12 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 09-01-2017 Test RESET Ramsey a W pierwszym etapie estymujemy współczynniki regresji w modelu:
przedmiot podstawowy obowiązkowy polski drugi
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 07/08 IN--008 STATYSTYKA W INŻYNIERII ŚRODOWISKA Statistics in environmental engineering
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
Stanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Współliniowość 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji Metody radzenia sobie z heteroskedastycznością
Ekonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych. Informatics systems for the statistical treatment of data Kierunek:
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych I KARTA PRZEDMIOTU CEL PRZEDMIOTU Informatics systems for the statistical treatment of data Kierunek: Forma studiów Informatyka Stacjonarne
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Egzamin z ekonometrii wersja ogolna
Egzamin z ekonometrii wersja ogolna 04-02-2016 Pytania teoretyczne 1. Wymienić założenia Klasycznego Modelu Regresji Liniowej (KMRL). 2. Wyprowadzić estymator MNK dla modelu z wieloma zmiennymi objaśniającymi.
WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO
Zał. nr 4 do ZW WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA STOSOWANA Nazwa w języku angielskim APPLIED STATISTICS Kierunek studiów (jeśli dotyczy): Specjalność
Ekonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18
Ekonometria Metodologia budowy modelu Jerzy Mycielski WNE, UW Luty, 2011 Jerzy Mycielski (WNE, UW) Ekonometria Luty, 2011 1 / 18 Sprawy organizacyjne Dyżur: środa godz. 14-15 w sali 302. Strona internetowa
Rachunek prawdopodobieństwa WZ-ST1-AG--16/17Z-RACH. Liczba godzin stacjonarne: Wykłady: 15 Ćwiczenia: 30. niestacjonarne: Wykłady: 9 Ćwiczenia: 18
Karta przedmiotu Wydział: Wydział Zarządzania Kierunek: Analityka gospodarcza I. Informacje podstawowe Nazwa przedmiotu Rachunek prawdopodobieństwa Nazwa przedmiotu w j. ang. Język prowadzenia przedmiotu
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: przedmiot obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU
Analiza regresji - weryfikacja założeń
Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.
Opis programu studiów
IV. Opis programu studiów Załącznik nr 9 do Zarządzenia Rektora nr 35/19 z dnia 1 czerwca 019 r. 3. KARTA PRZEDMIOTU Kod przedmiotu I-IŚ-103 Nazwa przedmiotu Statystyka w inżynierii środowiska Nazwa przedmiotu
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Stanisław Cichocki Natalia Neherbecka
Stanisław Cichocki Natalia Neherbecka 13 marca 2010 1 1. Kryteria informacyjne 2. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach (ADL) 3. Analiza
Autokorelacja i heteroskedastyczność
Autokorelacja i heteroskedastyczność Założenie o braku autokorelacji Cov (ε i, ε j ) = E (ε i ε j ) = 0 dla i j Oczekiwana wielkość elementu losowego nie zależy od wielkości elementu losowego dla innych
Proces modelowania zjawiska handlu zagranicznego towarami
Załącznik nr 1 do raportu końcowego z wykonania pracy badawczej pt. Handel zagraniczny w województwach (NTS2) realizowanej przez Centrum Badań i Edukacji Statystycznej z siedzibą w Jachrance na podstawie
KARTA KURSU. Kod Punktacja ECTS* 1
KARTA KURSU Nazwa Nazwa w j. ang. Wprowadzenie do statystyki Introduction to statistics Kod Punktacja ECTS* 1 Koordynator Prof. dr hab. Jerzy Wołek Zespół dydaktyczny Prof. dr hab. Jerzy Wołek doktoranci
Liniowy model ekonometryczny Metoda najmniejszych kwadratów Laboratorium 1.
Liniowy model ekonometryczny Metoda najmniejszych kwadratów Laboratorium 1. mgr mgr Krzysztof Czauderna Instytut Statystyki i Demografii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie
Brunon R. Górecki. Ekonometria. podstawy teorii i praktyki. Wydawnictwo Key Text
Brunon R. Górecki Ekonometria podstawy teorii i praktyki Wydawnictwo Key Text Darmowy fragment Darmowy fragment Darmowy fragment Wydawnictwo Key Text Recenzent prof. dr hab. Jan B. Gajda Opracowanie graficzne
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2014/2015
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 201/2015 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
Z-LOGN Ekonometria Econometrics. Przedmiot wspólny dla kierunku Obowiązkowy polski Semestr IV
bbbbkarta MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Z-LOGN1-0184 Ekonometria Econometrics Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE
Testowanie hipotez statystycznych
round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni
Zał. nr do ZW 33/01 WYDZIAŁ PODSTAWOWYCH ROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim TEORIA ESTYMACJI Nazwa w języku angielskim ESTIMATION THEORY Kierunek studiów (jeśli dotyczy): MATEMATYKA
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 2 3 1. Wprowadzenie do danych panelowych a) Charakterystyka danych panelowych b) Zalety i ograniczenia 2. Modele ekonometryczne danych panelowych a) Model efektów
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
KARTA PRZEDMIOTU / SYLABUS
Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi
Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz
KARTA PRZEDMIOTU / SYLABUS
Załącznik nr 5b do Uchwały nr 21/2013 Senatu KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
studia stacjonarne w/ćw zajęcia zorganizowane: 30/15 3,0 praca własna studenta: 55 Godziny kontaktowe z nauczycielem akademickim: udział w wykładach
Nazwa jednostki prowadzącej kierunek: Nazwa kierunku: Poziom kształcenia: Profil kształcenia: Moduły wprowadzające / wymagania wstępne: Nazwa modułu (przedmiot lub grupa przedmiotów) Osoby prowadzące:
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Testowanie autokorelacji 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji 3.Problemy z danymi Zmienne pominięte
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
EKONOMETRIA I SYLABUS
Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. EKONOMETRIA I SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom
1.1 Klasyczny Model Regresji Liniowej
1.1 Klasyczny Model Regresji Liniowej Klasyczny model Regresji Liniowej jest bardzo użytecznym narzędziem służącym do analizy danych empirycznych. Analiza regresji zajmuje się opisem zależności między
BIOSTATYSTYKA. Liczba godzin. Zakład Statystyki i Informatyki Medycznej
Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 0/03 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański
KARTA KURSU (do zastosowania w roku akademickim 2015/16) Nazwa Statystyka 2 Nazwa w j. ang. Statistics 2 Kod Punktacja ECTS* 3 Koordynator Dr hab. Tadeusz Sozański (koordynator, konwersatorium) Zespół