Metody klasyfikacji i klasteryzacji obiektów wielocechowych.
|
|
- Ewa Żurek
- 6 lat temu
- Przeglądów:
Transkrypt
1 Metody klasyfikacji i klasteryzacji obiektów wielocechowych
2 Zakres szkolenia Podstawowe pojęcia związane z klasyfikacją wielocechową Proste metody porządkowania liniowego (ratingu) Metody grupowania (klasteryzacji) 2
3 Przykład Celem badania jest ocena pewnej grupy przedsiębiorstw tej samej branży. Aby dokonać takiej oceny konieczna jest znajomość danych dotyczących pewnej kluczowej zmiennej, na przykład zysku. Znając zysk każdego przedsiębiorstwa możliwe jest pogrupowanie przedsiębiorstw w grupy lub uporządkowanie przedsiębiorstw względem wielkości zysku. Zysk w mln. zł. Spółka E 155 Spółka F 67 Spółka D 170 Spółka C 150 Spółka B 120 Spółka A 100 3
4 Rozwiązanie zagadnienia komplikuje się, jeżeli zmienną, na podstawie której należy dokonać oceny nie jest tylko zysk lecz pojawia się zmienna dodatkowa, np. wartość aktywów. Zysk w mln. zł. Aktywa w mld. zł. Spółka E 155 1,2 Spółka F 67 1 Spółka D 170 0,6 Spółka C 150 0,9 Spółka B 120 2,1 Spółka A 100 2,5 4
5 Problem klasyfikacji tych przedsiębiorstw potwierdza poniższy wykres. Zysk w mln. zł. Aktyw a w mld. zł , Zysk w mln. zł. 1,5 Aktyw a w mld. zł ,5 0 Spółka E Spółka F Spółka D Spółka C Spółka B Spółka A 0 Spółka E Spółka F Spółka D Spółka C Spółka B Spółka A 5
6 Kolejny problem pojawia się jeżeli byśmy chcieli dodać kolejną zmienną np. obciążenia kredytowe. O ile zmienne zysk i aktywa są zmiennymi pozytywnymi (atrakcyjność przedsiębiorstwa rośnie wraz ze ich wzrostem), to zmienna obciążenia kredytowe jest zmienna negatywną (atrakcyjność przedsiębiorstwa maleje wraz ze jej wzrostem). Pojawia się zatem problem odpowiedniego jej przekształcenia. Zmienne pozytywne w analizie danych określane są mianem stymulanty Zmienne negatywne w analizie danych określane są mianem destymulanty 6
7 Podstawowe problemy doprowadzenia do porównywalności, które należy rozwiązać, aby stosować mierniki syntetyczne to: sprowadzić wszystkie zmienne do jednej uniwersalnej jednostki (np. dwie zmienne, pierwsza wyrażona w zł. druga np. w liczbie pracowników) Normalizacja (standaryzacja zmiennej). przekształcić zmienne na stymulanty. NORMALIZACJA Umożliwia sprowadzenie wyników różnych zmiennych do porównywalności. Przekształca wyniki pomiarów na skalę rozkładu normalnego ze średnią 0. z ij xij a b = p = 1; a = x ; b = p S ( ) j x j 7
8 WRynkowa Chinamob telmexic skteleco KoTeleco TP.S.A Tmalaysi 6457 KtFretel 5704 TelNotre 5556 M-Cell 4290 MATAV 3257 T_Argent 3091 BrasilTl 2875 CeskyTel 2855 AdvInfSr 2558 Philipin 2168 średnia SD Wrynkowa znormalizowana Chinamob 3,47 telmexic 0,56 skteleco 0,11 KoTeleco 0,05 TP.S.A. -0,24 Tmalaysi -0,28 KtFretel -0,31 TelNotre -0,32 M-Cell -0,38 MATAV -0,42 T_Argent -0,43 BrasilTl -0,44 CeskyTel -0,44 AdvInfSr -0,45 Philipin -0,47 8
9 Destymulanty i stymulanty Przekształcenie destymulanty w stymulanty może przebiegać zgodnie z poniższą formułą: x ij = max i x ij x ij Lub: x ij = 1 x ij
10 Proste metody syntetyczne Dla celów stworzenia prostego rankingu można posłużyć się prostą metodą porządkowania opisaną w poniższych krokach: 1. Zbadać zróżnicowanie badanych cech (za pomocą współczynnika zmienności; przyjmuje się w badaniach dobra zmienna ma wartość V x >10%) 2. Przekształcić destymulanty na stymulanty 3. Dokonać normalizacji 4. Obliczyć miernik s i ze wzoru: s i 1 = xij p wyższy wynik miernika s i oznacza lepszą pozycję obiektu (spółki) w rankingu 10
11 Zadanie. Korzystając z danych: Przeprowadź prosta klasyfikację i przygotuj ranking przedsiębiorstw uwzględniający wszystkie posiadane zmienne korzystając z prostej formuły miernika s i Zmienne w analizie: WRynkowa CAkcji Zmiana Wksięgow C/Z Rentowno sprzedaż zysk aktywa dochódak Założenie: dla zmiennych branych pod uwagę powinien zachodzić warunek: Vx > 10% Modyfikacja uwzględniająca różne wagi poszczególnych zmiennych. Często w rzeczywistości poszczególne zmienne (cechy) nie wpływają w jednakowym stopniu na ostateczny wynik (mają różną wagę). Na podstawie tej sugestii pojawiła się metoda syntetyczna z możliwością nadania wag poszczególnym zmiennym. Wadą tej metody jest konieczność znajomości wag przed przystąpieniem do obliczeń. 11
12 Syntetyczny miernik wzorcowy (metoda porządkowania liniowego Hellwiga) Metoda porządkowania liniowego Metoda ta należy do grupy metod porządkowania liniowego. Wynikiem jej jest uporządkowanie obiektów od najgorszego do najlepszego (utworzony zostaje ranking). Cechą charakterystyczną tej metody jest to, iż wszystkie zmienne są jednakowo ważne (mają te same wagi). Zastosowanie metody Hellwiga należy rozpocząć od określenia które z cech są stymulantami, a które destymulantami. Po przeprowadzeniu procedury normalizacji należy wyznaczyć wzorce dla poszczególnych cech: Dla destymulant : x 0k =min{x ij } Dla stymulant : x 0k =max{xij} 12
13 Syntetyczny miernik wzorcowy Obliczenia należy wykonać zgodnie z formułami: S 1 n = ( di d ) n = i 1 d 1 n n 0 = d i 0 = i 1 2 d i = 1 d d i0 d = ( x x ) i0 ij 0 j i 0 2 d = d + 2 S Wynikiem procedury będzie ranking obiektów (firm). Każdy obiekt w wyniku obliczeń uzyska wartość d z przedziału <0; 1>. Im wyższy wynik d tym obiekt (firma) jest wyżej w klasyfikacji. 13
14 Zadanie. Zastosuj miernik syntetyczny do klasyfikacji spółek. Wyniki: Miernik syntetyczny spółki Hellwiga d i telmexic 0,47 Chinamob 0,36 skteleco 0,27 KoTeleco 0,23 AdvInfSr 0,23 TP.S.A. 0,19 T_Argent 0,19 TelNotre 0,18 KtFretel 0,18 MATAV 0,15 Philipin 0,15 BrasilTl 0,14 Tmalaysi 0,14 M-Cell 0,11 CeskyTel 0,07 14
15 W literaturze wyróżnia się dwie podstawowe klasy metod klasyfikacji: 1. Klasyfikację, na podstawie której dokonuje się tylko przydzielenia obiektu do grupy (tworzone są np. trzy grupy: firmy słabe, przeciętne, dobre 2. Porządkowanie liniowe, na podstawie którego tworzy się ranking (każdy obiekt (firma) ma indywidualną pozycję w rankingu. Istnieje możliwość utworzenia na podstawie tego rankingu grup. Tworzenie grup na podstawie rankingu. Podział na grupy metodą naukową możliwy jest poprzez zastosowanie kwartyli na danych dotyczących wskaźników d i 15
16 Zadanie. Bazując na rankingu utworzonym dla spółek utwórz 4 grupy firm stosując dobór do grupy na podstawie kwartyli. spółki telmexic 0,47 Chinamob 0,36 skteleco 0,27 KoTeleco 0,23 AdvInfSr 0,23 TP.S.A. 0,19 T_Argent 0,19 TelNotre 0,18 KtFretel 0,18 MATAV 0,15 Philipin 0,15 BrasilTl 0,14 Tmalaysi 0,14 M-Cell 0,11 CeskyTel 0,07 d i wartość d i kwartyl 1 0,141 kwartyl 2 0,184 kwartyl 3 0,227
17 Zadanie. Bazując na rankingu utworzonym dla spółek utwórz 4 grupy firm stosując dobór do grupy na podstawie kwartyli. spółki telmexic 0,47 Chinamob 0,36 skteleco 0,27 KoTeleco 0,23 AdvInfSr 0,23 TP.S.A. 0,19 T_Argent 0,19 TelNotre 0,18 KtFretel 0,18 MATAV 0,15 Philipin 0,15 BrasilTl 0,14 Tmalaysi 0,14 M-Cell 0,11 CeskyTel 0,07 d i wartość d i kwartyl 1 0,141 kwartyl 2 0,184 kwartyl 3 0,227
Budowanie macierzy danych geograficznych Procedura normalizacji Budowanie wskaźnika syntetycznego
Metody Analiz Przestrzennych Budowanie macierzy danych geograficznych Procedura normalizacji Budowanie wskaźnika syntetycznego mgr Marcin Semczuk Zakład Przedsiębiorczości i Gospodarki Przestrzennej Instytut
Badanie rozwoju społeczno-gospodarczego województw - wpływ metodyki badań na uzyskane wyniki
Zeszyty Naukowe Wyższej Szkoły Bankowej w Poznaniu Nr / Rafał Czyżycki Uniwersytet Szczeciński Badanie rozwoju społeczno-gospodarczego województw - wpływ metodyki badań na uzyskane wyniki Streszczenie,
Zielone powiaty województwa śląskiego
Zielone powiaty województwa śląskiego Raport analityczny opracowany w oparciu o Indeks Zielonych Powiatów Strona2 Spis treści Koncepcja Indeksu Zielonych Powiatów... 3 Metodologia badawcza... 4 Indeks
Politechnika Białostocka, Wydział Zarządzania, Katedra Informatyki Gospodarczej i Logistyki
Zastosowanie metody TOPSIS do oceny kondycji finansowej spółek dystrybucyjnych energii elektrycznej Application of TOPSIS method for evaluation of financial condition of the power distribution companies
Wykład 4: Statystyki opisowe (część 1)
Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można
Statystyczna analiza poziomu rozwoju społeczno-gospodarczego w Polsce - w ujęciu regionalnym
Zeszyty Naukowe Wyższej Szkoły Bankowej w Poznaniu Nr 42/2012 Rafał Klóska Uniwersytet Szczeciński Statystyczna analiza poziomu rozwoju społeczno-gospodarczego w Polsce - w ujęciu regionalnym Streszczenie.
Statystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33
Statystyka Wykład 4 Magdalena Alama-Bućko 19 marca 2018 Magdalena Alama-Bućko Statystyka 19 marca 2018 1 / 33 Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności (rozproszenia,
Metodologia Green Energy Index
Metodologia Green Energy Index Raport analityczny na przykładzie wojewódzkiego podziału terytorialnego Polski w latach 2008-2012 tel. +48 32 205 00 92 kontakt@euro-centrum.com.pl Spis treści 2 Idea wskaźnika
INNOWACYJNOŚĆ WOJEWÓDZTW W POLSCE
Rafał Klóska INNOWACYJNOŚĆ WOJEWÓDZTW W POLSCE 1. Wstęp Tematyka konferencji wydaje się szczególnie ważna i interesująca, tym bardziej, że innowacyjność jest stymulanta rozwoju społeczno-gospodarczego,
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
OCENA SYTUACJI NA LOKALNYM RYNKU PRACY Z WYKORZYSTANIEM METOD WIELOWYMIAROWEJ ANALIZY PORÓWNAWCZEJ
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XVI/3, 2015, str. 7 17 OCENA SYTUACJI NA LOKALNYM RYNKU PRACY Z WYKORZYSTANIEM METOD WIELOWYMIAROWEJ ANALIZY PORÓWNAWCZEJ Piotr Adamczyk Katedra Ekonomii
Wykład 3: Prezentacja danych statystycznych
Wykład 3: Prezentacja danych statystycznych Dobór metody prezentacji danych Dobór metody prezentacji danych zależy od: charakteru danych statystycznych (inne metody wybierzemy dla danych przekrojowych,
Metodologia Rankingu Gmin Małopolski 2017
Metodologia Rankingu Gmin Małopolski 2017 Załącznik nr 1 do Regulaminu WPROWADZENIE Metodologia Rankingu Gmin Małopolski jest dokumentem, w którym zaprezentowane zostały główne założenia oraz sposób tworzenia
Proces badania statystycznego z wykorzystaniem miernika syntetycznego (wg procedury Z. Zioło)
Metody Badań w Geografii Społeczno Ekonomicznej Proces badania statystycznego z wykorzystaniem miernika syntetycznego (wg procedury Z. Zioło) uporządkowanie liniowe obiektów mgr Marcin Semczuk Zakład Przedsiębiorczości
Wielowymiarowa analiza regionalnego zróżnicowania rolnictwa w Polsce
Wielowymiarowa analiza regionalnego zróżnicowania rolnictwa w Polsce Mgr inż. Agata Binderman Dzienne Studia Doktoranckie przy Wydziale Ekonomiczno-Rolniczym Katedra Ekonometrii i Informatyki SGGW Opiekun
Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
Statystyki opisowe i szeregi rozdzielcze
Statystyki opisowe i szeregi rozdzielcze - ćwiczenia ĆWICZENIA Piotr Ciskowski ramka-wąsy przykład 1. krwinki czerwone Stanisz W eksperymencie farmakologicznym analizowano oddziaływanie pewnego preparatu
Syntetyczna ocena dystansu Polski od krajów Unii Europejskiej na podstawie wybranych aspektów ochrony środowiska
Katarzyna Warzecha * Syntetyczna ocena dystansu Polski od krajów Unii Europejskiej na podstawie wybranych aspektów ochrony środowiska Wstęp Celem opracowania jest ocena pozycji Polski na tle krajów UE
Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41
Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna
Analiza wielokryterialna wstęp do zagadnienia
Organizacja, przebieg i zarządzanie inwestycją budowlaną Analiza wielokryterialna wstęp do zagadnienia dr hab. Mieczysław Połoński prof. SGGW 1 Wprowadzenie Jednym z podstawowych, a równocześnie najważniejszym
Wielowymiarowa analiza poziomu ubóstwa w województwie podlaskim w latach
Regionalny Ośrodek Polityki Społecznej w Białymstoku Obserwatorium Integracji Społecznej Wielowymiarowa analiza poziomu ubóstwa w województwie podlaskim w latach 2011-2012 BIAŁYSTOK 2014 2 SPIS TREŚCI
1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe
I Ryzyko i rentowność instrumentów finansowych 1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe 1 Stopa zwrotu z inwestycji w ujęciu
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 746 EKONOMICZNE PROBLEMY USŁUG NR 101 2012 RAFAŁ KLÓSKA Uniwersytet Szczeciński REGIONALNE ZRÓŻNICOWANIE POZIOMU ROZWOJU SPOŁECZNO-GOSPODARCZEGO W POLSCE
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść
Operacjonalizacja zmiennych
Metodologia badań naukowych - wykład 2 Operacjonalizacja zmiennych Pojęcie zmiennej Definiowanie zmiennych w planie badania Mierzenie. Skale mierzenia Pojęcie wskaźnika. Dobór wskaźnika dla zmiennej Kryteria
Analiza współzależności dwóch cech I
Analiza współzależności dwóch cech I Współzależność dwóch cech W tym rozdziale pokażemy metody stosowane dla potrzeb wykrywania zależności lub współzależności między dwiema cechami. W celu wykrycia tych
Sytuacja młodych na rynku pracy
Sytuacja młodych na rynku pracy Plan prezentacji Zamiany w modelu: w obrębie każdego z obszarów oraz zastosowanych wskaźników cząstkowych w metodologii obliczeń wskaźników syntetycznych w obrębie syntetycznego
Metodologia Rankingu Gmin Małopolski 2016
Załącznik nr 1 do Regulaminu Metodologia Rankingu Gmin Małopolski 2016 ORGANIZATOR: PARTNER: PATRONAT: Patronat honorowy: Jacek Krupa Marszałek Województwa Małopolskiego PATRONAT MEDIALNY: WPROWADZENIE
Ocena i porównywanie obiektów przy wykorzystaniu metody Perkala. M. Dacko
Ocena i porównywanie obiektów przy wykorzystaniu metody Perkala M. Dacko Procedura O zgromadzone dane poddajemy standaryzacji przez rozstęp O w efekcie wartości przyjmowane przez każdą zmienną zawierać
Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego
Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Współczynnik korelacji opisuje siłę i kierunek związku. Jest miarą symetryczną. Im wyższa korelacja tym lepiej potrafimy
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:
Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,
Dynamika zmian warunków społecznogospodarczych w gminach powiatu krakowskiego w latach
Dynamika zmian warunków społecznogospodarczych w gminach powiatu krakowskiego w latach 2010-2014 Barbara Prus Małgorzata Dudzińska Uwarunkowania społeczno-gospodarcze Typologia gmin powiatu krakowskiego
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Dla opisania rozkładu badanej zmiennej, korzystamy z pewnych charakterystyk liczbowych. Dzielimy je na cztery grupy.. Określenie przeciętnej wartości
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Praca z danymi zaczyna się od badania rozkładu liczebności (częstości) zmiennych. Rozkład liczebności (częstości) zmiennej to jakie wartości zmienna
Zadania ze statystyki, cz.6
Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z
ANALIZA STANU OPIEKI ZDROWOTNEJ ŚLĄSKA NA TLE KRAJU METODĄ TAKSONOMICZNĄ
Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 298 2016 Współczesne Finanse 7 Katarzyna Sawicz Uniwersytet Ekonomiczny w Katowicach Wydział Finansów i Ubezpieczeń
OCENA STABILNOŚCI SYTUACJI FINANSOWEJ PRZEDSIĘBIORSTW SEKTORA PRZEMYSŁU SPOŻYWCZEGO NA PODSTAWIE TMAI
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/, 202, str. 234 244 OCENA STABILNOŚCI SYTUACJI FINANSOWEJ PRZEDSIĘBIORSTW SEKTORA PRZEMYSŁU SPOŻYWCZEGO NA PODSTAWIE TMAI Aneta Włodarczyk, Marek Szajt
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Wycena nieruchomości za pomocą wyboru wielokryterialnego w warunkach niepewności rozmytej oraz klasycznie: metodą pp i kcś
Wycena nieruchomości za pomocą wyboru wielokryterialnego w warunkach niepewności rozmytej oraz klasycznie: metodą pp i kcś Materiały reklamowe ZAWAM-Marek Zawadzki Wybór wielokryterialny jako jadna z metod
Wymagania edukacyjne z matematyki klasa II technikum
Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą
PORZĄDKOWANIE LINIOWE BŁĘDY PRZY INTERPRETACJI WYNIKÓW ORAZ SPOSÓB ICH ELIMINACJI
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XVI/3, 2015, str. 118 128 PORZĄDKOWANIE LINIOWE BŁĘDY PRZY INTERPRETACJI WYNIKÓW ORAZ SPOSÓB ICH ELIMINACJI Marta Jarocka Katedra Informatyki Gospodarczej
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
Prognozowanie popytu. mgr inż. Michał Adamczak
Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej
Ryzyko i efektywność. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1
Ryzyko i efektywność Ćwiczenia ZPI 1 Stopa zwrotu 2 Zadanie 1. Rozkład normalny Prawdopodobieństwa wystąpienia oraz spodziewane stopy zwrotu w przypadku danej spółki giełdowej są zaprezentowane w tabeli.
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Analiza struktury i przeciętnego poziomu cechy
Analiza struktury i przeciętnego poziomu cechy Analiza struktury Pod pojęciem analizy struktury rozumiemy badanie budowy (składu) określonej zbiorowości, lub próby, tj. ustalenie, z jakich składa się elementów
Matematyka 2 wymagania edukacyjne
Matematyka wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
Miary zmienności STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 6 marca 2018
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 6 marca 2018 1 MIARY ZMIENNOŚCI (inaczej: rozproszenia, rozrzutu, zróżnicowania, dyspersji) informuja o zróżnicowaniu jednostek zbiorowości
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące
PRZESTRZENNO-CZASOWA ANALIZA ZRÓŻNICOWANIA POZIOMU ROZWOJU ODNAWIALNYCH ŹRÓDEŁ ENERGII
Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 324 2017 Uniwersytet Mikołaja Kopernika w Toruniu Wydział Nauk Ekonomicznych i Zarządzania Katedra Ekonometrii
Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
Literatura STATYSTYKA OPISOWA A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
Sztuczna inteligencja : Algorytm KNN
Instytut Informatyki Uniwersytetu Śląskiego 23 kwietnia 2012 1 Algorytm 1 NN 2 Algorytm knn 3 Zadania Klasyfikacja obiektów w oparciu o najbliższe obiekty: Algorytm 1-NN - najbliższego sąsiada. Parametr
Analiza korelacji
Analiza korelacji Zakres szkolenia Wstęp Podstawowe pojęcia korelacji Współczynnik korelacji liniowej Pearsona Współczynnik korelacji rang Spearmana Test istotności Zadania 2 Wstęp Do czego służy korelacja:
MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA
MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Funkcje i ich własności. odróżnić przyporządkowanie,
Poziom życia ludności Polski i pozostałych krajów Unii Europejskiej analiza taksonomiczna
Rozdział i Poziom życia ludności Polski i pozostałych krajów Unii Europejskiej analiza taksonomiczna Katarzyna Warzecha 1 Streszczenie Artykuł prezentuje rezultaty porównania poziomu życia ludności Polski
Badania sondażowe. Schematy losowania. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa
Badania sondażowe Schematy losowania Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa 1 Próba jako miniatura populacji CELOWA subiektywny dobór jednostek
3.3.1 Metody porównań rynkowych
3.3.1 Metody porównań rynkowych Metoda porównań rynkowych polega na porównaniu obiektu wycenianego z wartościami rynkowymi obiektów podobnych. Porównanie to może odbywać się bezpośrednio (np. środki transportu)
08. Normalizacja wyników testu
08. Normalizacja wyników testu q Pojęcie normy q Rodzaje norm q Znormalizowana skala ciągła ( z ) q Znormalizowane skale skokowe q Kryteria wyboru właściwej skali standardowej vpojęcie normy Norma -wzór,
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia
Laboratorium nr Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby:
Laboratorium nr 1 CZĘŚĆ I : STATYSTYKA OPISOWA : 1. Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby: 6,9,1,2,5,2,6,2,1,0,1,4,5,6,3,7,3,2,2,3,8,5,3,4,8,0,8,0,5,1,6,4,8,0,3,2
Metody statystyczne wykorzystywane do oceny zróżnicowania kolekcji genowych roślin. Henryk Bujak
Metody statystyczne wykorzystywane do oceny zróżnicowania kolekcji genowych roślin Henryk Bujak e-mail: h.bujak@ihar.edu.pl Ocena różnorodności fenotypowej Różnorodność fenotypowa kolekcji roślinnych zasobów
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1
Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,
Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać
KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ
KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające (W).
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
BANK NAJLEPSZY DLA ROLNIKA
2017 BANK NAJLEPSZY DLA ROLNIKA 2017 Martin & Jacob przygotował ranking Bank Najlepszy dla Rolnika. Wstęp Ranking Bank Najlepszy dla Rolnika jest pierwszym tego typu rankingiem w Polsce. Zrealizowała go
LOGISTYKA DYSTRYBUCJI II ćwiczenia 3 WYBÓR DOSTAWCY USŁUG WIELOKRYTERIALNE MODELE DECYZYJNE. AUTOR: dr inż. ROMAN DOMAŃSKI WYBÓR DOSTAWCY USŁUG
1 LOGISTYKA DYSTRYBUCJI II ćwiczenia 3 WIELOKRYTERIALNE MODELE DECYZYJNE AUTOR: dr inż. ROMAN DOMAŃSKI METODY OCENY I WYBORU DOSTAWCÓW 2 Wybór odpowiedniego dostawcy jest gwarantem niezawodności realizowanych
Prawdopodobieństwo czerwonych = = 0.33
Temat zajęć: Naiwny klasyfikator Bayesa a algorytm KNN Część I: Naiwny klasyfikator Bayesa Naiwny klasyfikator bayerowski jest prostym probabilistycznym klasyfikatorem. Naiwne klasyfikatory bayesowskie
Wprowadzenie Pojęcia podstawowe Szeregi rozdzielcze STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP.
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 18 września 2017 1 Wprowadzenie 2 Pojęcia podstawowe 3 Szeregi rozdzielcze Zwykle wyróżnia się dwa podstawowe działy statystyki: statystyka
MINISTER INWESTYCJI I ROZWOJU 1)
projekt z dnia 22 lutego 2019 r. MINISTER INWESTYCJI I ROZWOJU 1) Warszawa, dnia STANDARD ZAWODOWY RZECZOZNAWCÓW MAJĄTKOWYCH NR 2 WYCENA NIERUCHOMOŚCI PRZY ZASTOSOWANIU PODEJŚCIA PORÓWNAWCZEGO Na podstawie
Zadania ze statystyki cz.5 I rok socjologii miary związków między zmiennymi jakościowymi
Zadania ze statystyki cz.5 I rok socjologii miary związków między zmiennymi jakościowymi Zadanie 1 Zdaniem wielu komentatorów, kobiety częściej niż mężczyźni głosują na partię rządzącą. Wyniki badań przedstawia
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy
Własności i charakterystyki czwórników
Własności i charakterystyki czwórników nstytut Fizyki kademia Pomorska w Słupsku Cel ćwiczenia. Celem ćwiczenia jest poznanie własności i charakterystyk czwórników. Zagadnienia teoretyczne. Pojęcia podstawowe
Rachunek prawdopodobieństwa WZ-ST1-AG--16/17Z-RACH. Liczba godzin stacjonarne: Wykłady: 15 Ćwiczenia: 30. niestacjonarne: Wykłady: 9 Ćwiczenia: 18
Karta przedmiotu Wydział: Wydział Zarządzania Kierunek: Analityka gospodarcza I. Informacje podstawowe Nazwa przedmiotu Rachunek prawdopodobieństwa Nazwa przedmiotu w j. ang. Język prowadzenia przedmiotu
WIELOWYMIAROWA ANALIZA STATYSTYCZNA POZIOMU ROZWOJU DEMOGRAFICZNEGO SZCZECINA NA TLE INNYCH MIAST WOJEWÓDZKICH W POLSCE
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 529 EKONOMICZNE PROBLEMY USŁUG NR 30 2009 RAFAŁ KLÓSKA, RAFAŁ CZYŻYCKI WIELOWYMIAROWA ANALIZA STATYSTYCZNA POZIOMU ROZWOJU DEMOGRAFICZNEGO SZCZECINA NA TLE
1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel:
Wariancja z populacji: Podstawowe miary rozproszenia: 1 1 s x x x x k 2 2 k 2 2 i i n i1 n i1 Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: 1 k 2 s xi x n 1 i1 2 Przykład 38,
Statystyka. Opisowa analiza zjawisk masowych
Statystyka Opisowa analiza zjawisk masowych Typy rozkładów empirycznych jednej zmiennej Rozkładem empirycznym zmiennej nazywamy przyporządkowanie kolejnym wartościom zmiennej (x i ) odpowiadających im
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3
ZADANIA - ZESTAW 3 Zadanie 3. L Prawdopodobieństwo trafienia celu w jednym strzale wynosi 0,6. Do celu oddano niezależnie 0 strzałów. Oblicz prawdopodobieństwo, że cel został trafiony: a) jeden raz, b)
WYKORZYSTANIE METODY WZORCA ROZWOJU DO KLASYFIKOWANIA PRZEDSIĘBIORSTW POD WZGLĘDEM POZIOMU ZARZĄDZANIA WIEDZĄ
WYKORZYSTANIE METODY WZORCA ROZWOJU DO KLASYFIKOWANIA PRZEDSIĘBIORSTW POD WZGLĘDEM POZIOMU ZARZĄDZANIA WIEDZĄ Joanna Olga PALISZKIEWICZ Streszczenie: W artykule zaprezentowano charakterystykę pojęcia zarządzanie
Skrypt 29. Statystyka. Opracowanie L2
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 29 Statystyka 1. Przypomnienie
Hierarchiczna analiza skupień
Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym
Metody mieszana. Wartość
Metody mieszana Dokonano wyceny Spółki i otrzymano następujące wyniki: Metody wyceny Wartość Spółki MAJĄTKOWE 1. metoda skorygowanych aktywów netto 82 100,00 2. metoda wartości odtworzeniowej 45 630,00
Wybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Regresja i Korelacja
Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane
b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:
ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań
Graficzna prezentacja danych statystycznych
Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do
Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35
Statystyka Wykład 7 Magdalena Alama-Bućko 16 kwietnia 2017 Magdalena Alama-Bućko Statystyka 16 kwietnia 2017 1 / 35 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Ćwiczenia 1-2 Analiza rozkładu empirycznego
Ćwiczenia 1-2 Zadanie 1. Z kolokwium z ekonometrii studenci otrzymali następujące oceny: 5 osób dostało piątkę, 20 os. dostało czwórkę, 10 os. trójkę, a 3 osoby nie zaliczyły tego kolokwium. Należy w oparciu
Powtórzenie. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1
Powtórzenie Ćwiczenia ZPI 1 Zadanie 1. Średnia wartość stopy zwrotu dla wszystkich spółek finansowych wynosi 12%, a odchylenie standardowe 5,1%. Rozkład tego zjawiska zbliżony jest do rozkładu normalnego.
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa dwuwymiarowa i korelacja
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Zmienna losowa dwuwymiarowa i korelacja Zmienna losowa dwuwymiarowa Definiujemy ją tak samo, jak zmienną losową jednowymiarową, z tym że poszczególnym zdarzeniom elementarnym
ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI
ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności współczynnika korelacji
Zajęcia 1. Rzetelność
Wzory Psychometria Zajęcia 1. Rzetelność 1950 Guliksen, za Spearmanem (1910) przyjmuje, że: t = T + e t wynik otrzymany T wynik prawdziwy pozycja danej osoby na kontinuum cechy (zdolności); przysługuje
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Funkcja liniowa dopuszczającą jeżeli: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy