Laboratorium nr Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby:
|
|
- Ludwika Jabłońska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Laboratorium nr 1 CZĘŚĆ I : STATYSTYKA OPISOWA : 1. Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby: 6,9,1,2,5,2,6,2,1,0,1,4,5,6,3,7,3,2,2,3,8,5,3,4,8,0,8,0,5,1,6,4,8,0,3,2 2. Jaka będzie moda dla zbioru: 3; 4; 5; 6; 7; 7; 7; 8; 8; 9? Odp 7 3. A jaka dla zbioru? 3; 4; 5; 6; 7; 7; 7; 8; 8; 8; 9? Odp {7,8} albo jaka będzie mediana dla 3; 4; 7; 2; 3; 7; 4; 2; 4; 7; 4? Odp: 2; 2; 3; 3; 4; 4; 4; 4; 7; 7; 7 5. jaka będzie wartość średnia dla zbioru: 3; 4; 5; 7; 7; 8; 9; 9; 9 Odp 61/9 = Jaki będzie rozstęp zbioru: 2; 3; 4; 6; 7; 7; 8; 9 Odp 9-2 = 7 7. Kwartyle: dla zbioru: 3; 4; 7; 2; 3; 7; 4; 2; 4; 7; 4 Najpierw sortujemy: 2; 2; 3; 3; 4; 4; 4; 4;7; 7; 7, Mediana, q2 = 4, Q1 to wartość środkowa z danych: 2; 2; 3; 3; 4 a więc 3, Q3 to wartość srodkowa z danych: 4; 4;7; 7; 7 a wiec 7, IRQ = q3-q1 = 7-3 = 4 8. Oblicz wariancję dla danych: 3; 4; 4; 5; 5; 5; 6; 6; 6; 7; 7; 8; 9 Będzie liczona ze wzoru: Gdzie: xi to bieżący element, to średnia wartość x, zaś n to liczba obserwacji. =( )/13= 5.8 Tabela pomocnicza wygląda tak: Teraz wystarczy podstawić odpowiednie wartości do wzoru:
2 9. Odchylenie standardowe będzie liczone ze wzoru: Czyli pierwiastek (14.74) = 3.84 Zadania do wykonania dla studentów: Zadanie 1. Zbadano profile klientów banku A pod względem liczby osób w rodzinie. Wyniki były następujące: 3,5,3,4,4,4,5,3,6,4,4,4,2,3,4,2,3,4,5,4. Oblicz średnią, medianę i modę. Oblicz q1,q3. Narysuj odpowiedni wykres prezentujący rozkład wartości w zbiorze. Zadanie 2. W pewnej firmie przeprowadzono ankietę dotyczącą liczby telefonów zgłaszających awarię u klientów w ciągu ostatnich 6 miesiecy. Uzyskane wyniki są następujące: Liczba awarii Liczba klientów Czy prawdą jest, że: Średnia liczba zgłoszonych awarii wynosiła 1.3? W badanej próbie najczęściej zgłaszano 2 awarie? 50 % badanej grupy zgłosiło co najwyżej 1 awarię?
3 CZĘŚĆ II : GRAFICZNA REPREZENTACJA DANYCH : 1. Narysować i opisać elementy wykresu pudełkowego dla obserwacji: 8,5,17,18,9,4,17,16,12 2. Narysować histogram dla obserwacji (przyjąć 5 przedziałów): 8,5,17,18,9,4,17,16,12,14,15, Jeśli spojrzymy na histogram poniżej dla atrybutu klasa to: Ile atrybut klasa ma wartości? Jaka jest liczność poszczególnych wartości atrybutu : klasa? 4. Jeśli spojrzymy na wykres pudełkowy dla atrybutu b to: Ile ma on wartości? Co powiemy o wartościach w stosunku do wartości atrybutu klasa? Czy atrybut b może być dobrym klasyfikatorem obiektów w systemie? Odpowiedź uzasadnij.
4 CZĘŚĆ III : PREPROCESSING DANYCH NIEKOMPLETNOŚĆ DANYCH Analizujemy zbiór danych cars dostępny pod adresem: dotyczący 261 samochodów i ich parametrów. Wybrano do analizy 10 rekordów: mpg cylinders cubicinches Hp Uzupełnij braki w danych wartością średnią. Zadanie 1. A teraz spróbuj wykonać to samo, ale brakujące dane uzupełnij wartością dominującą w zbiorze. Zadanie 2. Zakładając, że zbiór do analizy wygląda następująco: Uzupełnij braki w danych wartością średnią.
5 Zadanie 3. A co jeśli to dane jakościowe są niekompletne? Wstaw odpowiednią wartość w brakującą komórkę. Krok 1. Metoda wstawienia zamiast znaku? tekstu brak Metoda znajdowania wartości najczęściej występującej i wypełniania nią brakujących danych. Krok 2a. Zliczanie wystąpień danej wartości tekstowej K i M.
6 Krok 2b. wybór tej wartości, która występuje najczęściej. Krok.2c. Formula logiczna do wypelniania braków wartością najczęściej występującą.
7 CZĘŚĆ IV : PREPROCESSING DANYCH WYKRYWANIE ODCHYLEŃ METODAMI NUMERYCZNYMI 1. Zakładając, że liczba przepracowanych godzin przez pracowników na rzecz nowego projektu wygląda następująco: a) Znajdź odchylenia metodą wartości średniej i odchylenia standardowego. b) Znajdź odchylenia metodą rozstępu międzykwartylowego. 2. Zebrano dane o wydatkach poniesionych na żywność przez kolejne 90 dni: 30, 171, 184, 201, 212, 250, 265, 270, 272, 289, 305, 306, 322, 322, 336, 346, 351, 370, 390, 404, 409, 411, 436, 437, 439, 441, 444, 448, 451, 453, 470, 480, 482, 487, 494, 495, 499, 503, 514, 521, 522, 527, 548, 550, 559, 560, 570, 572, 574, 578, 585, 592, 592, 607, 616, 618, 621, 629, 637, 638, 640, 656, 668, 707, 709, 719, 737, 739, 752, 758, 766, 792, 792, 794, 802, 818, 830, 832, 843, 858, 860, 869, 918, 925, 953, 991, 1000, 1005, 1068, 1441 Znajdź odchylenia jeśli występują. CZĘŚĆ V : PREPROCESSING DANYCH NORMALIZACJA DANYCH Normalizacja prowadzi do przekształcania danych do formy uniwersalnej (takiego samego zakresu wartości): Metoda normalizacja Min-Max Metoda normalizacji Z-score Ad. 1. Sprawdza jak bardzo wartość pola jest większa od wartości minimalnej (min(x)) i skaluje tę różnicę przez zakres: * x min( x) x min( x) x a) Forma uproszczona: zakres( x) max( x) min( x) b) Forma uniwersalna: Gdzie: New_min to nowa wartość minimalna, którą chcemy uzyskać New_max nowa wartość maksymalna. Min to dotychczasowa wartość minimalna Max dotychczasowa wartość maksymalna Przykłady:
8 Zakładając, że mamy znormalizować następującą kolumnę (L). Wynik będzie następujący: Jeśli jednak chcemy zmienić zakres nowej wartości dla kolumny L np. na zakres 1-10 Musimy skorzystać z wzoru uniwersalnego, i wówczas formula Excela będzie następująca: Zadanie do wykonania dla studentów: a) Przeprowadź dla podanych danych normalizację metodą Min-Max do zakresu od 1 do 5 b) Przeprowadź dla podanych danych normalizację metodą Min-Max do zakresu od 1 do 10
9 TEST KOŃCOWY UTRWALAJĄCY INFORMACJĘ Z WYKŁADU ORAZ LABORATORIUM NR 1. Zadanie 1 Tętna spoczynkowe lekkoatletów wynoszą: 44;34;33;34;35;33;31;41;30;31;31;32;34;45;37;35 Wyznacz: a) wykres pudełkowy (narysuj go ręcznie z zaznaczeniem wszystkich elementów) b) modę c) medianę d) średnią e) wariancję f) kwartyle g) Odchylenie standardowe Zadanie 2 Średnia temperatura w kolejnych miesiącach 1974 roku w Warszawie na Okęciu wynosiła: -2,4; 4,2; 9,2; 22,6; 29,4; 31,6; 36,2; 26,8; 13,2; 6,8; 4,6 Przeprowadź dla podanych danych normalizację metodą Min-Max do zakresu od 1 do 8 Zadanie 3 Jeśli spojrzymy na wykres pudełkowy dla atrybutu b to: Ile ma on wartości? Co powiemy o wartościach w stosunku do wartości atrybutu klasa? Czy atrybut b może być dobrym klasyfikatorem obiektów w systemie? Odpowiedź uzasadnij.
10 Zadanie 4 Jeśli spojrzymy na histogram dla atrybutu klasa to: 1. Ile atrybut klasa ma wartości? 2. Jaka jest liczność poszczególnych wartości atrybutu : klasa?
Metody wypełniania braków w danych ang. Missing values in data
Analiza danych wydobywanie wiedzy z danych III Metody wypełniania braków w danych ang. Missing values in data W rzeczywistych zbiorach danych dane są często nieczyste: - niekompletne (brakujące ważne atrybuty,
Bardziej szczegółowoLaboratorium 3 - statystyka opisowa
dla szeregu rozdzielczego Laboratorium 3 - statystyka opisowa Agnieszka Mensfelt 11 lutego 2019 dla szeregu rozdzielczego Statystyka opisowa dla szeregu rozdzielczego Przykład wyniki maratonu Wyniki 18.
Bardziej szczegółowoMetody wykrywania odchyleo w danych. Metody wykrywania braków w danych. Korelacja. PED lab 4
Metody wykrywania odchyleo w danych. Metody wykrywania braków w danych. Korelacja. PED lab 4 Co z danymi oddalonymi? Błędne dane typu dochód z minusem na początku: to błąd we wprowadzaniu danych, czy faktyczny
Bardziej szczegółowoWykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
Bardziej szczegółowoWydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa Wykład 3 Dr inż. Adam Deptuła METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH Wykresy: diagramy, histogramy, łamane częstości, wykresy
Bardziej szczegółowoPodstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na
Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony zbiór jednostek, które
Bardziej szczegółowoStatystyka BioStatystyka
Wykłady Statystyka nauka, której przedmiotem zainteresowania są metody pozyskiwania i prezentacji, a przede wszystkim analizy danych opisujących zjawiska, w tym masowe. BioStatystyka nauka, której przedmiotem
Bardziej szczegółowoStatystyka opisowa PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA
Statystyka opisowa PRZEDMIOT: PODSTAWY STATYSTYKI PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA Statystyka opisowa = procedury statystyczne stosowane do opisu właściwości próby (rzadziej populacji) Pojęcia:
Bardziej szczegółowoWykład 4: Statystyki opisowe (część 1)
Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można
Bardziej szczegółowoPrzedmiot statystyki. Graficzne przedstawienie danych.
Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 2 marca 2009 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane wnioski.
Bardziej szczegółowo-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak
Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia
Bardziej szczegółowoPomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś.
Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Województwo Urodzenia według płci noworodka i województwa. ; Rok 2008; POLSKA Ogółem Miasta Wieś Pozamałżeńskie- Miasta Pozamałżeńskie-
Bardziej szczegółowoSTATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE
STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,
Bardziej szczegółowoStatystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41
Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna
Bardziej szczegółowoTypy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe
Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,
Bardziej szczegółowoI jest narzędziem służącym do porównywania rozproszenia dwóch zmiennych. Używamy go tylko, gdy pomiędzy zmiennymi istnieje logiczny związek
ZADANIA statystyka opisowa i CTG 1. Dokonano pomiaru stężenia jonów azotanowych w wodzie μg/ml 1 0.51 0.51 0.51 0.50 0.51 0.49 0.52 0.53 0.50 0.47 0.51 0.52 0.53 0.48 0.59 0.50 0.52 0.49 0.49 0.50 0.49
Bardziej szczegółowoĆwiczenia 1-2 Analiza rozkładu empirycznego
Ćwiczenia 1-2 Zadanie 1. Z kolokwium z ekonometrii studenci otrzymali następujące oceny: 5 osób dostało piątkę, 20 os. dostało czwórkę, 10 os. trójkę, a 3 osoby nie zaliczyły tego kolokwium. Należy w oparciu
Bardziej szczegółowoPróba własności i parametry
Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony
Bardziej szczegółowoZajęcia nr VII poznajemy Rattle i pakiet R.
Okno główne Rattle wygląda następująco: Zajęcia nr VII poznajemy Rattle i pakiet R. Widzimy główne zakładki: Data pozwala odczytad dane z różnych źródeł danych (pliki TXT, CSV) i inne bazy danych. Jak
Bardziej szczegółowoSTATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Praca z danymi zaczyna się od badania rozkładu liczebności (częstości) zmiennych. Rozkład liczebności (częstości) zmiennej to jakie wartości zmienna
Bardziej szczegółowoZadanie 1 Odp. Zadanie 2 Odp. Zadanie 3 Odp. Zadanie 4 Odp. Zadanie 5 Odp.
Zadanie 1 budżet na najbliższe święta. Podać 96% przedział ufności dla średniej przewidywanego budżetu świątecznego jeśli otrzymano średnią z próby równą 600 zł, odchylenie standardowe z próby równe 30
Bardziej szczegółowoZadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach.
Zadanie 1.Wiadomo, że dominanta wagi tuczników jest umiejscowiona w przedziale [120 kg, 130 kg] i wynosi 122,5 kg. Znane są również liczebności przedziałów poprzedzającego i następnego po przedziale dominującym:
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X
Bardziej szczegółowoLABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej
LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;
Bardziej szczegółowo1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel:
Wariancja z populacji: Podstawowe miary rozproszenia: 1 1 s x x x x k 2 2 k 2 2 i i n i1 n i1 Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: 1 k 2 s xi x n 1 i1 2 Przykład 38,
Bardziej szczegółowoWykład 3. Rozkład normalny
Funkcje gęstości Rozkład normalny Reguła 68-95-99.7 % Wykład 3 Rozkład normalny Standardowy rozkład normalny Prawdopodobieństwa i kwantyle dla rozkładu normalnego Funkcja gęstości Frakcja studentów z vocabulary
Bardziej szczegółowo2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba
2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane wnioski. Próba- skończony podzbiór populacji
Bardziej szczegółowoWykład 5: Statystyki opisowe (część 2)
Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz
Bardziej szczegółowoSTATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Dla opisania rozkładu badanej zmiennej, korzystamy z pewnych charakterystyk liczbowych. Dzielimy je na cztery grupy.. Określenie przeciętnej wartości
Bardziej szczegółowoOutlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej.
Temat: WYKRYWANIE ODCHYLEO W DANYCH Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej. Przykładem Box Plot wygodną metodą
Bardziej szczegółowoStatystyka. Wykład 3. Magdalena Alama-Bućko. 6 marca Magdalena Alama-Bućko Statystyka 6 marca / 28
Statystyka Wykład 3 Magdalena Alama-Bućko 6 marca 2017 Magdalena Alama-Bućko Statystyka 6 marca 2017 1 / 28 Szeregi rozdzielcze przedziałowe - kwartyle - przypomnienie Po ustaleniu przedziału, w którym
Bardziej szczegółowoStatystyki opisowe i szeregi rozdzielcze
Statystyki opisowe i szeregi rozdzielcze - ćwiczenia ĆWICZENIA Piotr Ciskowski ramka-wąsy przykład 1. krwinki czerwone Stanisz W eksperymencie farmakologicznym analizowano oddziaływanie pewnego preparatu
Bardziej szczegółowoStatystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 11 Anna Skowrońska-Szmer lato 2016/2017 Powtórzenie materiału 2 Zadanie 1 Wykład 1 Eksperyment polega na pojedynczym rzucie symetryczną kostką. Przestrzeń zdarzeń
Bardziej szczegółowoPo co nam charakterystyki liczbowe? Katarzyna Lubnauer 34
Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Def. Charakterystyki liczbowe to wielkości wyznaczone na podstawie danych statystycznych, charakteryzujące własności badanej cechy. Klasyfikacja
Bardziej szczegółowoMATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
Bardziej szczegółowoXi B ni B
Zadania ze statystyki cz.2 I rok Socjologii lic. Zadanie 1 Ustal dla danych zawartych w tabelach poniżej, prezentujących rozkład liczebności (ni) różnej wielkości gospodarstw domowych w dwóch populacjach,
Bardziej szczegółowoKolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Bardziej szczegółowoSTATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Bardziej szczegółowoMS Excel. Podstawowe wiadomości
MS Excel Podstawowe wiadomości Do czego służy arkusz kalkulacyjny? Arkusz kalkulacyjny wykorzystywany jest tam gdzie wykonywana jest olbrzymia ilość żmudnych, powtarzających się według określonego schematu
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych
STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące
Bardziej szczegółowoPopulacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu
Bardziej szczegółowoModele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3 Konrad Miziński, nr albumu 233703 26 maja 2015 Zadanie 1 Wartość krytyczna c, niezbędna wyliczenia mocy testu (1 β) wyznaczono za
Bardziej szczegółowoNowoczesne techniki matematyczne, statystyczne i informatyczne
Nowoczesne techniki matematyczne, statystyczne i informatyczne Wykładowca : Krzysztof Bogdan Biuro : C-11, p. 2.12 http://prac.im.pwr.wroc.pl/~bogdan/ Twój wynik z wykładów: zadania domowe (25%) kartkówki
Bardziej szczegółowoZmienne losowe zadania na sprawdzian
Zmienne losowe zadania na sprawdzian Zad. 1. Podane poniżej dane dotyczą zawartości suchej masy (w %) i sosu (w %) w 24 konserwach ze śledzia w pomidorach: Zawartość suchej masy: 12,0 13,0 14,5 14,0 12,0
Bardziej szczegółowoRozkład zajęć, statystyka matematyczna, Rok akademicki 2015/16, semestr letni, Grupy dla powtarzających (C15; C16)
Rozkład zajęć, statystyka matematyczna, Rok akademicki 05/6, semestr letni, Grupy powtarzających (C5; C6) Lp Grupa C5 Grupa C6 Liczba godzin 0046 w godz 600-000 C03 0046 w godz 600-000 B05 4 6046 w godz
Bardziej szczegółowoTemat: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide.
Temat: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide. Zadania: I. 1. Załóż we własnym folderze podfolder o nazwie cw2 i przekopiuj do niego
Bardziej szczegółowoALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza
Bardziej szczegółowoWykład 2. Statystyka opisowa - Miary rozkładu: Miary położenia
Wykład 2 Statystyka opisowa - Miary rozkładu: Miary położenia Podział miar Miary położenia (measures of location): 1. Miary tendencji centralnej (measures of central tendency, averages): Średnia arytmetyczna
Bardziej szczegółowoSkrypt 29. Statystyka. Opracowanie L2
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 29 Statystyka 1. Przypomnienie
Bardziej szczegółowoStatystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33
Statystyka Wykład 4 Magdalena Alama-Bućko 19 marca 2018 Magdalena Alama-Bućko Statystyka 19 marca 2018 1 / 33 Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności (rozproszenia,
Bardziej szczegółowoStochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych
PROJEKT: Analiza kluczowych parametrów turbin wiatrowych Projekt jest wykonywany z wykorzystaniem pakietu statystycznego STATISTICA. Praca odbywa się w grupach 2-3 osobowych. Aby zaliczyć projekt, należy
Bardziej szczegółowoPodstawy statystyki - ćwiczenia r.
Zadanie 1. Na podstawie poniższych danych wyznacz i zinterpretuj miary tendencji centralnej dotyczące wysokości miesięcznych zarobków (zł): 1290, 1500, 1600, 2250, 1400, 1600, 2500. Średnia arytmetyczna
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE)
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE) Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 1 1 / 33 Warunki zaliczenia 1 Ćwiczenia OBOWIĄZKOWE (max. 3 nieobecności) 2 Zaliczenie
Bardziej szczegółowoStatystyka opisowa. Robert Pietrzykowski.
Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.
Bardziej szczegółowoPorównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować?
1 Zadanie 1.1 W dwóch zakładach produkcyjnych Złomex I i Złomex II, należących do tego samego przedsiębiorstwa Złomowanie na zawołanie w ostatnim miesiącu następująco kształtowały się wynagrodzenia pracowników.
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,
Bardziej szczegółowoWykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii
Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii Wprowadzenie W przypadku danych liczbowych do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą
Bardziej szczegółowoStatystyka to nauka o metodach badań (liczbowo wyrażalnych) własności zbiorowości. Próba. Próba Populacja. Próba
Statystyka Opisowa Wstępna analiza danych Rodzaje prezentacji danych Miary tendencji centralnej Miary zmienności (zróżnicowania) Miara asymetrii (skośności) Miara spłaszczenia Statystyka to nauka o metodach
Bardziej szczegółowo1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Bardziej szczegółowoMiary zmienności STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 6 marca 2018
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 6 marca 2018 1 MIARY ZMIENNOŚCI (inaczej: rozproszenia, rozrzutu, zróżnicowania, dyspersji) informuja o zróżnicowaniu jednostek zbiorowości
Bardziej szczegółowoPozyskiwanie wiedzy z danych
Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy
Bardziej szczegółowoStatystyka opisowa- cd.
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa- cd. Wykład 4 Dr inż. Adam Deptuła HISTOGRAM UNORMOWANY Pole słupka = wysokość słupka x długość przedziału Pole słupka = n i n h h,
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów
STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów
Bardziej szczegółowoStatystyka. Wykład 2. Magdalena Alama-Bućko. 5 marca Magdalena Alama-Bućko Statystyka 5 marca / 34
Statystyka Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka 5 marca 2018 1 / 34 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: Baza Demografia : https://bdl.stat.gov.pl/
Bardziej szczegółowoCharakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące
Bardziej szczegółowoStatystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Statystyka to nauka zajmująca się badaniem prawidłowości w procesach masowych, to jest takich, które realizują się na dużą skalę (np. procesy
Bardziej szczegółowoZajęcia 1. Statystyki opisowe
Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,
Bardziej szczegółowoPlan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii
Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:
Bardziej szczegółowoSTATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami
Bardziej szczegółowoProjekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem
Bardziej szczegółowoTRANSFORMACJE I JAKOŚĆ DANYCH
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING TRANSFORMACJE I JAKOŚĆ DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Bardziej szczegółowoAnaliza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU
Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów
Bardziej szczegółowoANALIZA JAKOŚCIOWA I ILOŚCIOWA TESTÓW SZKOLNYCH MATERIAŁ SZKOLENIOWY
ANALIZA JAKOŚCIOWA I ILOŚCIOWA TESTÓW SZKOLNYCH MATERIAŁ SZKOLENIOWY Instrukcja przeprowadzania analiz badań edukacyjnych i sporządzania raportów po badaniach. Cele prowadzenia analiz jakościowych i ilościowych
Bardziej szczegółowoW1. Wprowadzenie. Statystyka opisowa
W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.
STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z
Bardziej szczegółowoStatystyka opisowa. Wykład I. Elementy statystyki opisowej
Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o
Bardziej szczegółowoStatystyczne metody analizy danych
Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem
Bardziej szczegółowoMatematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013
0,KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 A.
Bardziej szczegółowoSTATYSTYKA POWTORZENIE. Dr Wioleta Drobik-Czwarno
STATYSTYKA POWTORZENIE Dr Wioleta Drobik-Czwarno Populacja Próba Parametry EX, µ Statystyki średnia D 2 X, δ 2 S 2 wnioskowanie DX, δ p ρ S w r...... JAK POWSTAJE MODEL MATEMATYCZNY Dane eksperymentalne
Bardziej szczegółowoStatystyczne metody analizy danych. Agnieszka Nowak - Brzezińska
Statystyczne metody analizy danych Agnieszka Nowak - Brzezińska SZEREGI STATYSTYCZNE SZEREGI STATYSTYCZNE odpowiednio usystematyzowany i uporządkowany surowy materiał statystyczny. Szeregi statystyczne
Bardziej szczegółowoSPRAWDZIAN NR 1 ROBERT KOPERCZAK, ID studenta : k4342
TECHNIKI ANALITYCZNE W BIZNESIE SPRAWDZIAN NR 1 Autor pracy ROBERT KOPERCZAK, ID studenta : k4342 Kraków, 22 Grudnia 2009 2 Spis treści 1 Zadanie 1... 3 1.1 Szereg rozdzielczy wag kobiałek.... 4 1.2 Histogram
Bardziej szczegółowoStatystyka opisowa w wycenie nieruchomości Część I - wyznaczanie miar zbioru danych
dr Agnieszka Bitner Rzeczoznawca majątkowy Katedra Geodezji Rolnej, Katastru i Fotogrametrii Uniwersytet Rolniczy w Krakowie ul. Balicka 253c 30-198 Kraków, e-mail: rmbitner@cyf-kr.edu.pl WPROWADZENIE
Bardziej szczegółowoMatematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 A.
Bardziej szczegółowoAnaliza zróżnicowania, asymetrii i koncentracji
Analiza zróżnicowania, asymetrii i koncentracji Miary zróżnicowania Miary średnie, chociaż reprezentują wszystkie jednostki badanej zbiorowości, nie dają wyczerpującej charakterystyki szeregu statystycznego,
Bardziej szczegółowoWydział Nauki o Zdrowiu. Zakład Profilaktyki Zagrożeń Środowiskowych i Alergologii Marta Zalewska
Podstawy Biostatystyki Wydział Nauki o Zdrowiu Zakład Profilaktyki Zagrożeń Środowiskowych i Alergologii Marta Zalewska Treść wykładu W1-W Statystyka opisowa. Podstawowe pojęcia statystyki. Prezentacja
Bardziej szczegółowoWprowadzenie do analizy dyskryminacyjnej
Wprowadzenie do analizy dyskryminacyjnej Analiza dyskryminacyjna to zespół metod statystycznych używanych w celu znalezienia funkcji dyskryminacyjnej, która możliwie najlepiej charakteryzuje bądź rozdziela
Bardziej szczegółowoMiary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich
Bardziej szczegółowo4. Średnia i autoregresja zmiennej prognozowanej
4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)
Bardziej szczegółowoStatystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Bardziej szczegółowoZastosowanie Excela w matematyce
Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze
Bardziej szczegółowoauthor: Andrzej Dudek
Edytor wprowadzone polecenia zostają w oknie edytora I mogą być uruchamiana poprzez CTRL+R lub Run (tylko zaznaczone linie, z wyświetlaniem wykonywanych linii kodu) lub poprzez Source (zawsze całość, bez
Bardziej szczegółowo7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach
Bardziej szczegółowoRok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I
Bardziej szczegółowoStatystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35
Statystyka Wykład 7 Magdalena Alama-Bućko 16 kwietnia 2017 Magdalena Alama-Bućko Statystyka 16 kwietnia 2017 1 / 35 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Bardziej szczegółowo1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:
Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).
Bardziej szczegółowoModele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4 Konrad Miziński, nr albumu 233703 31 maja 2015 Zadanie 1 Wartości oczekiwane µ 1 i µ 2 oszacowano wg wzorów: { µ1 = 0.43925 µ = X
Bardziej szczegółowoTablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Bardziej szczegółowoZaliczenie. Ćwiczenia (zaliczenie = min. 15 punktów)
Zaliczenie Ćwiczenia (zaliczenie = min. 15 punktów) Kolokwium (8/10 czerwca) = maks. 30 punktów Dwa zadania z listy pod linkiem = maks. 1 punkt http://www.fuw.edu.pl/~prozanski/ws/upload/20150415-zadania.php
Bardziej szczegółowoStatystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład I, 22.02.2016 STATYSTYKA OPISOWA, cz. I Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: strona z materiałami z przedmiotu: wne.uw.edu.pl/azylicz akson.sgh.waw.pl/~aborata
Bardziej szczegółowo