OBLICZENIA EWOLUCYJNE
|
|
- Stanisław Mróz
- 6 lat temu
- Przeglądów:
Transkrypt
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS wykład VALUE fitness f. value MIGRATION PHASE FITNESS F. communication COMPUTATION with other SELECTION subpulations YES TERMINATION CONDITION NO END AB3 nz, sem. I prowadzący: dr hab. inż. Witold Beluch (p.9) wykład: 9h laboratorium: 9h ZAJĘCIA KOŃCZĄ SIĘ EGZAMINEM OCENA KOŃCOWA: 50% -OCENA Z EGZAMINU 50% - OCENA Z LABORATORIUM obydwie oceny muszą być zytywne! LITERATURA:. Arabas J., Wykłady z algorytmów ewolucyjnych, WNT, Warszawa, 003. Michalewicz Z., Algorytmy genetyczne + struktury danych = programy ewolucyjne, WNT, Warszawa, Goldberg D.E., Algorytmy genetyczne i ich zastosowania, WNT, Warszawa, 003 (989). L. Rutkowski, Metody i techniki sztucznej inteligencji, PWN, Warszawa, wykład dotyczący sztucznej inteligencji 3 LUDZKA INTELIGENCJA Formy inteligencji: Praktyczna: umiejętność rozwiązywania konkretnych zagadnień. Abstrakcyjna: zdolność operowania symbolami i jęciami. Słeczna: umiejętność zachowania się w grupie. Cechy inteligencji: Dopasowanie działania do okoliczności. Świadomość działania. INTELIGENCJA OBLICZENIOWA (Computational Intelligence, CI) Rozwiązywanie obliczeniowo problemów, które nie są efektywnie algorytmizowalne. Korzysta z metod matematycznych oraz inspiracji: biologicznych, biocybernetycznych, psychologicznych, statystycznych, logicznych, informatycznych, inżynierskich i innych. Znajomość własnych ograniczeń. 5 6
2 Cechy inteligentnego systemu: zdolność do przyswajania nowej wiedzy; samoadaptacja (krótki okres wiarygodności informacji); akceptacja danych niepełnych i nie w pełni spójnych logicznie; kreatywność (np. opracowywanie reguł czy wniosków nie wynikających bezśrednio z materiału faktograficznego). SZTUCZNA INTELIGENCJA (Artificial Intelligence, AI część CI) John McCarthy (955): Konstruowanie maszyn, o których działaniu dałoby się wiedzieć, że jest dobne do ludzkich przejawów inteligencji. TEST TURINGA (950): Maszyna jest inteligentna, jeżeli znajdujący się w innym mieszczeniu obserwator nie zdoła odróżnić jej odwiedzi od odwiedzi człowieka. 7 8 TEST TURINGA Sędzia - człowiek - prowadzi rozmowę w języku naturalnym z zostałymi stronami. Jeśli sędzia nie jest w stanie wiarygodnie określić, czy któraś ze stron jest maszyną czy człowiekiem, wtedy mówi się, że maszyna przeszła test. Zakłada się, że zarówno człowiek jak maszyna próbują przejść test jako człowiek. 9 TURING - prognozy Turing oczekiwał, że maszyny w końcu będą w stanie przejść ten test. Ocenił, że około roku 000 maszyny z pamięcią o jemności 0 9 bitów (około 9 MB) będą w stanie oszukać 30% ludzkich sędziów w czasie pięciominutowego testu. Przewiedział również, że ludzie przestaną uważać zdanie "myśląca maszyna" za wewnętrznie sprzeczne. 0 TEST TURINGA sry: TEST TURINGA sry: Maszyna, która przejdzie test Turinga może być w stanie symulować ludzkie zachowanie konwersacyjne, co nie musi świadczyć o inteligencji (może używać sprytnie wymyślonych reguł). Maszyna może być inteligentna bez ludzkiej umiejętności gawędzenia. Wielu ludzi mogłoby nie być w stanie zaliczyć takiego testu. Ale: inteligencję innych ludzi oceniamy zazwyczaj wyłącznie na dstawie tego co i jak mówią. I jeszcze: niekiedy by zaliczyć test maszyna musiałaby symulować brak siadanej wiedzy czy umiejętności. DO NIEDAWNA ŻADEN KOMPUTER NIE ZALICZYŁ TESTU TURINGA... Najbliżej (długo) ALICE: Artificial Linguistic Internet Computer Entity (zawody o nagrodę Loebnera)
3 Krzysztof Lech 5 września 0 Katarzyna Burda 3 czerwca 0 jednakże wg. informacji w Wikipedii: Nagroda Loebnera - nagroda ufundowana przez Hugha Loebnera w 990 roku, dla programisty, który zdoła napisać program, który skutecznie przejdzie Test Turinga. Nagroda ta obejmuje przyznanie złotego medalu (całego z 8-to karatowego złota) oraz USD dla programisty, który przedstawi program, który zdoła skutecznie zmylić wszystkich sędziów (testerów) programu. Oprócz tego nagroda ta obejmuje też przyznanie złacanego, brązowego medalu oraz nagrody pieniężnej 000 USD temu programiście, który w danym roku dostarczy program, który co prawda nie przejdzie w pełni testu Turinga, ale będzie zdaniem sędziów najskuteczniej udawał ludzką konwersację. Zawody o nagrodę Loebnera odbywają się co roku, w The Cambridge Center of Behavioral Studies. Sędziowie są dorocznie losowani sśród pracowników tego instytutu. Programiści muszą dostarczyć program, który działa d Linuksem, MS Windows lub na Macintoshach lub alternatywnie dostarczyć swój własny komputer z programem, przy czym komputer musi się dać dłączyć do standardowego terminala DEC 00. Dostarczone programy mają generować na tym terminalu ekran, na którym od góry do dołu jawia się tekst konwersacji pisany standardową czcionką i nie formatowany w żaden szczególny ssób. Sędziowie mają przez jeden dzień wolny dostęp do dwukrotnie większej liczby terminali niż liczba dostarczonych programów. Co drugi ter-minal jest obsługiwany przez prosty program komunikacyjny, który generuje na ekranie taki sam tekst jak testowane programy, ale jest obsługiwany przez człowieka - wylosowanego sśród studentów instytutu i zaakceptowanego przez autorów programów. Do co drugiego terminala jest natomiast przyłączony testowany program. Sędziowie całym dniu "konwersowania" ze wszystki-mi terminalami, decydują które z terminali obsługiwał człowiek a które program, oraz który z terminali obsługiwanych ich zdaniem przez programy zachowywał się "najbardziej ludzku". Sędziowie mają prawa zadawać terminalom dowolne pytania, oprócz takich, które w oczywisty ssób zdemaskowałyby programy, jak "jaki jest numer twojego buta", albo "jak ma na imię twoja dziewczyna". Złoty medal i główną nagrodę dostaje ew. ten program który zdoła zmylić nad 50% sędziów, zaś gdy żaden program nie uzyska tego wyniku, brązowy medal i 000 USD dostaje ten program, który zdaniem największej liczby sędziów zachowywał się "najbardziej ludzku". 6 ELIZA: ELIZA - przykłady: Pierwszy program naśladujący zwykłą konwersację (966). Analizuje wzorce w zdaniach, które otrzymuje, a następnie buduje pytania przez przestawienie słów oraz dmianę słów kluczowych. Efekt Elizy - zjawisko przypisywania przez ludzi znaczenia i sensu znakom, słowom i zdaniom, które takiego sensu same z siebie nie mają. (Np: interpretowanie przypadkowych wzorów tworzonych przez chmury na niebie jako obrazy, które przedstawiają jakieś konkretne kształty). 7 (C - człowiek, E - ELIZA) C: Czy jesteś człowiekiem? E: Być człowiekiem... czy to coś znaczy... C: Co myślisz o mojej matce? E: Nie znam twojej matki, owiedz mi o niej coś więcej. 8 3
4 ZAGADNIENIA AI Sformułowanie mocne : Konstruowanie systemów inteligentnych, którym można by przypisać zdolność do myślenia w ssób w pewnym stopniu dający się równywać z myśleniem ludzkim. Sformułowanie słabe : Stworzenie maszyn (algorytmów) przejawiających tylko wąski aspekt inteligencji (grających w szachy, rozznających obrazy czy tworzących streszczenia tekstu). 9 Włodzisław Duch: serdecznie lecam... AI uważana jest za część informatyki. AI zaliczana jest do nauk kognitywnych 0 DEFINICJE AI: Dziedzina nauki zajmująca się rozwiązywaniem zagadnień efektywnie niealgorytmizowalnych w oparciu o modelowanie wiedzy. Nauka mająca za zadanie nauczyć maszyny zachowań dobnych do ludzkich. Nauka o tym, jak nauczyć maszyny robić rzeczy które obecnie ludzie robią lepiej. Nauka o komputerowych modelach wiedzy umożliwiających rozumienie, wnioskowanie i działanie. OPTYMALIZACJA (bieżnie) OPTYMALIZACJA: działanie, mające na celu zwiększenie efektyw-ności aż do osiągnięcia pewnego optimum. CEL GŁÓWNY: ULEPSZENIE. CEL DRUGORZĘDNY: OSIĄGNIĘCIE OPTIMUM. ANALITYCZNE średnie bezśrednie METODY OPTYMALIZACJI PRZEGLĄDOWE (enumeracyjne) LOSOWE 3 Metody analityczne bezśrednie: Poruszanie się wykresie funkcji w kierunku wyznaczonym przez lokalny gradient (wspinaczka najbardziej stromym zboczu z możliwych). Metody analityczne średnie: Poszukiwanie ekstremów lokalnych przez rozwiązanie układu równań (zwykle nieliniowych), otrzymanych przez przyrównanie gradientu funkcji celu do zera. Dla funkcji gładkich, określonych na obszarze otwartym, szukiwanie ekstremum można ograniczyć do zbioru punktów, w których nachylenie stycznej do wykresu jest równe zero w każdym kierunku.
5 ZALETY METOD ANALITYCZNYCH: mają solidne dstawy matematyczne; są szeroko stosowane. Funkcja trudna do optymalizacji metodami analitycznymi: GŁÓWNA WADA METOD ANALITYCZNYCH: MAŁA ODPORNOŚĆ: Funkcja niemożliwa do optymalizacji metodami analitycznymi: f() 5 6 Czasem maksimum globalne nie jest żądane: METODY ENUMERACYJNE: Sprowadzają się do przeszukiwania wszystkich punktów przestrzeni w szukiwaniu optimum. Algorytm niezwykle prosty lecz skuteczny jedynie w przypadku skończonych, małych przestrzeni. Preferowane są czasem rozwiązania, których otoczenie przyjmuje wartości bliskie temu ekstremum a nie te, dla których niewielkie oddalenie się od ekstremum woduje gwałtowny spadek wartości funkcji. Np: w przypadku inwestycji kapitałowych, by nie ryzykować straty z wodu niezbyt precyzyjnie zdefiniowanej funkcji, bądź nieznacznej zmiany jakiegoś parametru funkcji. Zwykle sprawdzenie wszystkich możliwości jest niemożliwe w rozsądnym czasie (tzw. przekleństwo wymiaru). 7 8 METODY LOSOWE: W swej najprostszej staci: bada się losowo całą przestrzeń zadania nie korzystając z innych informacji. Poszukiwanie takie jest zwykle bardzo czasochłonne (zwykle jednak mniej niż metody enumeracyjne). EFEKTYWNOŚĆ Metoda odrna Metoda enumeracyjna, błądzenie przypadkowe ideał... Metoda wyspecjalizowana (analityczna) Algorytmy genetyczne i ewolucyjne również zawierają element losowości (algorytm zrandomizowany). 9 0 kombinatoryczny dyskretny jednomodalny wielomodalny PROBLEM 30 5
6 OGRANICZENIA FUNKCJI CELU (za: J.Arabas) MINIMA LOKALNE f() MINIMA LOKALNE minimum funkcji bez ograniczeń obszar dopuszczalny kostkowe wypukły obszar dop. niewypukły obszar dop. niespójny obszar dop. 3 0 MINIMUM GLOBALNE funkcja z min. lokalnymi 0 minima funkcji z ograniczeniami min. lokalne wynikające z niewypukłości zb. ograniczającego (za: J.Arabas) 3 Podróż Karola Darwina ALGORYTMY EWOLUCYJNE HMS Beagle On the origin of species (859): Na świat przychodzi dużo więcej tomstwa, niż może mieścić środowisko. Ewolucja przez dobór naturalny: przeżywają i rozmnażają się osobniki najlepiej przystosowane do warunków środowiska (nieliczni lecz najlepsi). Wynik przystosowania zależy od: - organizmu; - środowiska. 35 Gregor Johann Mendel (8-88) - austriacki zakonnik, augustianin, prekursor genetyki. Sformułował dstawowe prawa dziedziczenia (3 prawa Mendla), przeprowadzając badania nad krzyżowaniem roślin, głównie grochu jadalnego. 36 6
7 W procesie ewolucji istotne jest zachowywanie różnorodności cech. Siła ewolucji to nie zaawansowany proces doskonalenia jednostki, lecz utrzymywanie dużej liczby różnorodnych osobników (tzw. pulacji), która ewoluuje jako całość. W procesie krzyżowania cechy osobników mieszają się, mogąc dawać kombinacje cech dotąd nie występujące. Mutacja zwala na wstanie osobników niemożliwych do uzyskania przez krzyżowanie. 37 AG CO TO JEST? AG odwzorowują naturalne procesy ewolucji zachodzące w czasie. Celem tych procesów jest maksymalne dopasowanie osobników do istniejących warunków życia. Rolę środowiska spełnia tu funkcja oceniająca (funkcja celu). 38 John H. Holland, 975: Adaptation in Natural and Artificial Systems : Łączą w sobie ewolucyjną zasadę przeżycia najlepiej przystosowanych osobników z systematyczną, choć zrandomizowaną wymianą informacji. Pomimo elementu losowości AG nie błądzą przypadkowo, lecz wykorzystują efektywnie przeszłe doświadczenia. 39 Koncepcja algorytmu przeszukiwania opartego na zasadzie doboru naturalnego. Procedurę probabilistycznego przeszukiwania dyskretnej przestrzeni stanów nazwał algorytmem genetycznym. 0 AG - TERMINOLOGIA 0000 AG - TERMINOLOGIA 0000 gen najmniejsza składowa chromosomu, decydująca o dziedziczności jednej lub kilku cech; chromosom urządkowany ciąg genów (ciąg kodowy). Zwykle utożsamiany z osobnikiem; locus miejsce genu w chromosomie; allel wariant (stan) jednego genu warunkujący daną cechę; genotyp ogół genów danego ; fenotyp ogół cech ujawniających się na zewnątrz (np. rozkodowana stać zmiennych projektowych); mutacja zmiana jednego lub kilku genów w chromosomie; krzyżowanie operacja mająca na celu wymianę materiału genetycznego między mi. pulacja pewna liczba osobników (chromosomów); 7
8 JAK DZIAŁA AG Generowanie (zwykle losowo) pulacji czątkowej. Ocena każdego na dstawie pewnej miary jego dopasowania Każda następna iteracja (kolenie) t :. Selekcja najlepszych osobników z kolenia t-.transformacja z zastosowaniem operatorów genetycznych SCHEMAT DZIAŁANIA AG: procedure algorytm_genetyczny begin t:=0 wybierz pulację czątkową P(t) oceń P(t) while (not warunek_zakończenia) do begin t:=t+ wybierz P(t) z P(t-) (selekcja) zmień P(t) (działanie operatorów genetycznych) oceń P(t) end end 3 Przykład Znaleźć: ma { f ()= } dla wartości całkowitych z zakresu 0-3. Populacja w chwili t: P(t)= { t,... t n); Założenia: - łańcuchy 5-bitowe (=0,,...,3); - liczebność pulacji n=. 5 Ścisłe rozwiązanie: = = 3; = 96. Populacja czątkowa (losowanie): 0 = = = = Sytuacja czątkowa: Selekcja: Nr Wartość Przystosowanie f()= Prawd. wylosowania Oczekiwana liczba kopii Każdemu ciągowi kodowemu odwiada sektor koła ruletki o lu prorcjonalnym do przystosowania: Suma Średnia Ma <0, 0.5), <0.5, 0.6),
9 Po selekcji: Krzyżowanie: p c = 0.9 Nr Oczekiwana liczba kopii Liczba wylosowanych kopii 0 selekcji Wartość 9 Suma Średnia Ma Przystosowanie f()= Prawd. wylosowania () selekcji Nr Partner 3 Punkt krzyżowania War-tość Suma Średnia Ma krzyżowaniu Przystosowanie f()= było: Prawd. wylosowania Mutacja: p m = 0.05 Nr krzyżow aniu mutacji Mutacja? Wartość Przystosowanie f()= Prawd. wylosowania NNNNN NNNNN NNNNN NNNTN Suma Średnia Ma było: AG MUSI MIEĆ OKREŚLONE (DLA KAŻDEGO ZADANIA):. Podstawową reprezentację zmiennych tencjalnego zadania;. Ssób tworzenia czątkowej pulacji tencjalnych rozwiązań; 3. Funkcję oceniającą rozwiązania;. Podstawowe operatory; 5. Wartości różnych parametrów (rozmiar pulacji, prawdodobieństwa użycia operatorów genetycznych itp.) 53 9
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 1 communication
ALGORYTMY EWOLUCYJNE
1 ALGORYTMY FITNESS F. START COMPUTATION FITNESS F. COMPUTATION EWOLUCYJNE INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS VALUE fitness f.
ALGORYTMY GENETYCZNE I EWOLUCYJNE
http://wazniak.mimuw.edu.pl INTELIGENTNE TECHNIKI KOMPUTEROWE wykład Karol Darwin (59 On the origin of species ): ALGORYTMY GENETYCZNE I EWOLUCYJNE Gregor Johann Mel (-) - austriacki zakonnik, augustianin,
KOMPUTEROWE wykład 001
INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 001 ZiIP, ZC6, sem.. IX prowadzący: dr inż. Witold Beluch (p. 149) konsultacje: wtorek 11 45-13 15 czwartek 10 00-11 11 30 1 2 wykład: 15h laboratorium: 15h OCENA
INTELIGENTNE TECHNIKI KOMPUTEROWE. wykład 001
INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 001 1 ZiIP, ZC6, sem.. IX prowadzący: dr inż. Witold Beluch (p. 149) konsultacje: wtorek 11 45-13 15 czwartek 10 00-11 11 30 2 wykład: 15h laboratorium: 15h ZAJĘCIA
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 1 FITNESS
OBLICZENIA EWOLUCYJNE EWOLUCYJNE LITERATURA: prowadzący: LUDZKA INTELIGENCJA. 15h laboratorium: 15h CZĄ SIĘ EGZAMINEM
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome EVOLUTIONARY OPERATORS wykład AND RECEIVING FITNESS F. 1 VALUE fitness
OBLICZENIA EWOLUCYJNE EWOLUCYJNE. AiR, AB3,, sem. I LITERATURA: prowadzący: dr inż. Witold Beluch (p.149) 15h laboratorium: 15h LUDZKA INTELIGENCJA
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS AND RECEIVING FITNESS F. VALUE wykład 1 chromosome fitness f. value FITNESS F.
OBLICZENIA EWOLUCYJNE
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład 1 VALUE fitness f. value EVOLUTIONARY
INTELIGENCJA OBLICZENIOWA METODY INTELIGENCJI OBLICZENIOWEJ. wykład: LITERATURA: SIEĆ: prowadzący: dr inż. Witold Beluch (p. 149)
ETI, EC3, sem.. VIII METODY INTELIGENCJI OBLICZENIOWEJ wykład 1 prowadzący: dr inż. Witold Beluch (p. 149) konsultacje: poniedziałek 8 15 wtorek 11 45-13 15-9 45 13 15 1 2 wykład: 15h laboratorium: 15h
METODY INTELIGENCJI OBLICZENIOWEJ wykład 1
METODY INTELIGENCJI OBLICZENIOWEJ wykład 1 1 2 ETI, EC3, sem.. VIII prowadzący: dr inż. Witold Beluch (p. 149) konsultacje: poniedziałek 8 15 wtorek 11 45-13 15-9 45 13 15 wykład: 15h laboratorium: 15h
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 2 FITNESS
OBLICZENIA EWOLUCYJNE
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome EVOLUTIONARY OPERATORS AND RECEIVING FITNESS F. wykład VALUE fitness
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
Algorytmy ewolucyjne NAZEWNICTWO
Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne
ALGORYTMY GENETYCZNE (wykład + ćwiczenia)
ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja
Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba
Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów
Równoważność algorytmów optymalizacji
Równoważność algorytmów optymalizacji Reguła nie ma nic za darmo (ang. no free lunch theory): efektywność różnych typowych algorytmów szukania uśredniona po wszystkich możliwych problemach optymalizacyjnych
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
Zadanie 5 - Algorytmy genetyczne (optymalizacja)
Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania
LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch
OBLICZENIA EWOLUCYJNE LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 2012 OBLICZENIA EWOLUCYJNE LABORATORIUM 5 2 Cel ćwiczenia
Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009
Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.
Algorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,
Obliczenia ewolucyjne - plan wykładu
Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA
PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana
METODY HEURYSTYCZNE wykład 3
SCHEMAT DZIAŁANIA AG: METODY HEURYSTYCZNE wykład 3 procedure Algorytm_genetyczny t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do t:=t+ wybierz P(t) z P(t-) (selekcja)
METODY HEURYSTYCZNE wykład 3
METODY HEURYSTYCZNE wykład 3 1 Przykład: Znaleźć max { f (x)=x 2 } dla wartości całkowitych x z zakresu 0-31. Populacja w chwili t: P(t)= {x t 1,...x t n} Założenia: - łańcuchy 5-bitowe (x=0,1,...,31);
Inteligencja obliczeniowa
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Inteligencja Treści wykładów Sztuczna inteligencja Algorytmy heurystyczne Podstawy algorytmów ewolucyjnych Techniki stosowane w EA Wprowadzenie do
6. Klasyczny algorytm genetyczny. 1
6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu
LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny
Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji
Badania operacyjne i teoria optymalizacji Instytut Informatyki Poznań, 2011/2012 1 2 3 Teoria optymalizacji Teoria optymalizacji a badania operacyjne Teoria optymalizacji zajmuje się badaniem metod optymalizacji
LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność
LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch
OBLICZENIA EWOLUCYJNE LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 12 OBLICZENIA EWOLUCYJNE LABORATORIUM
Dobór parametrów algorytmu ewolucyjnego
Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.
Narzędzia AI. Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312. http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE)
Narzędzia AI Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312 http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Nauka o maszynach realizujących zadania, które wymagają inteligencji
STRATEGIE HEURYSTYCZNE HEURYSTYCZNE METODY HC: PROBLEM 8 KRÓLOWYCH METODA WZROSTU (SIMPLE) HILL-CLIMBING METODA NAJSZYBSZEGO WZROSTU
METODY HEURYSTYCZNE wykład 2 STRATEGIE HEURYSTYCZNE 1 2 METODA WZROSTU (SIMPLE) HILL-CLIMBING Operator - działanie podejmowane w stosunku do stanu aktualnego aby otrzymać z niego kolejny stan. 1. Wygeneruj
SZTUCZNA INTELIGENCJA
Stefan Sokołowski SZTUCZNA INTELIGENCJA Inst Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://infugedupl/ stefan/dydaktyka/sztintel/
Algorytmy genetyczne w optymalizacji
Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
OBLICZENIA EWOLUCYJNE
METODY ANALITYCZNE kontra AG/AE OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome EVOLUTIONARY OPERATORS AND RECEIVING
Generowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska
ALGORYTMY GENETYCZNE ćwiczenia
ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
LICZEBNOŚĆ POPULACJI OBLICZENIA EWOLUCYJNE. wykład 3. Istotny parametr AG...
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS VALUE fitness f. value
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA Wykład 2 dr inż. Agnieszka Bołtuć Historia Zadania Co odróżnia od klasycznych algorytmów Nazewnictwo Etapy Kodowanie, inicjalizacja, transformacja funkcji celu Selekcja
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 2 communication
Stefan Sokołowski SZTUCZNAINTELIGENCJA. Inst. Informatyki UG, Gdańsk, 2009/2010
Stefan Sokołowski SZTUCZNAINTELIGENCJA Inst. Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str.1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://inf.ug.edu.pl/ stefan/dydaktyka/sztintel/
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Algorytmy Genetyczne Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Metody heurystyczne Algorytm efektywny: koszt zastosowania (mierzony
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
OBLICZENIA EWOLUCYJNE
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 3fitness f. value EVOLUTIONARY
Standardowy algorytm genetyczny
Standardowy algorytm genetyczny 1 Szybki przegląd 2 Opracowany w USA w latach 70. Wcześni badacze: John H. Holland. Autor monografii Adaptation in Natural and Artificial Systems, wydanej w 1975 r., (teoria
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj
Algorytmy genetyczne (AG)
Algorytmy genetyczne (AG) 1. Wprowadzenie do AG a) ewolucja darwinowska b) podstawowe definicje c) operatory genetyczne d) konstruowanie AG e) standardowy AG f) przykład rozwiązania g) naprawdę bardzo,
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane
Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS
Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Wykład 7 PLAN: - Repetitio (brevis) -Algorytmy miękkiej selekcji: algorytmy ewolucyjne symulowane wyżarzanie
METODY HEURYSTYCZNE wykład 2
www.kwmimkm.polsl.pl METODY HEURYSTYCZNE wykład 2 1 www.kwmimkm.polsl.pl STRATEGIE HEURYSTYCZNE 2 www.kwmimkm.polsl.pl METODA WZROSTU (SIMPLE) HILL-CLIMBING Operator - działanie podejmowane w stosunku
Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Treść wykładu Wprowadzenie Zasada działania Podział EA Cechy EA Algorytm genetyczny 2 EA - wprowadzenie Algorytmy ewolucyjne
Algorytmy genetyczne
Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania
OBLICZENIA EWOLUCYJNE
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 5fitness f. value EVOLUTIONARY
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne. Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych Plan wystąpienia Co to jest sztuczna inteligencja? Pojęcie słabej
Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek
Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
Optymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Teoria algorytmów ewolucyjnych
Teoria algorytmów ewolucyjnych 1 2 Dlaczego teoria Wynik analiza teoretycznej może pokazać jakie warunki należy spełnić, aby osiągnąć zbieżność do minimum globalnego. Np. sukcesja elitarystyczna. Może
Algorytmy ewolucyjne `
Algorytmy ewolucyjne ` Wstęp Czym są algorytmy ewolucyjne? Rodzaje algorytmów ewolucyjnych Algorytmy genetyczne Strategie ewolucyjne Programowanie genetyczne Zarys historyczny Alan Turing, 1950 Nils Aall
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
Obliczenia Naturalne - Algorytmy genetyczne
Literatura Obliczenia Naturalne - Algorytmy genetyczne Paweł Paduch Politechnika Świętokrzyska 20 marca 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy genetyczne 1 z 45 Plan wykładu Literatura 1 Literatura
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Zadania laboratoryjne i projektowe - wersja β
Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE DIAGNOSTYKĘ MEDYCZNĄ Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, projekt
BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE. Adrian Horzyk. Akademia Górniczo-Hutnicza
BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
LABORATORIUM 1: Program Evolutionary Algorithms
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 1: Program Evolutionary Algorithms opracował:
Problemy z ograniczeniami
Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.
Metody Sztucznej Inteligencji Methods of Artificial Intelligence. Elektrotechnika II stopień ogólno akademicki. niestacjonarne. przedmiot kierunkowy
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny
Soft computing Soft computing tym róŝni się od klasycznych obliczeń (hard computing), Ŝe jest odporny na brak precyzji i niepewność danych wejściowych. Obliczenia soft computing mają inspiracje ze świata
Gospodarcze zastosowania algorytmów genetycznych
Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym
ALGORYTMY GENETYCZNE
ALGORYTMY GENETYCZNE Algorytmy Genetyczne I. Co to są algorytmy genetyczne? II. Podstawowe pojęcia algorytmów genetycznych III. Proste algorytmy genetyczne IV. Kodowanie osobników i operacje genetyczne.
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
Sztuczna inteligencja - wprowadzenie
Sztuczna inteligencja - wprowadzenie Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Sztuczna inteligencja komputerów - wprowadzenie Kontakt: dr inż. Dariusz Banasiak, pok.
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej
METODY HEURYSTYCZNE 3
METODY HEURYSTYCZNE wykład 3 1 ALGORYTMY GENETYCZNE 2 SCHEMAT DZIAŁANIA ANIA AG: procedure algorytm_genetyczny begin t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do
Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych
Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych mgr inż. Robert Nowotniak Politechnika Łódzka 1 października 2008 Robert Nowotniak 1 października 2008 1 / 18 Plan referatu 1 Informatyka
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: PROGNOZOWANIE Z WYKORZYSTANIEM SYSTEMÓW INFORMATYCZNYCH Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU
Algorytmy genetyczne służą głównie do tego, żeby rozwiązywać zadania optymalizacji
Kolejna metoda informatyczna inspirowana przez Naturę - algorytmy genetyczne Struktura molekuły DNA nośnika informacji genetycznej w biologii Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Sztuczna inteligencja
Sztuczna inteligencja Przykładowe zastosowania Piotr Fulmański Wydział Matematyki i Informatyki, Uniwersytet Łódzki, Polska 12 czerwca 2008 Plan 1 Czym jest (naturalna) inteligencja? 2 Czym jest (sztuczna)
Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne
Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-27 1 Mutacje algorytmu genetycznego 2 Dziedzina niewypukła abstrakcyjna
ALGORYTMY IMMUNO- LOGICZNE
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBGenration SENDING CHROM. TO COMPUTERS chromosome wykład AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS 7 VALUE fitness
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne