INTELIGENCJA OBLICZENIOWA METODY INTELIGENCJI OBLICZENIOWEJ. wykład: LITERATURA: SIEĆ: prowadzący: dr inż. Witold Beluch (p. 149)
|
|
- Alina Kalinowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 ETI, EC3, sem.. VIII METODY INTELIGENCJI OBLICZENIOWEJ wykład 1 prowadzący: dr inż. Witold Beluch (p. 149) konsultacje: poniedziałek 8 15 wtorek wykład: 15h laboratorium: 15h OCENA KOŃCOWA: 65% - OCENA Z EGZAMINU 35% - OCENA Z LABORATORIUM obydwie oceny muszą być pozytywne! ZAJĘCIA KOŃCZ CZĄ SIĘ EGZAMINEM LITERATURA: 1. Arabas J., Wykłady z algorytmów ewolucyjnych,, WNT, Warszawa, Michalewicz Z., Algorytmy genetyczne + struktury danych = programy ewolucyjne,, WNT, Warszawa, 1996 (1992) 3. Goldberg D.E., Algorytmy genetyczne i ich zastosowania,, WNT, Warszawa, 2003 (1989) 4. Rutkowski L., Metody i techniki sztucznej inteligencji,, PWN, Warszawa, Tadeusiewicz R., Elementarne wprowadzenie do techniki sieci neuronowych z przykładowymi programami, Akad.. Oficyna Wyd. PLJ, Warszawa, Tadeusiewicz R., Sieci neuronowe, Akad.. Oficyna Wyd. RM, Warszawa Osowski S., Sieci neuronowe w ujęciu algorytmicznym,, WNT, Warszawa SIEĆ: algorytmy ewolucyjne. /dyplomy/fuzzy/podst awy_fl.htm- trochę na temat logiki rozmytej i zbiorów rozmytych. wazniak.mimuw.edu.pl/index.php?title=sztuczna_inteligeindex.php?title=sztuczna_intelige ncja- wykład dotyczący sztucznej inteligencji neuronowe. problem komiwojażera. sztuczne sieci INTELIGENCJA OBLICZENIOWA 5 6 1
2 METODY INTELIGENCJI OBLICZENIOWEJ ALGORYTMY Powiązania: AE budowa baz reguł i f. przynależno ności SR EWOLUCYJNE AE wagi i topologia SN SIECI NEURONOWE SN dobór parametrów AE SYSTEMY SR dobór parametrów AE (Soft computing) ROZMYTE SR dobór parametrów SN SN zdolność uczenia się SR 1. AE 2. SN 3. SR I jeszcze parę innych rzeczy LUDZKA INTELIGENCJA FORMY INTELIGENCJI: Praktyczna: : umiejętność rozwiązywania konkretnych zagadnień. Abstrakcyjna: : zdolność operowania symbolami i pojęciami. Społeczna: : umiejętność zachowania się w grupie. CECHY INTELIGENCJI: Dopasowanie działania do okoliczności. Świadomość działania. Znajomość własnych ograniczeń. 9 INTELIGENCJA OBLICZENIOWA (Computational Intelligence,, CI) Rozwiązywanie obliczeniowo problemów, które nie są efektywnie algorytmizowalne,, gdyż: - nawet drobna zmiana może wymagać całkiem innego programu; - nie można przewidzieć wszystkich zmian. Rozwiązanie wymaga inteligencji; jeśli zaś szuka się rozwiązania za pomocą obliczeń, to: inteligencja obliczeniowa. Korzysta z metod matematycznych oraz inspiracji: biologicznych, biocybernetycznych, psychologicznych, statystycznych, logicznych, informatycznych, inżynierskich i innych. 10 Problemy niealgorytmizowalne (Przykłady): Rozumienie sensu zdań, Rozpoznawanie twarzy i obrazów, Rozpoznawanie mowy i sygnałów, percepcja, Rozpoznawanie pisma ręcznego, Sterowanie robotem, nieliniowymi układami, Diagnostyka medyczna, planowanie terapii, Rozwiązywanie nietypowych problemów, Działania twórcze; Niektóre problemy do rozwiązania których potrzebne są metody inteligencji obliczeniowej: Klasyfikacja struktur: rozpoznawanie obrazów, mowy, pisma, struktur chemicznych, zachowań człowieka lub maszyny, stanu zdrowia, sensu wyrazów i zdań Odkrywanie wiedzy w bazach danych, zrozumienie struktury danych, konstrukcja wyjaśniających teorii. Selekcja cech - na co warto zwrócić uwagę, co jest niepotrzebne; redukcja wymiarowości problemu. Inteligentne szukanie z uwzględnieniem semantyki pytania szukarki, Information Retrieval (IR). Inteligentne wspomaganie decyzji: diagnozy medyczne, decyzje menedżerskie. 2
3 Niektóre problemy do rozwiązania których potrzebne są metody inteligencji obliczeniowej: Niektóre problemy do rozwiązania których potrzebne są metody inteligencji obliczeniowej: Gry strategiczne: uczenie się na własnych i cudzych błędach. Kontrola: jakości produktów, ostrości obrazu kamery, dostrojenia aparatury. Sterowanie: samochodu, urządzeń technicznych, fabryk, społeczeństwa... Planowanie: budowa autostrad, wieżowców, optymalizacja działań i organizacji, planów działania. Optymalne spełnianie ograniczeń, optymalizacja wielokryterialna, dopełnianie brakującej wiedzy. Detekcja regularności, analiza interesujących skupień, samoorganizacja,, uczenie spontaniczne, geny, białka. 13 Separacja sygnałów z wielu źródeł: oczyszczanie obrazów z szumów, oddzielanie artefaktów, separacja sygnałów akustycznych. Prognozowanie: wskaźników ekonomicznych, pogody, plam na Słońcu, decyzji zakupu, intencji człowieka. Askrypcja danych: łączenie informacji z kilku źródeł. Wizualizacja informacji ukrytej w bazach danych. Zrozumienie umysłu: doświadczeń psychologicznych, sposobu rozumowania i kategoryzacji, poruszania się i planowania, procesów uczenia. 14 Wizualizacja Drążenie danych Logika rozmyta Systemy ekspertowe Sieci neuronowe CI - numeryczne Dane + Wiedza AI - symboliczne Uczenie maszynowe Soft Computing Algorytmy ewolucyjne Rozpoznawanie wzorców Metody statystyczne Optymalizacja, badania operacyjne Rachunek prawdopodobieństwa Cechy inteligentnego systemu: zdolność do przyswajania nowej wiedzy; samoadaptacja (krótki okres wiarygodności informacji); akceptacja danych niepełnych i nie w pełni spójnych logicznie; kreatywność (np. opracowywanie reguł czy wniosków nie wynikających bezpośrednio z materiału faktograficznego) SZTUCZNA INTELIGENCJA (Artificial Intelligence,, AI część CI) John McCarthy (1955): Konstruowanie maszyn, o których działaniu dałoby się powiedzieć, że są podobne do ludzkich przejawów inteligencji. TEST TURINGA (1950): Maszyna jest inteligentna, jeżeli znajdujący się w innym pomieszczeniu obserwator nie zdoła odróżnić jej odpowiedzi od odpowiedzi człowieka. 17 TEST TURINGA Sędzia - człowiek - prowadzi rozmowę w języku naturalnym z pozostałymi stronami. Jeśli sędzia nie jest w stanie wiarygodnie określić, czy któraś ze stron jest maszyną czy człowiekiem, wtedy mówi się, że maszyna przeszła test. Zakłada się, że zarówno człowiek jak maszyna próbują przejść test jako człowiek. 18 3
4 TEST TURINGA - wizje TEST TURINGA spory: Turing oczekiwał, że maszyny w końcu będą w stanie przejść ten test. Ocenił, że około roku 2000 maszyny z pamięcią o pojemności 10 9 bitów (około 119 MB) będą w stanie oszukać 30% ludzkich sędziów w czasie pięciominutowego testu. Przepowiedział również, że ludzie przestaną uważać zdanie "myśląca maszyna" za wewnętrznie sprzeczne. Maszyna, która przejdzie test Turinga może być w stanie symulować ludzkie zachowanie konwersacyjne, co nie musi świadczyć o inteligencji (może używać sprytnie wymyślonych reguł). Maszyna może być inteligentna bez ludzkiej umiejętności gawędzenia. Wielu ludzi mogłoby nie być w stanie zaliczyć takiego testu TEST TURINGA spory: Ale: : inteligencję innych ludzi oceniamy zazwyczaj wyłącznie na podstawie tego co i jak mówią. I jeszcze: : niekiedy by zaliczyć test maszyna musiałaby symulować brak posiadanej wiedzy czy umiejętności. JAK DOTĄD ŻADEN KOMPUTER NIE ZALICZYŁ TESTU TURINGA... Najbliżej ALICE: Artificial Linguistic Internet Computer Entity (Zawody o nagrodę Loebnera) 21 Nagroda Loebnera - nagroda ufundowana przez Hugha Loebnera w 1990 roku, dla programisty, który zdoła napisać program, który skutecznie przejdzie Test Turinga. Nagroda ta obejmuje przyznanie złotego medalu (całego z 18-to karatowego złota) oraz USD dla programisty, który przedstawi program, który zdoła skutecznie zmylić wszystkich sędziów (testerów) programu. Oprócz tego nagroda ta obejmuje też przyznanie nie pozłacanego, brązowego medalu oraz nagrody pieniężnej USD temu programiście, który y w danym roku dostarczy program, który co prawda nie przejdzie w pełni testu Turinga,, ale będzie zdaniem sędziów najskuteczniej udawał ludzką konwersację. Zawody o nagrodę Loebnera odbywają się co roku, w The Cambridge Center of Behavioral Studies.. Sędziowie są dorocznie losowani spośród pracowników tego instytutu. tutu. Programiści muszą dostarczyć program, który działa pod Linuksem, MS Windows lub na Macintoshach lub alternatywnie dostarczyć swój własny komputer z programem, przy czym komputer musi się dać podłączyć do standardowego terminala DEC 100. Dostarczone programy mają generować na tym terminalu ekran, na którym od góry do dołu pojawia się tekst konwersacji pisany standardową czcionką i nie formatowany w żaden szczególny sposób. Sędziowie mają przez jeden dzień wolny dostęp do dwukrotnie większej liczby terminali niż liczba dostarczonych programów. Co drugi ter- minal jest obsługiwany przez prosty program komunikacyjny, który generuje na ekranie taki sam tekst jak testowane programy, ale jest obsługiwany przez człowieka - wylosowanego spośród studentów instytutu i zaakceptowanego przez autorów programów. Do co drugiego terminala jest natomiast przyłączony testowany program. Sędziowie po całym dniu "konwersowania" ze wszystki- mi terminalami, decydują które z terminali obsługiwał człowiek a które k program, oraz który z terminali obsługiwanych ich zdaniem przez programy zachowywał się ę "najbardziej po ludzku". Sędziowie mają prawa zadawać terminalom dowolne pytania, oprócz takich, które w oczywisty sposób zdemaskowałyby programy, jak "jaki jest numer twojego buta", albo "jak ma na imię twoja dziewczyna". Złoty medal i główną nagrodę dostaje ew. ten program m który zdoła zmylić po-nad 50% sędziów, zaś gdy żaden program nie uzyska tego wyniku, brązowy medal i USD dostaje ten program, który zdaniem największej liczby sędziów zachowywał się "najbardziej po ludzku" prize.html ELIZA: Pierwszy program naśladujący zwykłą konwersację (1966). Analizuje wzorce w zdaniach, które otrzymuje, a następnie buduje pytania przez przestawienie słów oraz podmianę słów kluczowych. 23 Efekt Elizy - zjawisko przypisywania przez ludzi znaczenia i sensu znakom, słowom i zdaniom, które takiego sensu same z siebie nie mają. (Np: interpretowanie przypadkowych wzorów tworzonych przez chmury na niebie jako obrazy, które przedstawiają jakieś konkretne kształty). 24 4
5 ANALITYCZNE pośrednie bezpośrednie METODY OPTYMALIZACJI PRZEGLĄDOWE (enumeracyjne) Metody analityczne bezpośrednie: LOSOWE Poruszanie się po wykresie funkcji w kierunku wyznaczonym przez lokalny gradient (wspinaczka po najbardziej stromym zboczu z możliwych). Metody analityczne pośrednie: Poszukiwanie ekstremów w lokalnych poprzez rozwiązanie układ adu równań (zwykle nieliniowych), otrzymanych poprzez przyrównanie gradientu funkcji celu do zera. ZAGADNIENIA AI Sformułowanie mocne : Konstruowanie systemów inteligentnych, którym można by przypisać zdolność do myślenia w sposób w pewnym stopniu dający się porównywać z myśleniem ludzkim. Sformułowanie słabe : Stworzenie maszyn (algorytmów) przejawiających tylko wąski aspekt inteligencji (grających w szachy, rozpoznających obrazy czy tworzących streszczenia tekstu). Dla funkcji gładkich, g określonych na obszarze otwartym, poszukiwanie ekstremum można ograniczyć do zbioru punktów, w których nachylenie stycznej do wykresu jest równe r zero w każdym kierunku UCZENIE SIĘ Zdolność do uczenia się jest powszechnie uważana za jeden z najważniejszych przejawów inteligencji. Dla sztucznych systemów uczące się uczenie się to: proces zmiany zachodzącej w systemie na podstawie doświadczeń,, która prowadzi do poprawy jakości jego działania (rozumianej jako sprawność rozwiązywania stojących przed systemem zadań). Włodzisław Duch: serdecznie polecam... AI uważana jest za część informatyki. AI zaliczana jest do nauk kognitywnych DEFINICJE AI: NIEKTÓRE ZASTOSOWANIA Dziedzina nauki zajmująca się rozwiązywaniem zagadnień efektywnie niealgorytmizowalnych w oparciu o modelowanie wiedzy. Nauka mająca za zadanie nauczyć maszyny zachowań podobnych do ludzkich. Nauka o tym, jak nauczyć maszyny robić rzeczy, które obecnie ludzie robią lepiej. Nauka o komputerowych modelach wiedzy umożliwiających rozumienie, wnioskowanie i działanie. 29 Technologie oparte na logice rozmytej - powszechnie stosowane do np: : sterowania przebiegiem procesów technologicznych w fabrykach w warunkach "braku wszystkich danych". Systemy ekspertowe - rozbudowane bazy danych z wszczepioną "sztuczną inteligencją" umożliwiającą zadawanie im pytań w języku naturalnym i uzys- kiwanie w tym samym języku odpowiedzi. Systemy takie stosowane są już w farmacji i medycynie. Rozpoznawanie mowy - stosowane obecnie powszechnie na skalę komercyjną. 30 5
6 NIEKTÓRE ZASTOSOWANIA Maszynowe tłumaczenie tekstów - systemy takie są wciąż bardzo ułomne, jednak robią postępy i za- czynają się nadawać do tłumaczenia np. tekstów technicznych. Sztuczne sieci neuronowe - stosowane z powo- dzeniem w wielu zastosowaniach łącznie z progra- mowaniem "inteligentnych przeciwników" w grach komputerowych. Rozpoznawanie optyczne - stosowane są już programy rozpoznające osoby na podstawie zdjęcia twarzy lub rozpoznające automatycznie zadane obiekty na zdjęciach satelitarnych. 31 NIEKTÓRE ZASTOSOWANIA Rozpoznawanie ręcznego pisma - stosowane masowo np: : do automatycznego sortowania listów, oraz w elektronicznych notatnikach. Deep Blue - program, który wygrał w szachy z Gary Kasparowem. Sztuczna twórczość - istnieją programy automatycznie generujące krótkie formy poetyckie, komponujące, aranżujące i interpretujące utwory muzyczne, które są w stanie zmylić nawet profesjonalnych artystów. 32 HISTORIA HISTORIA Era prehistoryczna: do ok (pojawienie się powszechnie dostępnych komputerów). Era romantyczna: (przewidywano, że AI osiągnie swoje cele w ciągu 10 lat spore początkowe sukcesy). Okres ciemności: (niewiele nowego, spadek entuzjazmu i pojawienie się głosów krytycznych). Renesans: (pierwsze użyteczne systemy doradcze). Okres partnerstwa: (wprowadzenie do badań nad AI metod z nauk poznawczych, nauk o mózgu, itd). Okres komercjalizacji: inteligentny slogan reklamowy CZEGO NIE UDAŁO SIĘ DOTĄD OSIĄGNĄĆ (mimo wielu wysiłków...): Programów skutecznie wygrywających w niektórych grach (go, brydż sportowy, polskie warcaby). Programu, który skutecznie by potrafił naśladować ludzką konwersację (obecnie najskuteczniejszym w teście Turinga jest cały czas rozwijany program- projekt ALICE). Programu, który potrafiłby skutecznie generować zysk, grając na giełdzie (nie da się nawet odpowiedzieć na pytanie, czy jest możliwe zarabianie na giełdzie). OPTYMALIZACJA Programu skutecznie tłumaczącego teksty literackie i mowę
7 OPTYMALIZACJA: działanie, mające na celu zwiększenie efektyw- ności aż do osiągnięcia pewnego optimum. ANALITYCZNE pośrednie bezpośrednie METODY OPTYMALIZACJI PRZEGLĄDOWE (enumeracyjne) LOSOWE CEL GŁÓWNY: ULEPSZENIE. CEL DRUGORZĘDNY: OSIĄGNIĘCIE OPTIMUM. 37 Metody analityczne bezpośrednie: Poruszanie się po wykresie funkcji w kierunku wyznaczonym przez lokalny gradient (wspinaczka po najbardziej stromym zboczu z możliwych). Metody analityczne pośrednie: Poszukiwanie ekstremów w lokalnych poprzez rozwiązanie układ adu równań (zwykle nieliniowych), otrzymanych poprzez przyrównanie gradientu funkcji celu do zera. Dla funkcji gładkich, g określonych na obszarze otwartym, poszukiwanie ekstremum można ograniczyć do zbioru punktów, w których nachylenie stycznej do wykresu jest równe r zero w każdym kierunku. 38 ZALETY METOD ANALITYCZNYCH YCH: mają solidne podstawy matematyczne; są szeroko stosowane. Funkcja trudna do optymalizacji metodami analitycznymi: f ( x, x ) = 21.5 sin(4 π x ) + x sin(20 π x ) x [ -3.0, 12.1 ]; x [ 4.1, 5.8 ]; 1 2 GŁÓWNA WADA METOD ANALITYCZNYCH: MAŁA ODPORNOŚĆ: f Funkcja niemożliwa do optymalizacji metodami analitycznymi: f(x) 39 x 40 Czasem maksimum globalne nie jest pożądane: METODY ENUMERACYJNE: Sprowadzają się do przeszukiwania wszystkich punktów w przestrzeni w poszukiwaniu optimum. Preferowane są czasem rozwiązania, których otoczenie przyjmuje wartości bliskie temu ekstremum a nie te, dla których niewielkie oddalenie się od ekstremum powoduje gwałtowny spadek wartości funkcji. Np: w przypadku inwestycji kapitałowych, by nie ryzykować straty z powodu niezbyt precyzyjnie zdefiniowanej funkcji, bądź nieznacznej zmiany jakiegoś parametru funkcji. 41 Algorytm niezwykle prosty lecz skuteczny jedynie w przypadku skończonych, małych przestrzeni. Zwykle sprawdzenie wszystkich możliwo liwości jest niemożliwe w rozsądnym czasie (tzw. przekleństwo wymiaru). 42 7
8 METODY LOSOWE: W swej najprostszej postaci: bada się losowo całą przestrzeń zadania nie korzystając z innych informacji. Poszukiwanie takie jest zwykle bardzo czasochłonne (zwykle jednak mniej niż metody enumeracyjne). EFEKTYWNOŚĆ 1 Metoda odporna Metoda enumeracyjna, błądzenie przypadkowe ideał... Metoda wyspecjalizowana (analityczna) Algorytmy genetyczne i ewolucyjne równier wnież zawie- rają element losowości (algorytm zrandomizowany) kombinatoryczny dyskretny jednomodalny wielomodalny PROBLEM 44 METODY ANALITYCZNE kontra AG ZALETY ŚCISŁE ROZWIĄZANIE ZANIE WYSOKA SZYBKOŚĆ DZIAŁANIA ANIA METODY ANALITYCZNE WADY Funkcja celu musi być ciągła Hesjan funkcji celu musi być dodatnio określony Istnieje duże ryzyko zbiegnięcia się algorytmu do optimum lokalnego Obliczenia rozpoczynają się z jednego punktu ograniczając obszar poszukiwań optimum Wybór punktu startowego wpływa na zbieżno ność metody 45 METODY ANALITYCZNE kontra AG ALGORYTMY GENETYCZNE ZALETY JEDYNĄ INFORMACJĄ POTRZEBNĄ DO DZIA- ŁANIA JEST WARTOŚĆ FUNKCJI CELU PRACA NA POPULACJI DOPUSZCZALNYCH ROZWIĄZA ZAŃ PRZESZUKIWANIE WIELOKIERUNKOWE WADY Stosunkowo wolne Trudności z precyzyjnym znalezieniem optimum 46 8
METODY INTELIGENCJI OBLICZENIOWEJ wykład 1
METODY INTELIGENCJI OBLICZENIOWEJ wykład 1 1 2 ETI, EC3, sem.. VIII prowadzący: dr inż. Witold Beluch (p. 149) konsultacje: poniedziałek 8 15 wtorek 11 45-13 15-9 45 13 15 wykład: 15h laboratorium: 15h
KOMPUTEROWE wykład 001
INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 001 ZiIP, ZC6, sem.. IX prowadzący: dr inż. Witold Beluch (p. 149) konsultacje: wtorek 11 45-13 15 czwartek 10 00-11 11 30 1 2 wykład: 15h laboratorium: 15h OCENA
INTELIGENTNE TECHNIKI KOMPUTEROWE. wykład 001
INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 001 1 ZiIP, ZC6, sem.. IX prowadzący: dr inż. Witold Beluch (p. 149) konsultacje: wtorek 11 45-13 15 czwartek 10 00-11 11 30 2 wykład: 15h laboratorium: 15h ZAJĘCIA
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 1 FITNESS
OBLICZENIA EWOLUCYJNE EWOLUCYJNE LITERATURA: prowadzący: LUDZKA INTELIGENCJA. 15h laboratorium: 15h CZĄ SIĘ EGZAMINEM
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome EVOLUTIONARY OPERATORS wykład AND RECEIVING FITNESS F. 1 VALUE fitness
ALGORYTMY EWOLUCYJNE
1 ALGORYTMY FITNESS F. START COMPUTATION FITNESS F. COMPUTATION EWOLUCYJNE INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS VALUE fitness f.
OBLICZENIA EWOLUCYJNE EWOLUCYJNE. AiR, AB3,, sem. I LITERATURA: prowadzący: dr inż. Witold Beluch (p.149) 15h laboratorium: 15h LUDZKA INTELIGENCJA
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS AND RECEIVING FITNESS F. VALUE wykład 1 chromosome fitness f. value FITNESS F.
OBLICZENIA EWOLUCYJNE
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład 1 VALUE fitness f. value EVOLUTIONARY
Narzędzia AI. Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312. http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE)
Narzędzia AI Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312 http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Nauka o maszynach realizujących zadania, które wymagają inteligencji
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 1 communication
Inteligencja obliczeniowa
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Inteligencja Treści wykładów Sztuczna inteligencja Algorytmy heurystyczne Podstawy algorytmów ewolucyjnych Techniki stosowane w EA Wprowadzenie do
OBLICZENIA EWOLUCYJNE
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS wykład VALUE fitness
SZTUCZNA INTELIGENCJA
Stefan Sokołowski SZTUCZNA INTELIGENCJA Inst Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://infugedupl/ stefan/dydaktyka/sztintel/
Stefan Sokołowski SZTUCZNAINTELIGENCJA. Inst. Informatyki UG, Gdańsk, 2009/2010
Stefan Sokołowski SZTUCZNAINTELIGENCJA Inst. Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str.1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://inf.ug.edu.pl/ stefan/dydaktyka/sztintel/
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne. Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych Plan wystąpienia Co to jest sztuczna inteligencja? Pojęcie słabej
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi
Metody Sztucznej Inteligencji Methods of Artificial Intelligence. Elektrotechnika II stopień ogólno akademicki. niestacjonarne. przedmiot kierunkowy
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Wprowadzenie do teorii systemów ekspertowych
Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z
Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji
Badania operacyjne i teoria optymalizacji Instytut Informatyki Poznań, 2011/2012 1 2 3 Teoria optymalizacji Teoria optymalizacji a badania operacyjne Teoria optymalizacji zajmuje się badaniem metod optymalizacji
Sztuczna inteligencja - wprowadzenie
Sztuczna inteligencja - wprowadzenie Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Sztuczna inteligencja komputerów - wprowadzenie Kontakt: dr inż. Dariusz Banasiak, pok.
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział
Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Zastosowanie sztucznych sieci neuronowych Nazwa modułu w informatyce Application of artificial
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE DIAGNOSTYKĘ MEDYCZNĄ Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, projekt
ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent
zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych
Grupa efektów kierunkowych: Matematyka stosowana I stopnia - profil praktyczny (od 17 października 2014) Matematyka Stosowana I stopień spec. Matematyka nowoczesnych technologii stacjonarne 2015/2016Z
Sztuczna inteligencja
Sztuczna inteligencja Przykładowe zastosowania Piotr Fulmański Wydział Matematyki i Informatyki, Uniwersytet Łódzki, Polska 12 czerwca 2008 Plan 1 Czym jest (naturalna) inteligencja? 2 Czym jest (sztuczna)
LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania
Festiwal Myśli Abstrakcyjnej, Warszawa, Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII?
Festiwal Myśli Abstrakcyjnej, Warszawa, 22.10.2017 Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII? Dwa kluczowe terminy Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, laboratorium BIOCYBERNETYKA Biocybernetics Forma studiów:
Tomasz Pawlak. Zastosowania Metod Inteligencji Obliczeniowej
1 Zastosowania Metod Inteligencji Obliczeniowej Tomasz Pawlak 2 Plan prezentacji Sprawy organizacyjne Wprowadzenie do metod inteligencji obliczeniowej Studium wybranych przypadków zastosowań IO 3 Dane
Sztuczna inteligencja Definicja Sztuczna inteligencja (AI - ang. artificial inteligence) lub krótko SI jest stosunkowo nową interdyscyplinarną dziedziną nauki, przedmiotem wielkich oczekiwań i ożywionych
KARTA PRZEDMIOTU. Dyscyplina:
KARTA PRZEDMIOTU Jednostka: WIPiE Dyscyplina: Poziom studiów: 3 Semestr: 3 lub 4 Forma studiów: stacjonarne Język wykładowy: Nazwa przedmiotu: Metody sztucznej inteligencji Symbol przedmiotu: MSI Liczba
Algorytmy wspomagania decyzji Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3
Algorytmy wspomagania decyzji Czyli co i jak 2018 andrzej.rusiecki@pwr.edu.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi
Algorytmy wspomagania decyzji Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s.
Algorytmy wspomagania decyzji Czyli co i jak 2013 andrzej.rusiecki@pwr.wroc.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 911/D-20 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi
ALGORYTMY GENETYCZNE (wykład + ćwiczenia)
ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja
Inteligencja. Władysław Kopaliśki, Słownik wyrazów obcych i zwrotów obcojęzycznych
Wstęp Inteligencja Władysław Kopaliśki, Słownik wyrazów obcych i zwrotów obcojęzycznych inteligencja psych. zdolność rozumienia, kojarzenia; pojętność, bystrość; zdolność znajdowania właściwych, celowych
[1] [2] [3] [4] [5] [6] Wiedza
3) Efekty dla studiów drugiego stopnia - profil ogólnoakademicki na kierunku Informatyka w języku angielskim (Computer Science) na specjalności Sztuczna inteligencja (Artificial Intelligence) na Wydziale
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Systemy inteligentne Rok akademicki: 2013/2014 Kod: RME-2-108-SI-s Punkty ECTS: 7 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Mechatronika Specjalność: Systemy inteligentne Poziom
Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia
Studia pierwszego stopnia I rok Matematyka dyskretna 30 30 Egzamin 5 Analiza matematyczna 30 30 Egzamin 5 Algebra liniowa 30 30 Egzamin 5 Statystyka i rachunek prawdopodobieństwa 30 30 Egzamin 5 Opracowywanie
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie
M T E O T D O ZI Z E E A LG L O G R O Y R TM
O ALGORYTMACH I METODZIE ALGORYTMICZNEJ Czym jest algorytm? Czym jest algorytm? przepis schemat zestaw reguł [ ] program ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające
Transformacja wiedzy w budowie i eksploatacji maszyn
Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces
Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa
Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia
Diagnostyka procesów przemysłowych Kod przedmiotu
Diagnostyka procesów przemysłowych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Diagnostyka procesów przemysłowych Kod przedmiotu 06.0-WE-AiRP-DPP Wydział Kierunek Wydział Informatyki, Elektrotechniki
Efekt kształcenia. Wiedza
Efekty dla studiów drugiego stopnia profil ogólnoakademicki na kierunku Informatyka na specjalności Przetwarzanie i analiza danych, na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie oznacza
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
Archipelag Sztucznej Inteligencji
Archipelag Sztucznej Inteligencji Istniejące metody sztucznej inteligencji mają ze sobą zwykle niewiele wspólnego, więc można je sobie wyobrażać jako archipelag wysp, a nie jako fragment stałego lądu.
O ISTOTNYCH OGRANICZENIACH METODY
O ISTOTNYCH OGRANICZENIACH METODY ALGORYTMICZNEJ Dwa pojęcia algorytmu (w informatyce) W sensie wąskim Algorytmem nazywa się każdy ogólny schemat procedury możliwej do wykonania przez uniwersalną maszynę
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:
a) Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów
1. PROGRAM KSZTAŁCENIA 1) OPIS EFEKTÓW KSZTAŁCENIA a) Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych i technicznych Objaśnienie oznaczeń: I efekty
Plan wykładów METODY SZTUCZNEJ INTELIGENCJI W UKŁADACH STEROWANIA
1 Plan wykładów Podstawy algorytmów genetycznych oraz ich aplikacje w procesach optymalizacji Sztuczne sieci neuronowe-formalne podstawy i wybrane aplikacje Wprowadzenie formysztucznej inteligencji Elementy
Metody sztucznej inteligencji w układach sterowania METODY SZTUCZNEJ INTELIGENCJI W UKŁADACH STEROWANIA
1 Metody sztucznej inteligencji w układach sterowania Podstawy algorytmów genetycznych oraz ich aplikacje w procesach optymalizacji Sztuczne sieci neuronowe-formalne podstawy i wybrane aplikacje Wprowadzenie
Elementy kognitywistyki II: Sztuczna inteligencja
Elementy kognitywistyki II: Sztuczna inteligencja Piotr Konderak Zakład Logiki i Filozofii Nauki p.203b, Collegium Humanicum konsultacje: wtorki, 16:00-17:00 kondorp@bacon.umcs.lublin.pl http://konderak.eu
Algorytmy ewolucyjne NAZEWNICTWO
Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne
EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6
EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6 studia pierwszego stopnia o profilu ogólnoakademickim Symbol K_W01 Po ukończeniu studiów pierwszego stopnia
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
Metody Optymalizacji: Przeszukiwanie z listą tabu
Metody Optymalizacji: Przeszukiwanie z listą tabu Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.
SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu
Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy. obieralny polski semestr VII semestr zimowy. nie
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Teoria sterowania wybrane zagadnienia Control theory selection problems Obowiązuje od roku akademickiego 2012/2013
Prof. Stanisław Jankowski
Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny
T2A_W01 T2A_W01 T2A_W02 3 SI_W03 Posiada szeroką wiedzę w zakresie teorii grafów T2A_W01
Efekty dla studiów drugiego stopnia profil ogólnoakademicki, na kierunku Informatyka w języku polskim, na specjalnościach Metody sztucznej inteligencji oraz Projektowanie systemów CAD/CAM, na Wydziale
KARTA PRZEDMIOTU. 17. Efekty kształcenia:
Z1-PU7 WYDANIE N1 Strona 1 z 4 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: CYBERNETYKA 2. Kod przedmiotu: CYB 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia:
Algorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
Nazwa przedmiotu: METODY SZTUCZNEJ INTELIGENCJI W ZAGADNIENIACH EKONOMICZNYCH Artificial intelligence methods in economic issues Kierunek:
Nazwa przedmiotu: METODY SZTUCZNEJ INTELIGENCJI W ZAGADNIENIACH EKONOMICZNYCH Artificial intelligence methods in economic issues Kierunek: Forma studiów: Informatyka Stacjonarne Rodzaj przedmiotu: obowiązkowy
Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel
według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology
Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym
POLITECHNIKA WARSZAWSKA Instytut Technik Wytwarzania Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym Marcin Perzyk Dlaczego eksploracja danych?
BADANIA OPERACYJNE i teoria optymalizacji. Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych
BADANIA OPERACYJNE i teoria optymalizacji Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych e-mail: tpisula@prz.edu.pl 1 Literatura podstawowa wykorzystywana podczas zajęć wykładowych: 1. Gajda J.,
kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) polski drugi semestr letni (semestr zimowy / letni)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Egzamin / zaliczenie na ocenę*
Zał. nr do ZW 33/01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Optymalizacja systemów Nazwa w języku angielskim System optimization Kierunek studiów (jeśli dotyczy): Inżynieria Systemów
Podsumowanie wyników ankiety
SPRAWOZDANIE Kierunkowego Zespołu ds. Programów Kształcenia dla kierunku Informatyka dotyczące ankiet samooceny osiągnięcia przez absolwentów kierunkowych efektów kształcenia po ukończeniu studiów w roku
Tabela odniesień efektów kierunkowych do efektów obszarowych
Umiejscowienie kierunku w obszarze kształcenia Kierunek studiów automatyka i robotyka należy do obszaru kształcenia w zakresie nauk technicznych i jest powiązany z takimi kierunkami studiów jak: mechanika
Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/03 Z-ZIP-303z Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE
Wykład organizacyjny
Automatyka - zastosowania, metody i narzędzia, perspektywy na studiach I stopnia specjalności: Automatyka i systemy sterowania Wykład organizacyjny dr inż. Michał Grochowski kiss.pg.mg@gmail.com michal.grochowski@pg.gda.pl
Równoważność algorytmów optymalizacji
Równoważność algorytmów optymalizacji Reguła nie ma nic za darmo (ang. no free lunch theory): efektywność różnych typowych algorytmów szukania uśredniona po wszystkich możliwych problemach optymalizacyjnych
KIERUNKOWE EFEKTY KSZTAŁCENIA
KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział: Matematyki Kierunek studiów: Matematyka i Statystyka (MiS) Studia w j. polskim Stopień studiów: Pierwszy (1) Profil: Ogólnoakademicki (A) Umiejscowienie kierunku
Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy. obieralny polski semestr VIII semestr letni. nie. Laborat. 16 g.
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Wybrane zagadnienia teorii sterowania Selection problems of control theory
1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
Alan M. TURING. Matematyk u progu współczesnej informatyki
Alan M. TURING n=0 1 n! Matematyk u progu współczesnej informatyki Wykład 5. Alan Turing u progu współczesnej informatyki O co pytał Alan TURING? Czym jest algorytm? Czy wszystkie problemy da się rozwiązać
2
1 2 3 4 5 Dużo pisze się i słyszy o projektach wdrożeń systemów zarządzania wiedzą, które nie przyniosły oczekiwanych rezultatów, bo mało kto korzystał z tych systemów. Technologia nie jest bowiem lekarstwem
O ALGORYTMACH I MASZYNACH TURINGA
O ALGORYTMACH I MASZYNACH TURINGA ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające współcześnie precyzyjny schemat mechanicznej lub maszynowej realizacji zadań określonego
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Inżynieria danych I stopień Praktyczny Studia stacjonarne Wszystkie specjalności Katedra Inżynierii Produkcji Dr Małgorzata Lucińska
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 205/206 Z-ID-602 Wprowadzenie do uczenia maszynowego Introduction to Machine Learning
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Z-LOG-120I Badania Operacyjne Operations Research
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 01/013 Z-LOG-10I Badania Operacyjne Operations Research A. USYTUOWANIE MODUŁU W
Informatyka w medycynie Punkt widzenia kardiologa
Informatyka w medycynie Punkt widzenia kardiologa Lech Poloński Mariusz Gąsior Informatyka medyczna Dział informatyki zajmujący się jej zastosowaniem w ochronie zdrowia (medycynie) Stymulacja rozwoju informatyki
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW
EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW WYDZIAŁ KIERUNEK z obszaru nauk POZIOM KSZTAŁCENIA FORMA STUDIÓW PROFIL JĘZYK STUDIÓW Podstawowych Problemów Techniki Informatyka technicznych 6 poziom, studia inżynierskie
Elektrotechnika II stopień ogólnoakademicki. stacjonarne. przedmiot specjalnościowy. obowiązkowy polski semestr II semestr letni. tak. Laborat. 30 g.
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Metody estymacji parametrów i sygnałów Estimation methods of parameters
Programowanie gier. wykład 0. Joanna Kołodziejczyk. 30 września Joanna Kołodziejczyk Programowanie gier 30 września / 13
Programowanie gier wykład 0 Joanna Kołodziejczyk 30 września 2016 Joanna Kołodziejczyk Programowanie gier 30 września 2016 1 / 13 Program przedmiotu Formy zajęć: 1 Wykład studia stacjonarne (15h) 2 Laboratorium
Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011
Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011 Przedmowa. CZĘŚĆ I: WPROWADZENIE 1. Komputer 1.1. Kółko i krzyżyk 1.2. Kodowanie 1.3. Odrobina fantazji
Optymalizacja ciągła
Optymalizacja ciągła 0. Wprowadzenie Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.02.2019 1 / 11 Kontakt wojciech.kotlowski@cs.put.poznan.pl http://www.cs.put.poznan.pl/wkotlowski/mp/