Standardowy algorytm genetyczny
|
|
- Jarosław Marszałek
- 9 lat temu
- Przeglądów:
Transkrypt
1 Standardowy algorytm genetyczny 1
2 Szybki przegląd 2 Opracowany w USA w latach 70. Wcześni badacze: John H. Holland. Autor monografii Adaptation in Natural and Artificial Systems, wydanej w 1975 r., (teoria schematów próbująca wyjaśnić zasadę działania algorytmu). Kenneth A. de Jong, doktorant Hollanda, w swojej rozprawie doktorskiej sfinalizowanej w 1975 r. zastosował algorytmy genetyczne do optymalizacji funkcji. David E. Goldberg, doktorant Hollanda, autor książki Genetic Algorithms in Search, Optimization, and Machine Learning wydanej w 1989 r. Algorytm opracowany przez Hollanda będzie nazywany przez nas Standardowym Algorytmem Genetycznym (ang. Simple Genetic Algorithm - SGA). Cechy: Rozwiązania w postaci ciągów binarnych. Operator krzyżowania i mutacji. Selekcja proporcjonalna metodą koła ruletki.
3 3 Osobnik w algorytmie genetycznym chromosom y genotyp gen gen dekodowanie fenotyp x x 1 x 2 obliczenie dopasowania f(x 1,x 2 )=3.456
4 Funkcja dopasowania Funkcja dopasowania pełni rolę środowiska oceniając potencjalne rozwiązania problemu. W prostym algorytmie genetycznym funkcja dopasowania f(y) jest odwzorowaniem ze zbioru ciągów binarnych o długości L w zbiór R+ (liczb rzeczywistych dodatnich). W teorii optymalizacji używa się pojęcia funkcji celu. Jeżeli w zadaniu funkcja celu przyjmuje wartości dodatnie i problem polega na jej maksymalizacji, to za funkcję dopasowania można przyjąć funkcję celu (oczywiście z uwzględnieniem kodowania binarnego przez chromosomy). Problem 1: chcemy znaleźć maksimum pewnej funkcji celu g(y), która przyjmuje wartości niekoniecznie dodatnie. Przekształcenie: f y = g y C 1 Problem 2: chcemy znaleźć minimum pewnej funkcji celu g(y). Przekształcenie: f y =C 2 g y C 1 i C 2, to odpowiednio duże stałe dodatnie. 4
5 Schemat blokowy algorytmu 5 Start Losowa inicjalizacja populacji Oblicz dopasowanie wszystkich elementów populacji Populacja powstała w wyniku krzyżowania i mutacji zastępuje oryginalną populację Mutacja osobników powstałych w wyniku krzyżowania Stop Tak Warunek stopu spełniony? Nie Krzyżowanie w parach Selekcja osobników do populacji rodziców Kojarzenie rodziców w pary
6 6 Standardowy algorytm genetyczny - pseudokod t=0; initialize(p 0 ); while(!termination_condition(p t )) { evaluate(p t ); T t =selection(p t ); O t =crossover(t t ); Q t =mutation(o t ); P t+1 =Q t ; t=t+1; } Warunek stopu: w najprostszej postaci zatrzymanie algorytmu po z góry zadanej liczbie iteracji. Mamy do czynienie z sukcesją z całkowitym zastępowaniem: wszyscy rodzice umierają a potomkowie otrzymani w wyniku krzyżowania i mutacji ich zastępują.
7 Selekcja rodziców Idea: lepiej dopasowani osobnicy mają większą szansę bycia wybranym Selekcja proporcjonalna: S razy losujemy osobnika (ze zwracaniem) z oryginalnej populacji P t do populacji rodziców T t, przy czym prawdopodobieństwo wylosowania: p(y i ) p y i = Przykład, S=3, f(y 1 )=3, f(y 2 )=1, f(y 3 )=2 S i=1 f y i f y j 1/6 = 17% y 1 y 3 3/6 = 50% y 2 2/6 = 33% Oczekiwana liczba kopii każdego z trzech osobników w populacji rodziców: y 1-3*3/6=1.5 y 2-3*1/6=0.5 y 3-3*2/6=1 Osobnik o dobrym dopasowaniu ma duże szanse wylosowania kilka razy 7
8 Selekcja: implementacja metodą koła ruletki 8 y 1 : 3/6 y 2 : 1/6 y 3 : 2/6 0 3/6 (1+3)/6 (1+3+2)/6=1 r=0.4 Dla każdego y i na przedziale [0,1] odkładamy odcinek o długości p(y i ). S razy losujemy liczbę losową z rozkładu jednostajnego na przedziale [0,1]. Do populacji rodziców wybieramy ten element, na którego odcinek natrafi wylosowana liczba losowa r.
9 9 Krzyżowanie jednopunktowe Operator krzyżowania jest operatorem dwuargumentowym. Przed jego zastosowaniem osobniki w populacji rodziców T t utworzonej przez selekcję łączone są losowo w pary. Dla każdej pary z prawdopodobieństwem p c (p c jest parametrem algorytmu, typowo pomiędzy 0.6 a 1) wykonywane jest krzyżowanie: Wybierz losowo punkt krzyżowania w zakresie 1,2,...,L-1. Rozłącz rodziców. Potomkowie otrzymani są w wyniku wymiany fragmentów pomiędzy rodzicami.
10 Mutacja Dla każdego elementu populacji O t powstałej w wyniku krzyżowania skanuj wszystkie bity. Dla każdego bitu z prawdopodobieństwem p m (p m jest parametrem algorytmu) zmień wartość na przeciwną. p m jest niewielką liczbą (n.p lub wartość pomiędzy 1/S a 1/L). Niewielką, ponieważ mutacja powinna prowadzić do niewielkich zmian w chromosomach. Implementacja: dla każdego bitu w każdym chromosomie losuj liczbę r z przedziału [0,1); Zaneguj bit, gdy r<p m 10
11 11 Prosty przykład (D. E. Goldberg) Prymitywny problem: f(x)=x 2, gdzie x {0,1,...,31 } Algorytm genetyczny: chromosomy 5 bitowe, kodowanie naturalne np rozmiar populacji równy 4. krzyżowanie jednopunktowe + mutacja. selekcja proporcjonalna. Inicjalizacja losowa. Zostanie pokazana jedna generacja algorytmu.
12 12 Przykład z x 2 : selekcja Osobnik nr 2 o ponadprzeciętnym dopasowaniu został wybrany dwa razy. Osobnik nr 3 o kiepskim dopasowaniu nie został wybrany.
13 Przykład z x 2 : krzyżowanie 13
14 14 Przykład z x 2 : mutacja Średnie dopasowanie w populacji większe niż na początku! Najlepsze dopasowanie w populacji większe niż na początku! Czy tak musi być zawsze?
15 Kodowanie dla problemu optymalizacji funkcji zmiennych o wartościach rzeczywistych chromosom L 1-1 gen L 1 bitów poświęconych na zakodowanie zmiennej rzeczywistej x [ a, b] Niech c i oznacza wartość i-tego bitu (i=0,1,...,l 1-1). Wtedy x=a b a L 1 2 L 1 1 i =1 c L1 i 2 i Lub prościej, niech U będzie liczbą kodowaną przez L 1 bitów w naturalnym kodzie binarnym, wtedy: x=a b a U 2 L L 1 Tylko wartości z nieskończonego przedziału [a,b] jest reprezentowanych. Większa liczba bitów: większa precyzja (i wolniejsze obliczenia). 15
16 16 Naturalny kod binarny, a kod Gray'a U kod NKB kod Gray'a Kod Gray'a ma ciekawą własność: przejście pomiędzy dwoma sąsiednimi liczbami wymaga zmiany tylko jednego bitu (W przypadku kodu NKB przejście 3 4 wymaga zmian wszystkich 3 bitów). Dzięki temu niewielkie zmiany w fenotypie wymagają niewielkich zmian w genotypie.
17 Optymalizacja funkcji wielu zmiennych Posiadając wiedzę, którą dotychczas przekazałem powinniście Państwo być w stanie zastosować algorytm SGA do optymalizacji funkcji wielu zmiennych. Na wykresie dwuwymiarowa funkcja Ackley'a mająca minimum f(0,0)=0 17
18 18 Algorytm standardowy nie jest wolny od problemów Algorytm był przedmiotem wielu (wczesnych) studiów zarówno eksperymentalnych jak i teoretycznych (teoria schematów, analiza przy pomocy łańcuchów Markowa) Krzyżowanie i mutacja działają tylko dla ciągów binarnych (ewentualnie ciągów symboli ze skończonego alfabetu) Reprezentacja binarna jest zbyt restrykcyjna. Dla optymalizacji funkcji zmiennych rzeczywistych lepsza by była reprezentacja zmiennopozycyjna. oraz operatory krzyżowania i mutacji działające na tej reprezentacji. Model generacyjny sukcesji (wszyscy rodzice wymierają, potomkowie zastępuję rodziców) sprawia, że najlepsze dopasowanie w populacji nie musi monotoniczne rosnąć w kolejnych generacjach. Selekcja proporcjonalna nie jest pozbawiona wad (problem ze zbyt słabym albo zbyt silnym naporem selekcyjnym). Superosobnicy we wczesnych fazach algorytmu Prawie identyczne dopasowanie wszystkich osobników w populacji w późnych fazach algorytmu.
19 19 Problem z superosobnikami We wczesnych fazach ewolucji w populacji może pojawić się jeden (lub kilka) osobnik o dopasowaniu drastycznie lepszym od pozostałych osobników w populacji. W takiej sytuacji selekcja proporcjonalna sprawi, że superosobnik otrzyma bardzo dużą liczbę kopii (liczba kopii jest równa dopasowaniu osobnika podzielonemu przez średnie dopasowanie w populacji). W krótkim czasie populacja zostanie zdominowana przez (niemal identycznych potomków) superosobnika i algorytm straci możliwość eksploracji przestrzeni rozwiązań. Zjawisko przedwczesnej zbieżności algorytmu (ang. premature convergence)
20 20 Słaby napór selekcyjny w późnych fazach algorytmu W późnych fazach algorytmu przystosowanie wszystkich osobników w populacji jest w przybliżeniu takie same. W takim wypadku każdy osobnik ma podobne szanse na bycie wybranym w procesie selekcji. Algorytm ma trudności z preferowaniem bardziej dopasowanych osobników i z dalszym ulepszeniem dopasowania. Błądzenie przypadkowe wśród przeciętniaków (D.E. Goldberg).
21 21 Liniowe skalowanie dopasowania (ang. fitness scaling) Prawdopodobieństwo selekcji: p y i = S i=1 f y i f y j Oczekiwana liczba kopii osobnika w populacji T t (S jest licznością populacji): S p y i = S f y i S i=1 f y j = f y i f AVG, gdzie f AVG jest średnim przystosowaniem w populacji. Problem z selekcją proporcjonalną pojawia się wtedy gdy f MAX (dopasowanie najlepszego osobnika w populacji jest zbyt duże lub zbyt małe). Idea skalowania liniowego: Przekształcić wartości funkcji dopasowania tak aby najlepszy osobnik otrzymał zawsze stałą liczbę kopii równą k. A dopasowanie przeciętnego osobnika w populacji się nie zmieniło.
22 22 Liniowe skalowanie dopasowania (2) Funkcja dopasowania po przeskalowaniu: przy czym współczynniki a oraz b obliczamy w taki sposób że: dopasowanie osobnika przeciętnego się nie zmienia najlepszy osobnik otrzyma k kopii przy czym dla typowych populacji (od 50 do 100 osobników) D.E. Goldberg zaleca k [1.2, 2 ] f ' y i =a f y i b (k staje się kolejnym parametrem algorytmu) f AVG =a f AVG b k f AVG =a f MAX b Rozwiązując powyższy układ równań liniowych (ze względu na niewiadome a oraz b) znajdujemy współczynniki skalowania. A jak nie potrafimy rozwiązać układu równań, sięgamy do książki Goldberga i przepisujemy kod. Wartości dopasowania uzyskane w wyniku skalowania wykorzystane są w procesie selekcji proporcjonalnej, ale...
23 Liniowe skalowanie dopasowania - problem Dopasowanie po przeskalowaniu k*f AVG f AVG f' MIN f MIN f AVG f MAX prosta przeskalowania wg. zmodyfikowanego wzoru Dopasowanie pierwotne W dojrzałej populacji (dopasowanie zbliżone, z wyjątkiem kilku degeneratów ) wyniku skalowania możemy otrzymać ujemne wartości funkcji dopasowania nie da się zastosować selekcji proporcjonalnej. Wyjście (D.E. Goldberg) zastąp warunek: przez warunek: (drugi warunek nie ulega zmianie) k f AVG =a f MAX b 0=a f MIN b 23
24 Wielokrotne losowanie przy pomocy koła ruletki - problem 24 Problemem jest duża wariancja liczby kopii osobnika w populacji rodziców T t. W rezultacie liczba kopii może dość znacznie się różnić od wartości oczekiwanej. Rozważmy populację o rozmiarze S=2 i następujących wartościach funkcji dopasowania: i f(y i ) p(y i ) S*p(y i ) W powyższej populacji dopasowanie osobnika y1 jest znacznie większe. Jednak możliwa jest sytuacja (jej prawdopodobieństwo wynosi 0.1*0.1=0.001), że ani razu nie zostanie on wybrany do populacji rodziców T t. Wyjście: lepsze algorytmy próbkowania populacji, redukujące wariancję liczby kopii osobnika np. stochastic remainder sampling (SRS - Brindle, 1981), stochastic universal sampling (SUS - Baker 1987).
25 Stochastic Remainder Sampling i f(y i ) p(y i ) S*p(y i ) S p y i S p y i S p y i Najpierw deterministycznie wybierz do populacji O t kopii każdego z osobników. Następnie użyj jako nowej wartości dopasowania przy selekcji pozostałych kopii (tak aby łączny rozmiar populacji był równy S) metodą koła ruletki. W przykładzie w tabelce osobniki y 2,...,y 5 rywalizują o dwa pozostałe miejsca. S p y i S p y i Gwarancja że liczba kopii osobnika S p y i S p y i Jeszcze lepszy algorytm SUS pozostawiam jako pracę domową. 25
26 26 Zakończenie Dla celów Państwa projektu za algorytm standardowy będziemy uważali algorytm z: próbkowaniem przy pomocy metody SRS albo SUS. liniowym skalowaniem dopasowania. kodowaniem Gray'a w przypadku optymalizacji funkcji zmiennych rzeczywistych. Następny wykład: Ulepszenia algorytmu standardowego. Nowe operatory krzyżowania. Nowe algorytmy selekcji. Reprezentacja zmiennopozycyjna i specjalnie zaprojektowane dla niej operatory (Michalewicz, rozdz. 5).
Modyfikacje i ulepszenia standardowego algorytmu genetycznego
Modyfikacje i ulepszenia standardowego algorytmu genetycznego 1 2 Przypomnienie: pseudokod SGA t=0; initialize(p 0 ); while(!termination_condition(p t )) { evaluate(p t ); T t =selection(p t ); O t =crossover(t
Algorytmy ewolucyjne NAZEWNICTWO
Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA
PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana
Algorytmy genetyczne (AG)
Algorytmy genetyczne (AG) 1. Wprowadzenie do AG a) ewolucja darwinowska b) podstawowe definicje c) operatory genetyczne d) konstruowanie AG e) standardowy AG f) przykład rozwiązania g) naprawdę bardzo,
Algorytmy genetyczne w optymalizacji
Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA Wykład 2 dr inż. Agnieszka Bołtuć Historia Zadania Co odróżnia od klasycznych algorytmów Nazewnictwo Etapy Kodowanie, inicjalizacja, transformacja funkcji celu Selekcja
Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba
Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów
ALGORYTMY GENETYCZNE ćwiczenia
ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację
Dobór parametrów algorytmu ewolucyjnego
Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć
Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS
Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,
Obliczenia ewolucyjne - plan wykładu
Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja
Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny
Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
6. Klasyczny algorytm genetyczny. 1
6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu
Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009
Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane
ALGORYTMY GENETYCZNE (wykład + ćwiczenia)
ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja
Teoria algorytmów ewolucyjnych
Teoria algorytmów ewolucyjnych 1 2 Dlaczego teoria Wynik analiza teoretycznej może pokazać jakie warunki należy spełnić, aby osiągnąć zbieżność do minimum globalnego. Np. sukcesja elitarystyczna. Może
Równoważność algorytmów optymalizacji
Równoważność algorytmów optymalizacji Reguła nie ma nic za darmo (ang. no free lunch theory): efektywność różnych typowych algorytmów szukania uśredniona po wszystkich możliwych problemach optymalizacyjnych
Strategie ewolucyjne (ang. evolution strategies)
Strategie ewolucyjne (ang. evolution strategies) 1 2 Szybki przegląd Rozwijane w Niemczech w latach 60-70. Wcześni badacze: I. Rechenberg, H.-P. Schwefel (student Rechenberga). Typowe zastosowanie: Optymalizacja
METODY HEURYSTYCZNE wykład 3
METODY HEURYSTYCZNE wykład 3 1 Przykład: Znaleźć max { f (x)=x 2 } dla wartości całkowitych x z zakresu 0-31. Populacja w chwili t: P(t)= {x t 1,...x t n} Założenia: - łańcuchy 5-bitowe (x=0,1,...,31);
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Zadanie 5 - Algorytmy genetyczne (optymalizacja)
Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania
Algorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Algorytmy Genetyczne Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Metody heurystyczne Algorytm efektywny: koszt zastosowania (mierzony
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne)
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań
METODY HEURYSTYCZNE wykład 3
SCHEMAT DZIAŁANIA AG: METODY HEURYSTYCZNE wykład 3 procedure Algorytm_genetyczny t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do t:=t+ wybierz P(t) z P(t-) (selekcja)
Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne
Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-27 1 Mutacje algorytmu genetycznego 2 Dziedzina niewypukła abstrakcyjna
Obliczenia Naturalne - Algorytmy genetyczne
Literatura Obliczenia Naturalne - Algorytmy genetyczne Paweł Paduch Politechnika Świętokrzyska 20 marca 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy genetyczne 1 z 45 Plan wykładu Literatura 1 Literatura
Algorytmy genetyczne
Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania
Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Treść wykładu Wprowadzenie Zasada działania Podział EA Cechy EA Algorytm genetyczny 2 EA - wprowadzenie Algorytmy ewolucyjne
Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek
Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność
Strategie ewolucyjne (ang. evolu4on strategies)
Strategie ewolucyjne (ang. evolu4on strategies) Strategia ewolucyjna (1+1) W Strategii Ewolucyjnej(1 + 1), populacja złożona z jednego osobnika generuje jednego potomka. Kolejne (jednoelementowe) populacje
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 17. ALGORYTMY EWOLUCYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska KODOWANIE BINARNE Problem różnych struktur przestrzeni
Techniki ewolucyjne - algorytm genetyczny i nie tylko
Reprezentacja binarna W reprezentacji binarnej wybór populacji początkowej tworzymy poprzez tablice genotypów (rys.1.), dla osobników o zadanej przez użytkownika wielkości i danej długości genotypów wypełniamy
Algorytmy genetyczne
Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania
Problemy optymalizacyjne Dana jest przestrzeń X. Znaleźć x X taki, że x spełnia określone warunki. Dana jest przestrzeń X i funkcja celu f: X R.
Problemy optymalizacyjne Dana jest przestrzeń X. Znaleźć x X taki, że x spełnia określone warunki. Dana jest przestrzeń X i funkcja celu f: X R. Znaleźć x X taki, że f(x) jest maksimum (minimum) funkcji
Algorytmy ewolucyjne. wprowadzenie
Algorytmy ewolucyjne wprowadzenie Gracjan Wilczewski, www.mat.uni.torun.pl/~gracjan Toruń, 2005 Historia Podstawowy algorytm genetyczny został wprowadzony przez Johna Hollanda (Uniwersytet Michigan) i
ALHE Z11 Jarosław Arabas wykład 11
ALHE Z11 Jarosław Arabas wykład 11 algorytm ewolucyjny inicjuj P 0 {x 1, x 2... x } t 0 while! stop for i 1: if a p c O t,i mutation crossover select P t, k else O t,i mutation select P t,1 P t 1 replacement
ALGORYTMY GENETYCZNE
ALGORYTMY GENETYCZNE Algorytmy Genetyczne I. Co to są algorytmy genetyczne? II. Podstawowe pojęcia algorytmów genetycznych III. Proste algorytmy genetyczne IV. Kodowanie osobników i operacje genetyczne.
Algorytmy genetyczne w interpolacji wielomianowej
Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego
Generowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska
ALGORYTMY GENETYCZNE I EWOLUCYJNE
http://wazniak.mimuw.edu.pl INTELIGENTNE TECHNIKI KOMPUTEROWE wykład Karol Darwin (59 On the origin of species ): ALGORYTMY GENETYCZNE I EWOLUCYJNE Gregor Johann Mel (-) - austriacki zakonnik, augustianin,
LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
Problemy z ograniczeniami
Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego Algorytm ewolucyjny algorytm ewolucyjny inicjuj P 0 {P 0 1, P 0 2... P 0 μ } t 0 H P 0 while! stop for (i 1: λ) if (a< p c ) O t i mutation(crossover
LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch
OBLICZENIA EWOLUCYJNE LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 2012 OBLICZENIA EWOLUCYJNE LABORATORIUM 5 2 Cel ćwiczenia
Techniki optymalizacji
Techniki optymalizacji Algorytm kolonii mrówek Idea Smuga feromonowa 1 Sztuczne mrówki w TSP Sztuczna mrówka agent, który porusza się z miasta do miasta Mrówki preferują miasta połączone łukami z dużą
Algorytmy ewolucyjne `
Algorytmy ewolucyjne ` Wstęp Czym są algorytmy ewolucyjne? Rodzaje algorytmów ewolucyjnych Algorytmy genetyczne Strategie ewolucyjne Programowanie genetyczne Zarys historyczny Alan Turing, 1950 Nils Aall
Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny
Soft computing Soft computing tym róŝni się od klasycznych obliczeń (hard computing), Ŝe jest odporny na brak precyzji i niepewność danych wejściowych. Obliczenia soft computing mają inspiracje ze świata
Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek
Strategie ewolucyjne Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne, a algorytmy genetyczne Podobieństwa: Oba działają na populacjach rozwiązań Korzystają z zasad selecji i przetwarzania
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne
Prawdopodobieństwo i statystyka
Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.
Algorytmy ewolucyjne Część II
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Część II Metaheurystyki Treść wykładu Zastosowania Praktyczne aspekty GA Reprezentacja Funkcja dopasowania Zróżnicowanie dopasowania
Testy De Jonga. Problemy. 1 Optymalizacja dyskretna i ciągła
Problemy 1 Optymalizacja dyskretna i ciągła Problemy 1 Optymalizacja dyskretna i ciągła 2 Środowisko pomiarowe De Jonga Problemy 1 Optymalizacja dyskretna i ciągła 2 Środowisko pomiarowe De Jonga 3 Ocena
Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
Podejście memetyczne do problemu DCVRP - wstępne wyniki. Adam Żychowski
Podejście memetyczne do problemu DCVRP - wstępne wyniki Adam Żychowski Na podstawie prac X. S. Chen, L. Feng, Y. S. Ong A Self-Adaptive Memeplexes Robust Search Scheme for solving Stochastic Demands Vehicle
Optymalizacja parametryczna (punkt kartezjańskim jest niewypukła).
METODY INTELIGENCJI OBLICZENIOWEJ wykład RODZAJE ZADAŃ OPTYMALIZACJI (w zależno ności od przestrzeni szukiwań) Optymalizacja parametryczna (punkt U jest wektorem zm. niezależnych nych):. Zadania ciągłe
Algorytmy ewolucyjne (2)
Algorytmy ewolucyjne (2) zajecia.jakubw.pl/nai/ ALGORYTM GEETYCZY Cel: znaleźć makimum unkcji. Założenie: unkcja ta jet dodatnia. 1. Tworzymy oobników loowych. 2. Stoujemy operacje mutacji i krzyżowania
Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna)
1 Zagadnienia Sztucznej Inteligencji laboratorium Wprowadzenie Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna) Dana jest funkcja f, jednej lub wielu zmiennych. Należy określić wartości
Rok akademicki: 2013/2014 Kod: JIS AD-s Punkty ECTS: 4. Kierunek: Informatyka Stosowana Specjalność: Modelowanie i analiza danych
Nazwa modułu: Algorytmy genetyczne i ich zastosowania Rok akademicki: 2013/2014 Kod: JIS-2-201-AD-s Punkty ECTS: 4 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Informatyka Stosowana Specjalność:
Zaawansowane programowanie
Zaawansowane programowanie wykład 1: wprowadzenie + algorytmy genetyczne Plan wykładów 1. Wprowadzenie + algorytmy genetyczne 2. Metoda przeszukiwania tabu 3. Inne heurystyki 4. Jeszcze o metaheurystykach
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
przetworzonego sygnału
Synteza falek ortogonalnych na podstawie oceny przetworzonego sygnału Instytut Informatyki Politechnika Łódzka 28 lutego 2012 Plan prezentacji 1 Sformułowanie problemu 2 3 4 Historia przekształcenia falkowego
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis
Programowanie genetyczne, gra SNAKE
STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................
Algorytmy genetyczne jako metoda wyszukiwania wzorców. Seminarium Metod Inteligencji Obliczeniowej Warszawa 26 X 2005 mgr inż.
Algorytmy genetyczne jako metoda wyszukiwania wzorców Seminarium Metod Inteligencji Obliczeniowej Warszawa 26 X 2005 mgr inż. Marcin Borkowski Krótko i na temat: Cel pracy Opis modyfikacji AG Zastosowania
Systemy Inteligentnego Przetwarzania wykład 4: algorytmy genetyczne, logika rozmyta
Systemy Inteligentnego Przetwarzania wykład 4: algorytmy genetyczne, logika rozmyta Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Wprowadzenie Problemy
OBLICZENIA EWOLUCYJNE
METODY ANALITYCZNE kontra AG/AE OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome EVOLUTIONARY OPERATORS AND RECEIVING
METODY HEURYSTYCZNE 3
METODY HEURYSTYCZNE wykład 3 1 ALGORYTMY GENETYCZNE 2 SCHEMAT DZIAŁANIA ANIA AG: procedure algorytm_genetyczny begin t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do
BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE. Adrian Horzyk. Akademia Górniczo-Hutnicza
BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 2 communication
Program "FLiNN-GA" wersja 2.10.β
POLSKIE TOWARZYSTWO SIECI NEURONOWYCH POLITECHNIKA CZĘSTOCHOWSKA Zakład Elektroniki, Informatyki i Automatyki Maciej Piliński Robert Nowicki - GA Program "FLiNN-GA" wersja 2.10.β Podręcznik użytkownika
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Automatyczny dobór parametrów algorytmu genetycznego
Automatyczny dobór parametrów algorytmu genetycznego Remigiusz Modrzejewski 22 grudnia 2008 Plan prezentacji Wstęp Atrakcyjność Pułapki Klasyfikacja Wstęp Atrakcyjność Pułapki Klasyfikacja Konstrukcja
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. KOMPRESJA ALGORYTMEM ARYTMETYCZNYM, GOLOMBA I RICE'A Idea algorytmu arytmetycznego Przykład kodowania arytmetycznego Renormalizacja
Zadania laboratoryjne i projektowe - wersja β
Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9,
1 Kody Tunstalla Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9, 14.04.2005 Inne podejście: słowa kodowe mają ustaloną długość, lecz mogą kodować ciągi liter z alfabetu wejściowego o różnej
Podstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera
LICZEBNOŚĆ POPULACJI OBLICZENIA EWOLUCYJNE. wykład 3. Istotny parametr AG...
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS VALUE fitness f. value
Algorytmy ewolucyjne
Algorytmy ewolucyjne Dr inż. Michał Bereta p. 144 / 10, Instytut Modelowania Komputerowego mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Problemy świata rzeczywistego często wymagają
Obliczenia Naturalne - Algorytmy genetyczne
Literatura Kodowanie Obliczenia Naturalne - Algorytmy genetyczne Paweł Paduch Politechnika Świętokrzyska 27 marca 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy genetyczne 1 z 45 Plan wykładu Literatura
Naturalny kod binarny (NKB)
SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System
Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym
Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb
Wybrane metody przybliżonego. wyznaczania rozwiązań (pierwiastków) równań nieliniowych
Wykład trzeci 1 Wybrane metody przybliżonego wyznaczania rozwiązań pierwiastków równań nieliniowych 2 Metody rozwiązywania równań nieliniowych = 0 jest unkcją rzeczywistą zmiennej rzeczywistej Rozwiązanie
Centralne twierdzenie graniczne
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
Wielokryterialne harmonogramowanie portfela projektów. Bogumiła Krzeszowska Katedra Badań Operacyjnych
Wielokryterialne harmonogramowanie portfela projektów Bogumiła Krzeszowska Katedra Badań Operacyjnych Problem Należy utworzyć harmonogram portfela projektów. Poprzez harmonogram portfela projektów będziemy
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50 Anna Landowska KLASYCZNY ALGORYTM GENETYCZNY W DYNAMICZNEJ OPTYMALIZACJI MODELU