Narzędzia AI. Jakub Wróblewski Pokój SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE)
|
|
- Piotr Chrzanowski
- 9 lat temu
- Przeglądów:
Transkrypt
1 Narzędzia AI Jakub Wróblewski Pokój SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Nauka o maszynach realizujących zadania, które wymagają inteligencji wówczas, gdy są wykonywane przez człowieka. Ale rozpoznanie twarzy na zdjęciu nie jest zwykle uznawane za przejaw inteligencji u człowieka. Z drugiej strony: przewidywanie skutków własnych działań (np. wyliczenie brutalną siłą wszystkich możliwych stanów w grze w kółko i krzyżyk) często nie jest uznawane za przejaw AI. 1
2 SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Maszyna jest inteligentna, jeżeli znajdujący się w drugim pomieszczeniu obserwator nie zdoła odróżnić jej odpowiedzi od odpowiedzi człowieka. Test Turinga. Uwzględnia tylko wąski aspekt inteligencji człowieka. SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Nauka o tym, w jakich inteligentnych czynnościach człowieka można obyć się bez inteligencji. Dział informatyki, którego przedmiotem jest badanie reguł rządzących inteligentnymi zachowaniami człowieka, tworzenie modeli formalnych tych zachowań i - w rezultacie - programów komputerowych symulujących te zachowania. 2
3 SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Dział informatyki uprawiany przez badaczy uważających się za specjalistów od AI i piszących książki z AI w tytule. Czy kryterium sztucznej inteligencji ma obejmować skutki działania programu, czy jego budowę wewnętrzną? LUDZKA INTELIGENCJA FORMY Praktyczna: umiejętność rozwiązywania konkretnych zagadnień. Abstrakcyjna: zdolność operowania symbolami i pojęciami. Społeczna: umiejętność zachowania się w grupie. 3
4 LUDZKA INTELIGENCJA CECHY Dopasowanie działania do okoliczności: wybieranie najlepszego wariantu rozwiązania danego problemu. Świadomość działania: droga od sformułowania problemu do rozwiązania jest ściśle określona. Znajomość własnych ograniczeń: inteligentny człowiek nie odpowiada na pytania, na które nie zna odpowiedzi. HISTORIA AI Era prehistoryczna: Do około 1960 roku, kiedy pojawiły się powszechnie dostępne komputery. Era romantyczna: , kiedy przewidywano, że AI osiągnie swoje cele w ciągu 10 lat i odniesiono sporo początkowych sukcesów. Okres ciemności: , w którym niewiele się działo, opadł entuzjazm i pojawiły się głosy krytyczne. 4
5 HISTORIA AI Renesans: , gdy zaczęto budować pierwsze systemy doradcze, użyteczne w praktyce. Okres partnerstwa: , gdy do badań nad AI wprowadzono metody z nauk poznawczych i nauk o mózgu, itd. Okres komercjalizacji: , gdy przymiotnik inteligentny stał się sloganem reklamowym. HISTORIA AI - SZACHY ok pierwsze programy szachowe 1951 A. Turing: Nikt nie jest w stanie ułożyć programu lepszego od własnego poziomu gry pierwsze zwycięstwo komputera nad profesjonalnym szachistą podczas turnieju 1977 pierwsze zwycięstwo nad mistrzem klasy międzynarodowej (jedna partia w symultanie) 1997 Deep Blue wygrywa pełny mecz z Kasparowem (specjalny superkomputer 418-procesorowy; wynik 3,5:2,5) 2003 Deep Junior remisuje z Kasparowem mecz na warunkach przez niego określonych (8 zwykłych procesorów Intela 1,6 GHz; wynik 3:3) 5
6 HISTORIA AI - WARCABY 1952 (A. Samuel) programy do gry w warcaby z elementami uczenia się (ewolucyjnego) 1989 Chinook, program z biblioteką wszystkich końcówek 8-pionkowych (6 GB). W 1992 przegrał (2:4) z mistrzem świata; w 1996 zwyciężył w ogólnokrajowym konkursie w USA. Aktualny mistrz świata: program Nemesis. Problem warcabów można uznać za praktycznie rozstrzygnięty, tzn. w większości przypadków można podać wynik gry po pierwszym ruchu. ZAGADNIENIA AI Stworzenie maszyn o inteligencji dorównującej (przewyższającej) ludzką. Stworzenie maszyn (algorytmów) przejawiających tylko wąski aspekt inteligencji (grających w szachy, rozpoznających obrazy, czy tworzących streszczenia tekstu). 6
7 CO OKAZAŁO SIĘ TRUDNE, A CO ŁATWE 1961 SYSTEMY UCZĄCE SIĘ Systemy eksperckie, rozumowanie logiczne. Komputerowe widzenie, analiza oraz rekonstrukcja obrazu. Rozpoznawanie obrazów, mowy, pisma, struktur chemicznych oraz biologicznych, stanu zdrowia, sensu wyrazów i zdań... 7
8 SYSTEMY UCZĄCE SIĘ Systemy posiadające zdolność poprawiania jakości swojego działania poprzez zdobywanie nowych doświadczeń, które są następnie wykorzystywane podczas kolejnych interakcji ze środowiskiem. SYSTEMY UCZĄCE SIĘ Uczenie się może przebiegać pod nadzorem użytkownika dostarczającego informacje o przebiegu nauki, lub bez nadzoru, gdy kryterium poprawności wbudowane jest w system. 8
9 SYSTEMY UCZĄCE SIĘ Układy samoadaptacyjne: dobierające parametry pracy w zależności od efektów, a jednocześnie doskonalące strategię uczenia się (np. strategie ewolucyjne). SYSTEMY UCZĄCE SIĘ Wspomaganie decyzji menedżerskich, diagnoz medycznych... Modelowanie gier, uczenie się na błędach. Sterowanie samochodów, robotów, fabryk... Planowanie, optymalizacja wielokryterialna. 9
10 SYSTEMY UCZĄCE SIĘ Oczyszczanie obrazów, separacja sygnałów akustycznych. Prognozowanie wskaźników ekonomicznych, decyzji zakupu... Łączenie informacji z wielu baz danych. Inteligentne szukanie wiedzy w bazach danych. TRENING KLASYFIKATORA > classifier < Marks > classifier < not Marks > classifier < not Marks > classifier < Marks > classifier < not Marks > classifier < not Marks 10
11 UŻYCIE KLASYFIKATORA > Classifier > Marks UWAGA: TEN OBRAZ NIE NALEŻAŁ DO PRÓBKI TRENINGOWEJ!!! PROGRAM WYKŁADU Problemy optymalizacji i przeszukiwania: heurystyki, złożoność obliczeniowa, przykłady i zastosowania Sieci neuronowe: przegląd struktur oraz zastosowań, metody uczenia, propagacja wsteczna 11
12 PROGRAM WYKŁADU Algorytmy randomizowane: wychładzanie, strategie ewolucyjne, Monte Carlo, maszyny Boltzmana, sieci Kohonena Algorytmy ewolucyjne: operatory genetyczne, metody hybrydowe i zastosowania KRYTERIA ZALICZANIA Ćwiczenia: Kolokwium Co najmniej jeden projekt programistyczny Inne, ustalone przez prowadzących zajęcia Egzamin: Egzamin pisemny, jeden termin poprawkowy, trzeba mieć wcześniej zaliczone ćwiczenia Ocena 5.0 z ćwiczeń zwalnia z egzaminu (można za nią otrzymać 4) Brak możliwości warunkowego przystępowania do egzaminu (bez zaliczenia ćwiczeń) 12
Narzÿdzia AI UKŁAD WYKŁADU
Narzÿdzia AI Dominik lÿzak slezak@pjwstk.edu.pl Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 311, tel. wewn. 152 http://www.qed.pl/ai/ UKŁAD WYKŁADU Sztuczna inteligencja Systemyuczce siÿ Program wykładu
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział
Stefan Sokołowski SZTUCZNAINTELIGENCJA. Inst. Informatyki UG, Gdańsk, 2009/2010
Stefan Sokołowski SZTUCZNAINTELIGENCJA Inst. Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str.1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://inf.ug.edu.pl/ stefan/dydaktyka/sztintel/
SZTUCZNA INTELIGENCJA
Stefan Sokołowski SZTUCZNA INTELIGENCJA Inst Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://infugedupl/ stefan/dydaktyka/sztintel/
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne. Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych Plan wystąpienia Co to jest sztuczna inteligencja? Pojęcie słabej
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj
Metody Sztucznej Inteligencji Methods of Artificial Intelligence. Elektrotechnika II stopień ogólno akademicki. niestacjonarne. przedmiot kierunkowy
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Festiwal Myśli Abstrakcyjnej, Warszawa, Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII?
Festiwal Myśli Abstrakcyjnej, Warszawa, 22.10.2017 Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII? Dwa kluczowe terminy Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące
Sztuczna inteligencja - wprowadzenie
Sztuczna inteligencja - wprowadzenie Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Sztuczna inteligencja komputerów - wprowadzenie Kontakt: dr inż. Dariusz Banasiak, pok.
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.
SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu
Sztuczna inteligencja
Sztuczna inteligencja Przykładowe zastosowania Piotr Fulmański Wydział Matematyki i Informatyki, Uniwersytet Łódzki, Polska 12 czerwca 2008 Plan 1 Czym jest (naturalna) inteligencja? 2 Czym jest (sztuczna)
Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Zastosowanie sztucznych sieci neuronowych Nazwa modułu w informatyce Application of artificial
Wprowadzenie do teorii systemów ekspertowych
Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z
ALGORYTMY EWOLUCYJNE
1 ALGORYTMY FITNESS F. START COMPUTATION FITNESS F. COMPUTATION EWOLUCYJNE INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS VALUE fitness f.
Inteligencja. Władysław Kopaliśki, Słownik wyrazów obcych i zwrotów obcojęzycznych
Wstęp Inteligencja Władysław Kopaliśki, Słownik wyrazów obcych i zwrotów obcojęzycznych inteligencja psych. zdolność rozumienia, kojarzenia; pojętność, bystrość; zdolność znajdowania właściwych, celowych
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, laboratorium BIOCYBERNETYKA Biocybernetics Forma studiów:
kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) polski drugi semestr letni (semestr zimowy / letni)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Załącznik 2. Symbol efektu obszarowego. Kierunkowe efekty uczenia się (wiedza, umiejętności, kompetencje) dla całego programu kształcenia
Załącznik 2 Opis kierunkowych efektów kształcenia w odniesieniu do efektów w obszarze kształcenia nauk ścisłych profil ogólnoakademicki Kierunek informatyka, II stopień, tryb niestacjonarny. Oznaczenia
Załącznik 2. Symbol efektu obszarowego. Kierunkowe efekty uczenia się (wiedza, umiejętności, kompetencje) dla całego programu kształcenia
Załącznik 2 Opis kierunkowych efektów kształcenia w odniesieniu do efektów w obszarze kształcenia nauk ścisłych profil ogólnoakademicki Kierunek informatyka, II stopień. Oznaczenia efektów obszarowych
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, w głąb. Spis treści: 1. Wprowadzenie 3. str. 1.1 Krótki Wstęp
[1] [2] [3] [4] [5] [6] Wiedza
3) Efekty dla studiów drugiego stopnia - profil ogólnoakademicki na kierunku Informatyka w języku angielskim (Computer Science) na specjalności Sztuczna inteligencja (Artificial Intelligence) na Wydziale
Prof. Stanisław Jankowski
Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny
PRZEWODNIK DYDAKTYCZNY I PROGRAM NAUCZANIA PRZEDMIOTU FAKULTATYWNEGO NA KIERUNKU LEKARSKIM ROK AKADEMICKI 2016/2017
PRZEWODNIK DYDAKTYCZNY I PROGRAM NAUCZANIA PRZEDMIOTU FAKULTATYWNEGO NA KIERUNKU LEKARSKIM ROK AKADEMICKI 2016/2017 1. NAZWA PRZEDMIOTU: SZTUCZNA INTELIGENCJA W MEDYCYNIE 2. NAZWA JEDNOSTKI (jednostek
Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011
Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011 Przedmowa. CZĘŚĆ I: WPROWADZENIE 1. Komputer 1.1. Kółko i krzyżyk 1.2. Kodowanie 1.3. Odrobina fantazji
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE DIAGNOSTYKĘ MEDYCZNĄ Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, projekt
Archipelag Sztucznej Inteligencji
Archipelag Sztucznej Inteligencji Istniejące metody sztucznej inteligencji mają ze sobą zwykle niewiele wspólnego, więc można je sobie wyobrażać jako archipelag wysp, a nie jako fragment stałego lądu.
KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
a) Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów
1. PROGRAM KSZTAŁCENIA 1) OPIS EFEKTÓW KSZTAŁCENIA a) Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych i technicznych Objaśnienie oznaczeń: I efekty
Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Gry komputerowe i multimedia, GKiM studia niestacjonarne Dla rocznika:
Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Gry komputerowe i multimedia, GKiM studia niestacjonarne Dla rocznika: Rok I, semestr I (zimowy) 1 Etykieta w życiu publicznym
2
1 2 3 4 5 Dużo pisze się i słyszy o projektach wdrożeń systemów zarządzania wiedzą, które nie przyniosły oczekiwanych rezultatów, bo mało kto korzystał z tych systemów. Technologia nie jest bowiem lekarstwem
Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia
Studia pierwszego stopnia I rok Matematyka dyskretna 30 30 Egzamin 5 Analiza matematyczna 30 30 Egzamin 5 Algebra liniowa 30 30 Egzamin 5 Statystyka i rachunek prawdopodobieństwa 30 30 Egzamin 5 Opracowywanie
Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia
Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Numeryczne rozwiązywanie równań różniczkowych zwyczajnych Wydział Matematyki
Zakładane efekty kształcenia dla kierunku Wydział Telekomunikacji, Informatyki i Elektrotechniki
Jednostka prowadząca kierunek studiów Nazwa kierunku studiów Specjalności Obszar kształcenia Profil kształcenia Poziom kształcenia Forma kształcenia Tytuł zawodowy uzyskiwany przez absolwenta Dziedziny
Rok I, semestr I (zimowy) Liczba godzin
Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Gry komputerowe i multimedia, GKiM studia stacjonarne Dla rocznika: 2018/2019 Rok I, semestr I (zimowy) Lp. Nazwa przedmiotu
Nazwa przedmiotu: METODY SZTUCZNEJ INTELIGENCJI W ZAGADNIENIACH EKONOMICZNYCH Artificial intelligence methods in economic issues Kierunek:
Nazwa przedmiotu: METODY SZTUCZNEJ INTELIGENCJI W ZAGADNIENIACH EKONOMICZNYCH Artificial intelligence methods in economic issues Kierunek: Forma studiów: Informatyka Stacjonarne Rodzaj przedmiotu: obowiązkowy
Zagadnienia egzaminacyjne AUTOMATYKA I ROBOTYKA. Stacjonarne I-go stopnia TYP STUDIÓW STOPIEŃ STUDIÓW SPECJALNOŚĆ
(ARK) Komputerowe sieci sterowania 1.Badania symulacyjne modeli obiektów 2.Pomiary i akwizycja danych pomiarowych 3.Protokoły transmisji danych w systemach automatyki 4.Regulator PID struktury, parametry,
w tym laborat. Razem semin. konwer. wykłady ćwicz. w tym laborat. Razem ECTS Razem semin. konwer.
A 08- IO2S-13 Wydział Informatyki i Nauki o Materiałach Kierunek Informatyka GRUPA TREŚCI PODSTAWOWYCH Nazwa modułu studia II stopnia studia stacjonarne od roku akademickiego 2015/2016 semestr 1 semestr
T2A_W01 T2A_W01 T2A_W02 3 SI_W03 Posiada szeroką wiedzę w zakresie teorii grafów T2A_W01
Efekty dla studiów drugiego stopnia profil ogólnoakademicki, na kierunku Informatyka w języku polskim, na specjalnościach Metody sztucznej inteligencji oraz Projektowanie systemów CAD/CAM, na Wydziale
Programowanie gier. wykład 0. Joanna Kołodziejczyk. 30 września Joanna Kołodziejczyk Programowanie gier 30 września / 13
Programowanie gier wykład 0 Joanna Kołodziejczyk 30 września 2016 Joanna Kołodziejczyk Programowanie gier 30 września 2016 1 / 13 Program przedmiotu Formy zajęć: 1 Wykład studia stacjonarne (15h) 2 Laboratorium
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD III: Problemy agenta
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD III: Problemy agenta To już było: AI to dziedzina zajmująca się projektowaniem agentów Określenie agenta i agenta racjonalnego Charakterystyka PAGE
Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski
Modele Obliczeń Wykład 1 - Wprowadzenie Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2014/2015 Marcin Szczuka (MIMUW) Modele Obliczeń 2014/2015 1 /
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Algorytmy i programowanie Algorithms and Programming Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: kierunkowy Poziom studiów: studia I stopnia forma studiów: studia
Elementy kognitywistyki II: Sztuczna inteligencja
Elementy kognitywistyki II: Sztuczna inteligencja Piotr Konderak Zakład Logiki i Filozofii Nauki p.203b, Collegium Humanicum konsultacje: wtorki, 16:00-17:00 kondorp@bacon.umcs.lublin.pl http://konderak.eu
Inżynieria danych I stopień Praktyczny Studia stacjonarne Wszystkie specjalności Katedra Inżynierii Produkcji Dr Małgorzata Lucińska
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 205/206 Z-ID-602 Wprowadzenie do uczenia maszynowego Introduction to Machine Learning
KARTA PRZEDMIOTU. stacjonarne - wykład 15 h, ćw. laboratoryjne 30 h niestacjonarne - wykład 15 h, ćw. laboratoryjne 15 h
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
RAMOWY WZÓR PROGRAMU/PLANU SZKOLEŃ DOSKONALĄCYCH DLA NAUCZYCIELI
Załącznik nr 2 do Regulaminu rekrutacji uczestników i uczestnictwa w projekcie Rozwińmy skrzydła poprawa jakości kształcenia w gminie Rozprza RAMOWY WZÓR PROGRAMU/PLANU SZKOLEŃ DOSKONALĄCYCH DLA NAUCZYCIELI
Specjalność Optymalizacja Decyzji Menedżerskich. Katedra Badań Operacyjnych Uniwersytetu Łódzkiego
Specjalność Optymalizacja Decyzji Menedżerskich Katedra Badań Operacyjnych Uniwersytetu Łódzkiego Kilka słów o nas Katedra Badań Operacyjnych jest częścią Instytutu Ekonomik Stosowanych i Informatyki.
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa
Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników
Razem godzin w semestrze: Plan obowiązuje od roku akademickiego 2014/15 - zatwierdzono na Radzie Wydziału w dniu r.
Część wspólna dla kierunku 1 IMS1.01 Obiektowe projektowanie SI 2 2 E 3 60 3 2 IMS1.02 Teleinformatyka 2 2 E 4 60 4 3 IMS2.01 Modelowanie i analiza systemów dyskretnych 2 2 E 3 60 3 4 IMS2.02 Wielowymiarowa
Specjalność Optymalizacja Decyzji Menedżerskich. Katedra Badań Operacyjnych Uniwersytetu Łódzkiego
Specjalność Optymalizacja Decyzji Menedżerskich Katedra Badań Operacyjnych Uniwersytetu Łódzkiego Kilka słów o nas Katedra Badań Operacyjnych jest częścią Instytutu Ekonomik Stosowanych i Informatyki.
Diagnostyka procesów przemysłowych Kod przedmiotu
Diagnostyka procesów przemysłowych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Diagnostyka procesów przemysłowych Kod przedmiotu 06.0-WE-AiRP-DPP Wydział Kierunek Wydział Informatyki, Elektrotechniki
Podhalańska Państwowa Wyższa Szkoła Zawodowa w Nowym Targu
Wygenerowano: 2019-08-23 15:23:29.889040, PS-1-18-19 Podhalańska Państwowa Wyższa Szkoła Zawodowa w Nowym Targu Informacje ogólne Nazwa Praktyka zawodowa I Kod PS-1-2,13 Status Obowiązkowy Wydział / Instytut
K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz
K.Pieńkosz Wprowadzenie 1 dr inż. Krzysztof Pieńkosz Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej pok. 560 A tel.: 234-78-64 e-mail: K.Pienkosz@ia.pw.edu.pl K.Pieńkosz Wprowadzenie
Badacze zbudowali wiele systemów technicznych, naśladujących w komputerze ludzki mózg. Najbardziej pożyteczne okazały się sieci neuronowe.
Naśladując w komputerze ludzki mózg staramy się połączyć zalety komputera (dostępność i szybkość działania) z zaletami mózgu (zdolność do uczenia się) informatyka + 2 Badacze zbudowali wiele systemów technicznych,
5 Moduył do wyboru II *[zobacz opis poniżej] 4 Projektowanie i konfiguracja sieci komputerowych Z
1. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 2016/2017L 3. Poziom kształcenia studia drugiego stopnia 4. Profil kształcenia ogólnoakademicki 5. Forma prowadzenia studiów stacjonarna Specjalizacja:
POLITECHNIKA LUBELSKA Wydział Elektrotechniki Kierunek: INFORMATYKA II stopień niestacjonarne i Informatyki. Część wspólna dla kierunku
Część wspólna dla kierunku 1 IMN1.01 Obiektowe projektowanie SI 15 15 E 3 3 2 IMN1.02 Teleinformatyka 15 15 E 4 4 3 IMN2.01 Modelowanie i analiza systemów dyskretnych 15 15 E 3 3 4 IMN2.02 Wielowymiarowa
Sztuczna Inteligencja i Systemy Doradcze
Sztuczna Inteligencja i Systemy Doradcze Wprowadzenie Wprowadzenie 1 Program przedmiotu Poszukiwanie rozwiązań w przestrzeni stanów Strategie w grach Systemy decyzyjne i uczenie maszynowe Wnioskowanie
Symbol efektu kształcenia
Efekty dla studiów drugiego stopnia - profil ogólnoakademicki, na kierunku Informatyka, na specjalnościach Metody sztucznej inteligencji (Tabela 1), Projektowanie systemów CAD/CAM (Tabela 2) oraz Przetwarzanie
PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
Technologie cyfrowe semestr letni 2018/2019
Technologie cyfrowe semestr letni 2018/2019 Tomasz Kazimierczuk Wykład 10 (06.05.2019) Szachy Liczba możliwości: Pierwsze posunięcie białych: 20 Pierwsze posunięcie czarnych: 20 Ruch biały-czarny: 20 x
Informatyka w medycynie Punkt widzenia kardiologa
Informatyka w medycynie Punkt widzenia kardiologa Lech Poloński Mariusz Gąsior Informatyka medyczna Dział informatyki zajmujący się jej zastosowaniem w ochronie zdrowia (medycynie) Stymulacja rozwoju informatyki
Repetytorium z matematyki 3,0 1,0 3,0 3,0. Analiza matematyczna 1 4,0 2,0 4,0 2,0. Analiza matematyczna 2 6,0 2,0 6,0 2,0
PROGRAM STUDIÓW I INFORMACJE OGÓLNE 1. Nazwa jednostki prowadzącej kierunek: Wydział Matematyki i Informatyki 2. Nazwa kierunku: Informatyka 3. Oferowane specjalności: 4. Poziom kształcenia: studia pierwszego
Zakład Sterowania Systemów
Zakład Sterowania Systemów Zespół ZłoŜonych Systemów Kierownik zespołu: prof. dr hab. Krzysztof Malinowski Tematyka badań i prac dyplomowych: Projektowanie algorytmów do podejmowania decyzji i sterowania
Efekt kształcenia. Wiedza
Efekty dla studiów drugiego stopnia profil ogólnoakademicki na kierunku Informatyka na specjalności Przetwarzanie i analiza danych, na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie oznacza
Gry społecznościowe. wykład 0. Joanna Kołodziejczyk. 24 lutego Joanna Kołodziejczyk Gry społecznościowe 24 lutego / 11
Gry społecznościowe wykład 0 Joanna Kołodziejczyk 24 lutego 2017 Joanna Kołodziejczyk Gry społecznościowe 24 lutego 2017 1 / 11 Program przedmiotu Dwie formy zajęć: 1 Wykład studia stacjonarne (15h) 2
S PECJALNO S C I NTELIGENTNE S YSTEMY D ECYZYJNE
KATEDRA SYSTEMÓW DECYZYJNYCH POLITECHNIKA GDA N SKA S PECJALNO S C I NTELIGENTNE S YSTEMY D ECYZYJNE prof. dr hab. inz. Zdzisław Kowalczuk Katedra Systemów Decyzyjnych Wydział Elektroniki Telekomunikacji
Inteligencja obliczeniowa
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Inteligencja Treści wykładów Sztuczna inteligencja Algorytmy heurystyczne Podstawy algorytmów ewolucyjnych Techniki stosowane w EA Wprowadzenie do
Plan wykładów METODY SZTUCZNEJ INTELIGENCJI W UKŁADACH STEROWANIA
1 Plan wykładów Podstawy algorytmów genetycznych oraz ich aplikacje w procesach optymalizacji Sztuczne sieci neuronowe-formalne podstawy i wybrane aplikacje Wprowadzenie formysztucznej inteligencji Elementy
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Z-LOG-120I Badania Operacyjne Operations Research
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 01/013 Z-LOG-10I Badania Operacyjne Operations Research A. USYTUOWANIE MODUŁU W
PL Zjednoczona w różnorodności PL A8-0005/4. Poprawka
8.2.2017 A8-0005/4 4 Jean-Luc Schaffhauser Ustęp 1 wzywa Komisję do zaproponowania wspólnej unijnej definicji systemów cyberfizycznych, systemów autonomicznych, inteligentnych robotów autonomicznych oraz
Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej
Efekty na kierunku AiR drugiego stopnia - Wiedza K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 K_W09 K_W10 K_W11 K_W12 K_W13 K_W14 Ma rozszerzoną wiedzę dotyczącą dynamicznych modeli dyskretnych stosowanych
KARTA PRZEDMIOTU. Dyscyplina:
KARTA PRZEDMIOTU Jednostka: WIPiE Dyscyplina: Poziom studiów: 3 Semestr: 3 lub 4 Forma studiów: stacjonarne Język wykładowy: Nazwa przedmiotu: Metody sztucznej inteligencji Symbol przedmiotu: MSI Liczba
Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy. obieralny polski semestr VII semestr zimowy. nie
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Teoria sterowania wybrane zagadnienia Control theory selection problems Obowiązuje od roku akademickiego 2012/2013
PRZEDMIOTOWE SYSTEM OCENIANIA Z INFORMATYKI / ZAJĘĆ KOMPUTEROWYCH 2018/2019
PRZEDMIOTOWE SYSTEM OCENIANIA Z INFORMATYKI / ZAJĘĆ KOMPUTEROWYCH 2018/2019 I. Postanowienia ogólne Przedmiotowe Zasady Oceniania zostały opracowany na podstawie: 1. Podstawy programowej dla szkoły podstawowej
PRZEDMIOTOWY SYSTEM OCENIANIA Z INFORMATYKI
PRZEDMIOTOWY SYSTEM OCENIANIA Z INFORMATYKI 1. Postanowienia ogólne Przedmiotowy System Oceniania został opracowany na podstawie: 1. Rozporządzenia Ministra Edukacji Narodowej w sprawie warunków i sposobu
ZESPÓŁ SZKÓŁ ELEKTRYCZNYCH NR
TECHNIK MECHATRONIK ZESPÓŁ SZKÓŁ ELEKTRYCZNYCH NR 2 os. SZKOLNE 26 31-977 KRAKÓW www.elektryk2.i365.pl Spis treści: 1. Charakterystyka zawodu 3 2. Dlaczego technik mechatronik? 5 3. Jakie warunki musisz
PRZEDMIOTOWY SYSTEM OCENIANIA Z INFORMATYKI GIMNAZJUM NR 3
PRZEDMIOTOWY SYSTEM OCENIANIA Z INFORMATYKI GIMNAZJUM NR 3 I. Postanowienia ogólne Przedmiotowy System Oceniania został opracowany na podstawie: 1. Rozporządzenia Ministra Edukacji Narodowej w sprawie
Koło matematyczne 2abc
Koło matematyczne 2abc Autor: W. Kamińska 17.09.2015. Zmieniony 08.12.2015. "TO CO MUSIAŁEŚ ODKRYĆ SAMODZIELNIE, ZOSTANIE W TWYM UMYŚLE ŚCIEŻKĄ, KTÓRĄ W RAZIE POTRZEBY MOŻESZ PÓJŚĆ RAZ JESZCZE" G. CH.
INŻYNIERIA ZARZADZANIA,
Semestr 1 1. Zarządzanie Podstawy zarządzania jakością 2 20 Z 2 12 Z 2. Zarządzanie Podstawy zarządzania projektami 3 15 15 Z 3 10 10 Z 3. Zarządzanie Postawy organizacji i zarządzania 2 20 E 2 12 E 4.
Informatyka wspomaga przedmioty ścisłe w szkole
Informatyka wspomaga przedmioty ścisłe w szkole Prezentuje : Dorota Roman - Jurdzińska W arkuszu I na obu poziomach występują dwa zadania związane z algorytmiką: Arkusz I bez komputera analiza algorytmów,
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
Spis treści. Część I. Uczenie dzieci z dysleksją - najskuteczniejsze metody. Część 2. Strategie nauczania
Spis treści Wstęp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,... 10 Część I. Uczenie dzieci z dysleksją - najskuteczniejsze metody I, Przepisywanie z tablicy,,,,,,, 14 2, Komputerowe korektory pisowni, 15 3, Kolorowy
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji
PRZEDMIOTOWY SYSTEM OCENIANIA Z INFORMATYKI. Przedmiotowy System Oceniania został opracowany na podstawie:
I. Postanowienia ogólne PRZEDMIOTOWY SYSTEM OCENIANIA Z INFORMATYKI Przedmiotowy System Oceniania został opracowany na podstawie: 1. Rozporządzenia Ministra Edukacji Narodowej z dn. 30 kwietnia 2007 r.
Mechatronika i inteligentne systemy produkcyjne. Paweł Pełczyński ppelczynski@swspiz.pl
Mechatronika i inteligentne systemy produkcyjne Paweł Pełczyński ppelczynski@swspiz.pl 1 Program przedmiotu Wprowadzenie definicja, cel i zastosowania mechatroniki Urządzenie mechatroniczne - przykłady
Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Systemy i sieci komputerowe, SSK studia niestacjonarne Dla rocznika:
Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Systemy i sieci komputerowe, SSK studia niestacjonarne Dla rocznika: Rok I, semestr I (zimowy) 1 Etykieta w życiu publicznym
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015 2019 Realizacja w roku akademickim 2016/17 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu
Wymagania edukacyjne z informatyki i technologii informacyjnej
Wymagania edukacyjne z informatyki i technologii informacyjnej TECHNOLOGIA INFORMACYJNA Cele edukacyjne 1. Wykształcenie umiejętności świadomego i sprawnego posługiwania się komputerem oraz narzędziami
Algorytmy wspomagania decyzji Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3
Algorytmy wspomagania decyzji Czyli co i jak 2018 andrzej.rusiecki@pwr.edu.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi
Razem godzin w semestrze: Plan obowiązuje od roku akademickiego 2016/17 - zatwierdzono na Radzie Wydziału w dniu r.
Część wspólna dla kierunku 1 IMS1.01 Obiektowe projektowanie SI 2 2 E 3 60 3 2 IMS1.02 Teleinformatyka 2 2 E 4 60 4 3 IMS2.01 Modelowanie i analiza systemów dyskretnych 2 2 E 3 60 3 4 IMS2.02 Wielowymiarowa
Alfa-beta Ulepszenie minimax Liczba wierzchołk ow w drzewie gry. maksymalnie wd. minimalnie wbd/2c + wdd/2e Algorytmy przeszukiwania drzewa gry 5
Zastosowanie metody Samuela doboru współczynników funkcji oceniajacej w programie grajacym w anty-warcaby Daniel Osman promotor: dr hab. inż. Jacek Mańdziuk 1 Spis treści Algorytmy przeszukiwania drzewa
rodzaj zajęć semestr 1 semestr 2 semestr 3 Razem Lp. Nazwa modułu E/Z Razem W I
1. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 2017/2018L 3. Poziom kształcenia studia drugiego stopnia 4. Profil kształcenia ogólnoakademicki 5. Forma prowadzenia studiów stacjonarna Specjalność: grafika