Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca"

Transkrypt

1 Wstęp do Optyki i Fizyki Materii Skondensowanej Mateusz Goryca mgoryca@fuw.edu.pl Uniwersytet Warszawski 2015

2 Nanotechnologia Uniwersytet Warszawski 2015

3 T k E E e B c F e T m k n * 2 2 T k E E h B v F e T m k p ) ( * 2 2 Koncentracja samoistna Jaka jest koncentracja nośników dla T>0? W półprzewodnikach samoistnych w warunkach równowagi termodynamicznej, elektrony w paśmie przewodnictwa pojawiają się wyłącznie wskutek wzbudzenia z pasma walencyjnego.

4 Koncentracja samoistna Jaka jest koncentracja nośników dla T>0? W półprzewodnikach samoistnych w warunkach równowagi termodynamicznej, elektrony w paśmie przewodnictwa pojawiają się wyłącznie wskutek wzbudzenia z pasma walencyjnego. J. Singleton

5 Koncentracja samoistna Jaka jest koncentracja nośników dla T>0? W półprzewodnikach samoistnych w warunkach równowagi termodynamicznej, elektrony w paśmie przewodnictwa pojawiają się wyłącznie wskutek wzbudzenia z pasma walencyjnego. R. Stępniewski T k E E v T k E E c B v F B c F e N p e N n ) ( ) ( T k E v c g e N N p n 0 2 W powyższej tabelce wartości poniżej cm 3 nie mają w praktyce sensu gdyż koncentracja zanieczyszczeń, a co za tym idzie koncentracja wynikająca z nieintencjonalnego domieszkowania jest większa

6 Koncentracja samoistna Jaka jest koncentracja nośników dla T>0? W półprzewodnikach samoistnych w warunkach równowagi termodynamicznej, elektrony w paśmie przewodnictwa pojawiają się wyłącznie wskutek wzbudzenia z pasma walencyjnego. Widać że wartość przerwy energetycznej nie jest wystarczającym kryterium na rozróżnienie półprzewodników i izolatorów, np. czysty Ge, Si i GaAs mają w temperaturze pokojowej bardzo niską koncentrację nośników co czyni je materiałami o właściwościach izolatorów. Lepsze kryterium dla półprzewodników istnieje możliwość domieszkowania powodującego znaczące zmiany koncentracji i typu przewodnictwa (elektrony lub dziury).

7 Nośniki: dziury + elektrony - Domieszki i defekty Domieszki: Akceptory (typ p) Donory (typ n) Półprzewodniki II III IV V VI Be B C N O Mg Al Si P S Jonowość Jonowość Zn Ga Ge As Se Cd In Sn Sb Te Grupa IV: diament, Si, Ge Grupy III-V: GaAs, AlAs, InSb, InAs... Grupy II-VI: ZnSe, CdTe, ZnO, SdS...

8 Domieszki i defekty W jaki sposób kontrolować koncentrację nośników? W półprzewodnikach spotykamy szereg odstępstw od idealnej struktury kryształu: defekty struktury kryształu, luki, atomy w położeniu międzywęzłowym, dyslokacje powstałe np. w procesie wzrostu. obce atomy (domieszki) wprowadzane intencjonalnie lub wskutek zanieczyszczeń (poziom czystości) Wskutek ich występowania pojawiają się między innymi: stany dozwolone w przerwie wzbronionej na skutek odstępstw od potencjału idealnej sieci ładunki przestrzenne w izolatorach ekranowanie przez swobodne nośniki Stany domieszkowe dzielimy na: głębokie potencjał krótkozasięgowy, zlokalizowany głównie w obszarze jednej komórki elementarnej np. luka, domieszka izoelektronowa (o tej samej wartościowości co macierzysty atom np. N w InP). płytkie - głównie potencjał długozasięgowy kulombowski

9 Domieszki i defekty atomów Si domieszek Rozmiar tranzystora 50 nm Średnia ilość domieszek 12.5

10 Domieszki i defekty STM Scanning Tunnelling Microscope Nobel 1986 Gerd Binnig, Heinrich Rohrer Mikroskop optyczny z kamerą Regulacja położenia dźwigni w płaszczyźnie Uchwyt dźwigni Głowica Skaner Mocowanie skanera Wyświetlacz Przewody Baza Podstawka Rafał Bożek, FUW

11 Domieszki i defekty EFM Electric Force Microscopy F( x) F( x ) 0 F x x x F x f k 0 f0 Siła elektryczna (gradient) zmiana częstości rezonansowej Pętla sprzężenia zwrotnego: utrzymanie rezonansu Rafał Bożek, FUW

12 Model wodoropodobny Atom o wartościowości wyższej o jeden niż atom macierzysty staje się źródłem potencjału kulombowskigo zmodyfikowanego stałą dielektryczną kryształu, wywołanego dodatkowym protonem w jądrze. Dodatkowy elektron będący w paśmie przewodnictwa odczuwa ten potencjał. Jego stany są opisane równaniem masy efektywnej: 2 T * 2m 2 2 * m e U Domieszki i defekty 2 1 e 4 r 2 e ( r) r 0 E( r) II III IV V VI Be B C N O Mg Al Si P S Zn Ga Ge As Se Cd In Sn Sb Te Grupa IV: diament, Si, Ge Grupy III-V: GaAs, AlAs, InSb, InAs... Grupy II-VI: ZnSe, CdTe, ZnO, SdS...

13 Model wodoropodobny Ostatecznie zagadnienie sprowadza się do problemu atomu wodoru z nośnikiem swobodnym o masie m*, w ośrodku dielektrycznym ze stałą ε i małą poprawką do potencjału. E n m m * eV 2 2 n Dla typowych półprzewodników m e * 0.1m e s 10, zatem energia wiązania dla stanu podstawowego jest rzędu kilkudziesięciu mev. Promień Bohra dla stanu podstawowego jest rzędu 100Å: r * B Domieszki i defekty m 0 m0 0,5 2 s * s * m0e me me II III IV V VI Be B C N O Mg Al Si P S Zn Ga Ge As Se Cd In Sn Sb Te Grupa IV: diament, Si, Ge Grupy III-V: GaAs, AlAs, InSb, InAs... Grupy II-VI: ZnSe, CdTe, ZnO, SdS...

14 ENERGIA ELEKTRONÓW Domieszki i defekty Model wodoropodobny jonizacja domieszki typ n typ p pasmo puste pasmo puste poziom donorowy poziom akceptorowy pasmo pełne pasmo pełne x x

15 ENERGIA ELEKTRONÓW Domieszki i defekty Domieszkowanie pasmo puste poziom donorowy poziom akceptorowy pasmo pełne E D E A E g /2 0 -E g /2 E F Koncentracja nośników w półprzewodniku niesamoistnym Rozważmy półprzewodnik, w którym: N A koncentracja akceptorów N D koncentracja donorów p A koncentracja neutralnych akceptorów n D koncentracja neutralnych donorów n c koncentracja elektronów w paśmie przewodnictwa p v koncentracja dziur w paśmie walencyjnym Z warunku neutralności kryształu: n c +(N A - p A )= p v + (N D - n D ) n c + n D = (N D - N A )+ p v + p A x

16 ENERGIA ELEKTRONÓW Domieszki i defekty Domieszkowanie pasmo puste poziom donorowy poziom akceptorowy pasmo pełne E D E A E g /2 0 -E g /2 E F Koncentracja nośników w półprzewodniku niesamoistnym Rozważmy półprzewodnik, w którym: N A koncentracja akceptorów N D koncentracja donorów p A koncentracja neutralnych akceptorów n D koncentracja neutralnych donorów n c koncentracja elektronów w paśmie przewodnictwa p v koncentracja dziur w paśmie walencyjnym Z warunku neutralności kryształu: n c +(N A - p A )= p v + (N D - n D ) n c + n D = (N D - N A )+ p v + p A x

17 ENERGIA ELEKTRONÓW Domieszki i defekty Domieszkowanie pasmo puste poziom donorowy poziom akceptorowy pasmo pełne E D E A E g /2 0 -E g /2 E F Koncentracja nośników w półprzewodniku niesamoistnym Rozważmy półprzewodnik, w którym: N A koncentracja akceptorów N D koncentracja donorów p A koncentracja neutralnych akceptorów n D koncentracja neutralnych donorów n c koncentracja elektronów w paśmie przewodnictwa p v koncentracja dziur w paśmie walencyjnym Z warunku neutralności kryształu: n c +(N A - p A )= p v + (N D - n D ) n c + n D = (N D - N A )+ p v + p A x

18 Teoria pasmowa ciał stałych. półprzewodnik typu p półprzewodnik typu n

19 Teoria pasmowa ciał stałych. Dioda czyli złącze p-n typ p typ n

20 Teoria pasmowa ciał stałych. Dioda czyli złącze p-n typ p typ n

21 Teoria pasmowa ciał stałych. Dioda czyli złącze p-n typ p typ n

22 Teoria pasmowa ciał stałych. Dioda czyli złącze p-n

23 Teoria pasmowa ciał stałych. Dioda czyli złącze p-n

24 Studnia Kwantowa AlGaAs GaAs AlGaAs E g1 E g2 E g1

25 Studnia Kwantowa AlGaAs GaAs AlGaAs AlGaAs GaAs AlGaAs E g1 E g2 E g1

26 Studnia Kwantowa

27 Studnia Kwantowa elektrony dziury

28 Studnia Kwantowa elektrony hn dziury

29 In 0.53 Ga 0.47 As InP In Al As In 0.53 Ga 0.47 As Studnia Kwantowa Inżynieria przerwy energetycznej GaAs InGaAs 5 nm AlGaAs TEM J.Jasiński A. Babiński

30 Band structure engineering (Al)GaAs GaAs Przestrzenne zmiany przerwy energetycznej Inżynieria przerwy energetycznej E c (z) 100nm Możliwe ponieważ GaAs i AlAs mają tę samą strukturę krystaliczną i stałą sieci z x,y QC-Laser 1µm Hubert J. Krenner

31 Vertical Cavity Surface Emitting Laser Metalic Reflector VCSEL Etched Well VCSEL Air Post VCSEL Burried Regrowth VCSEL

32 Studnie Kwantowe Lasery półprzewodnikowe

33 QCL - Quantum Cascade Laser

34 QCL - Quantum Cascade Laser The QUANTA OEM module (LASER COMPONENTS)

35 QCL - Quantum Cascade Laser The QUANTA OEM module (LASER COMPONENTS)

36 Studnie Kwantowe Więcej:

37 Prescot, Intel Top-down, bottom-up, czyli małe jest piękne

38 Metoda Czochralskiego Prof.Jan Czochralski , Urodzony w 1885 roku jako ósmy syn ubogiego stolarza. Nie jest pewne czy zdał maturę. Nie stać go było na opłacenie studiów. Odkrywca metody wzrostu kryształów - "metody Czochralskiego". Uznawany za "praojca elektroniki" Polski uczony najczęściej wymieniany w literaturze światowej. W Polsce prawie nieznany...

39 Metoda Czochralskiego

40 Metoda Czochralskiego

41 Metoda Czochralskiego "Smithsonian", Jan 2000, Vol 30, No. 10

42 Wymiary świata E g B ~nm E g Q < E gb, nm wymiar 3D: Kryształ objętościowy 2D: Studnia kwantowa ~nm ~nm Elektron w kropce kwantowej jest związany w trzech wymiarach (jak w atomie) ~nm 1D: Drut kwantowy 0D: Kropka kwantowa Turid Worren NTNU Norway

43 Hubert J. Krenner Struktury niskowymiarowe Low-dimensional Semiconductor Systems Studnie kwantowe Druty kwantowe Kropki kwantowe t 2D 1D 0D Dyskretna struktura elektronowa

44 Hubert J. Krenner Struktury niskowymiarowe Low-dimensional Semiconductor Systems Studnie kwantowe Druty kwantowe Kropki kwantowe t 2D 1D 0D Dyskretna struktura elektronowa

45 Studnia Kwantowa elektrony hn dziury

46 MOCVD Studnia kwantowa E c t D(E) E 1 FUW Pasteura 7 E c E 0 MOCVD Osadzanie z atomową precyzją warstw o różnym składzie lub domieszkowaniu 2D E

47 MBE Studnia kwantowa E c t D(E) E 1 E c E 0 MBE Osadzanie z atomową precyzją warstw o różnym składzie lub domieszkowaniu 2D E Hubert J. Krenner

48 MBE Studnia kwantowa E c Dalsza strukturyzacja: litografia, FIB, t D(E) E 1 E c E 0 MBE Osadzanie z atomową precyzją warstw o różnym składzie lub domieszkowaniu 2D E Hubert J. Krenner

49 FIB (Focused Ion Beam)

50 FIB (Focused Ion Beam)

51 FIB (Focused Ion Beam) T. Jakubczyk (FUW)

52 Hubert J. Krenner Struktury niskowymiarowe Low-dimensional Semiconductor Systems Studnie kwantowe Druty kwantowe Kropki kwantowe t 2D 1D 0D Dyskretna struktura elektronowa

53 Druty

54 Druty Photo by Peidong Yang/UC Berkeley, courtesy of Science

55 Hubert J. Krenner Struktury niskowymiarowe Low-dimensional Semiconductor Systems Studnie kwantowe Druty kwantowe Kropki kwantowe t 2D 1D 0D Dyskretna struktura elektronowa

56 Quantum Dot 0 cgs 1 0 X e - Hubert J. Krenner Walter Schottky Institut and Physik Department E24, TU München

57 Hubert J. Krenner Wzrost kropek kwantowych EPITAXIAL LAYER (e.g. InAs) Energy SUBSTRATE (GaAs) Island formation Time TEM 0.25µm x 0.25µm Defect-free semiconductor clusters on a 2D quantum well wetting layer

58 GaN/AlGaN QD s Wzrost K. Pakuła, AFM - Rafał Bożek

59 Jak zobaczyć pojedynczą kropkę? Wybór kropki: sample 7mm laser beam przestrzenny (rozdzielczość ~500nm) spektralny

60 Jak zobaczyć pojedynczą kropkę? Układ eksperymentalny Strojony laser barwnikowy Modulatory T=1.5K Spektrometr Pol λ/4 Kriostat z mikroskopem rozdzielczość przestrzenna ~500 nm

61 Do czego może się przydać pojedyncza kropka? Nośnik lub ekscyton w kropce jako qubit Badanie pojedynczych domieszek 1 CdTe QD 1 CdSe QD

62 Single Mn ion in a QD Photoluminescence (arb.u.) 1.6 mev X Mn 2+ 5/2 3/2 σ + 1/2-1/2-3/2-5/2 5/2 3/2 σ - -5/2 1/2-1/2-3/ Energy (mev)

63 Experiment coherent evolution 1) ( 3 1 1) 3 1)(3 ( S S S D S S S as S S S a S AI S B g H z z y x B 5/2

64 Ratio of S z =+5/2 and S z =+3/2 states occupation State occupation Experiment coherent evolution H gbb S AI S a S S S as( S 1)(3S 3S 1) D S S( S 1) 1 2 x y z 0 z /2 Oscillation phase no fitting parameters! S z =+5/2 S z =+3/ Time (ps) 3/2 Model Experiment Time (ps)

65 Trochę historii

66 Trochę historii 1948 William Schockley, John Bardeen oraz Walter Brattain z Bell Labs wymyślają tranzystor (Nobel 1956)

67 Trochę historii 1948 William Schockley, John Bardeen oraz Walter Brattain z Bell Labs wymyślają tranzystor (Nobel 1956) Prof. Juliusz Edgar Lilienfeld 1925 tranzystor polowy Cu 2 S (Lipsk)

68 Jak działa tranzystor? , (Lemberg) , (Charlotte Amalie, U.S.A.) Prof. Juliusz Edgar Lilienfeld U.S. Patent 1,745,175 (MESFET) U.S. Patent 1,900,018 (MOSFET) Prof. Juliusz Edgar Lilienfeld 1925 tranzystor polowy Cu 2 S (Lipsk)

69 Jak działa tranzystor? , (Lemberg) , (Charlotte Amalie, U.S.A.) Prof. Juliusz Edgar Lilienfeld

70 Tranzystor polowy

71 Tranzystor polowy

72 Trochę historii 1955 Shockley Semiconductor pierwsza firma w Palo Alto (krzemowej dolinie) Rok 1956 IBM tworzy pierwszy dysk twardy - RAMAC 350. Jego pojemność to 5MB,natomiast cena - milion dolarów. W laboratoriach MIT ukończony zostaje pierwszy komputer tranzystorowy. A. Newell, D. Shaw i F. Simon wynajdują IPL (Information Processing Language - język przetwarzania informacji) Fairchild Semiconductor na skutek nieporozumień z Shockleyem odchodzą z firmy: Julius Blank, Victor Grinich, Gordon E. Moore, Robert W. Noyce, Jean Hoerni, Gene Kleiner, Jay Last, Sheldon Roberts ( zdradziecka 8-ka ) Ken Olsen i Harlan Anderson zakładają firmę DEC (Digital Equipment Corporation). Oficjalnie opublikowany zostaje język FORTRAN-1, stworzony przez Johna Backusa i jego współpracowników z IBM. FORTRAN używa zapisu podobnego do tego z algebry. Dlatego też język ten stanie się popularny, szczególnie wśród naukowców i techników Pierwszy układ scalony (IC Integrated Circuit) wykonany przez Jack Kilby na germanie w Texas Instruments (2000 Nagroda Nobla z fizyki). Niezależnie Robert Noyce (Fairchild) zbudował IC na krzemie. Źródło:

73 i8080 (1974) 286 (1982) i8088 (1978) IBM PC Źródło: Intel 386 (1985) Pentium (1993) Pentium III (1999)

74 CCD 1/2 Willard S. Boyle and George E. Smith Bell Laboratories, Murray Hill, NJ, USA "for the invention of an imaging semiconductor circuit the CCD sensor" Scena z filmu Mission impossible

75 CCD 1/2 Willard S. Boyle and George E. Smith Bell Laboratories, Murray Hill, NJ, USA "for the invention of an imaging semiconductor circuit the CCD sensor" Scena z filmu Mission impossible

76 CCD 1/2 Willard S. Boyle and George E. Smith Bell Laboratories, Murray Hill, NJ, USA "for the invention of an imaging semiconductor circuit the CCD sensor" Scena z filmu Mission impossible

77 OmniVision Readies for Wafer Level Camera Cube Production

78 Granice miniaturyzacji? Myślimy, że tranzystor jest zbudowany tak. 25 nm MOSFET Produkcja od ,2 nm MOSFET Produkcja??? Asen Asenov, Glasgow David Williams Hitachi-Cambridge IEEE Trans Electron Dev 50(9), 1837 (2003)

79 PROBLEM: Statystyka domieszek atomów Si domieszek Rozmiar tranzystora 50 nm Średnia ilość domieszek 12.5

80 PROBLEM: Statystyka domieszek atomów Si domieszek Rozmiar tranzystora 50 nm Średnia ilość domieszek 12.5

81 PROBLEM: Statystyka domieszek atomów Si domieszek Rozmiar tranzystora 50 nm Średnia ilość domieszek 12.5

82 PROBLEM: Tunelowanie

83 PROBLEM: Tunelowanie

84 PROBLEM: Litografia

85 PROBLEM: Litografia Litografia 2003, Długość fali światła 248 nm Kanał FET 90 nm: Fluktuacje granic rezystu 7 nm Litografia 2007, Długość fali światła 193 nm (?) 153 nm (?) X-ray (?) Kanał FET 35 nm: Fluktuacje granic rezystu 3 nm Prawdopodobnie koniec epoki polimerowych rezystów (cząstki polimerów są zbyt duże!) Litografia 2016, Długość fali światła X-ray (?) Kanał FET 9 nm: Fluktuacje granic rezystu 1 nm week09

Jak TO działa? Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: *******

Jak TO działa?   Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: ******* Co to są półprzewodniki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 TRENDY: Prawo Moore a TRENDY:

Bardziej szczegółowo

Absorpcja związana z defektami kryształu

Absorpcja związana z defektami kryształu W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom

Bardziej szczegółowo

NOWE TECHNOLOGIE. Wtorki17:30-19:00 Sala Duża Doświadczalna. Nowe technologie

NOWE TECHNOLOGIE. Wtorki17:30-19:00 Sala Duża Doświadczalna. Nowe technologie NOWE TECHNOLOGIE Wtorki7:3-9: Sala Duża Doświadczalna IBM Nowe technologie Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt Google: Jacek Szczytko Login: student Hasło: ****** Nowe technologie

Bardziej szczegółowo

Teoria pasmowa. Anna Pietnoczka

Teoria pasmowa. Anna Pietnoczka Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach

Bardziej szczegółowo

Rozszczepienie poziomów atomowych

Rozszczepienie poziomów atomowych Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek

Bardziej szczegółowo

Przewodnictwo elektryczne ciał stałych. Fizyka II, lato

Przewodnictwo elektryczne ciał stałych. Fizyka II, lato Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2016 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi

Bardziej szczegółowo

Struktura pasmowa ciał stałych

Struktura pasmowa ciał stałych Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................

Bardziej szczegółowo

STRUKTURA PASM ENERGETYCZNYCH

STRUKTURA PASM ENERGETYCZNYCH PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika

Bardziej szczegółowo

Przyrządy i układy półprzewodnikowe

Przyrządy i układy półprzewodnikowe Przyrządy i układy półprzewodnikowe Prof. dr hab. Ewa Popko ewa.popko@pwr.edu.pl www.if.pwr.wroc.pl/~popko p.231a A-1 Zawartość wykładu Wy1, Wy2 Wy3 Wy4 Wy5 Wy6 Wy7 Wy8 Wy9 Wy10 Wy11 Wy12 Wy13 Wy14 Wy15

Bardziej szczegółowo

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Przewodnictwo elektryczne ciał stałych

Przewodnictwo elektryczne ciał stałych Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2011 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi

Bardziej szczegółowo

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA B V B C ZEWNĘTRZNE POLE ELEKTRYCZNE B C B V B D = 0 METAL IZOLATOR PRZENOSZENIE ŁADUNKÓW ELEKTRYCZNYCH B C B D B V B D PÓŁPRZEWODNIK PODSTAWOWE MECHANIZMY

Bardziej szczegółowo

Półprzewodniki samoistne. Struktura krystaliczna

Półprzewodniki samoistne. Struktura krystaliczna Półprzewodniki samoistne Struktura krystaliczna Si a5.43 A GaAs a5.63 A ajczęściej: struktura diamentu i blendy cynkowej (ZnS) 1 Wiązania chemiczne Wiązania kowalencyjne i kowalencyjno-jonowe 0K wszystkie

Bardziej szczegółowo

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Zadania elektroniki: Urządzenia elektroniczne

Bardziej szczegółowo

na dnie (lub w szczycie) pasma pasmo jest paraboliczne, ale masa wyznaczona z krzywizny niekoniecznie = m 0

na dnie (lub w szczycie) pasma pasmo jest paraboliczne, ale masa wyznaczona z krzywizny niekoniecznie = m 0 Koncepcja masy efektywnej swobodne elektrony k 1 1 E( k) E( k) =, = m m k krzywizna E(k) określa masę cząstek elektrony prawie swobodne - na dnie pasma masa jest dodatnia, ale niekoniecznie = masie swobodnego

Bardziej szczegółowo

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki

Bardziej szczegółowo

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy

Bardziej szczegółowo

Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å

Wykład 12 V = 4 km/s E 0 =.08 e V e  = = 1 Å Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia

Bardziej szczegółowo

Półprzewodniki.

Półprzewodniki. Półprzewodniki Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt Uniwersytet Warszawski 01 NRGIA LKTRONÓW Teoria pasmowa ciał stałych. pasmo puste pasmo puste pasmo puste pasmo pełne pasmo pełne

Bardziej szczegółowo

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

Podstawy fizyki ciała stałego półprzewodniki domieszkowane Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,

Bardziej szczegółowo

Teoria pasmowa ciał stałych

Teoria pasmowa ciał stałych Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury

Bardziej szczegółowo

elektryczne ciał stałych

elektryczne ciał stałych Wykład 23: Przewodnictwo elektryczne ciał stałych Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 08.06.2017 1 2 Własności elektryczne

Bardziej szczegółowo

Elementy Elektroniczne

Elementy Elektroniczne Elementy Elektroniczne dr hab. inż Piotr Płotka pok. 301 tel. 347-1634 e-mail: pplotka@eti.pg.gda.pl Nagroda Nobla w fizyce 2009 Za przełomowe osiągnięcia w dziedzinie przesyłania światła we włóknach optycznych

Bardziej szczegółowo

Fizyka 3.3. prof.dr hab. Ewa Popko p.231a

Fizyka 3.3. prof.dr hab. Ewa Popko   p.231a Fizyka 3.3 prof.dr hab. Ewa Popko www.if.pwr.wroc.pl/~popko ewa.popko@pwr.edu.pl p.231a Fizyka 3.3 Literatura 1.J.Hennel Podstawy elektroniki półprzewodnikowej WNT Warszawa 1995. 2. B. Ziętek, Optoelektronika,

Bardziej szczegółowo

elektryczne ciał stałych

elektryczne ciał stałych Wykład 24: Przewodnictwo elektryczne ciał stałych Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 19.06.2018 1 2 Własności elektryczne

Bardziej szczegółowo

ELEKTRONIKA I ENERGOELEKTRONIKA

ELEKTRONIKA I ENERGOELEKTRONIKA ELEKTRONIKA I ENERGOELEKTRONIKA wykład 2 PÓŁPRZEWODNIKI luty 2008 - Lublin krzem u ej n o z r o w t rze i p o ytk d u pł m rze k Od m ik ro pr oc es or ET F S MO p rzy rząd Od p iasku do Ten wykład O CZYM

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/

Bardziej szczegółowo

Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki i elementy z półprzewodników homogenicznych Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja

Bardziej szczegółowo

Fizyka 3.3. prof.dr hab. Ewa Popko p.231a

Fizyka 3.3. prof.dr hab. Ewa Popko   p.231a Fizyka 3.3 prof.dr hab. Ewa Popko www.if.pwr.wroc.pl/~popko ewa.popko@pwr.edu.pl p.231a Fizyka 3.3 Literatura 1.J.Hennel Podstawy elektroniki półprzewodnikowej WNT Warszawa 1995. 2.W.Marciniak Przyrządy

Bardziej szczegółowo

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r.

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r. Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,

Bardziej szczegółowo

Krawędź absorpcji podstawowej

Krawędź absorpcji podstawowej Obecność przerwy energetycznej między pasmami przewodnictwa i walencyjnym powoduje obserwację w eksperymencie absorpcyjnym krawędzi podstawowej. Dla padającego promieniowania oznacza to przejście z ośrodka

Bardziej szczegółowo

Klasyczny metal. Fizyka Materii Skondensowanej Domieszki i defekty. Wydział Fizyki UW

Klasyczny metal. Fizyka Materii Skondensowanej Domieszki i defekty. Wydział Fizyki UW Fizyka Materii Skondensowanej Wydział Fizyki UW Jacek.Szczytko@fuw.edu.pl W T 0 równowaga układu termodynamicznego (w warunkach V = const i N = const) odpowiada minimum energii swobodnej Helmholtza F =

Bardziej szczegółowo

METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4

METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4 MAL Zestawienie właściwości gazu elektronowego dla niektórych metali: n cm -3 k cm -1 v cm/s ε e ε /k Li 4.6 10 1.1 10 8 1.3 10 8 4.7 5.5 10 4 a.5 0.9 1.1 3.1 3.7 K 1.34 0.73 0.85.1.4 Rb 1.08 0.68 0.79

Bardziej szczegółowo

elektryczne ciał stałych

elektryczne ciał stałych Wykład 23: Przewodnictwo elektryczne ciał stałych Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Własności elektryczne ciał

Bardziej szczegółowo

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności

Bardziej szczegółowo

Wykład IV. Półprzewodniki samoistne i domieszkowe

Wykład IV. Półprzewodniki samoistne i domieszkowe Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent

Bardziej szczegółowo

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się

Bardziej szczegółowo

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Pasmowa teoria przewodnictwa. Anna Pietnoczka Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki

Bardziej szczegółowo

elektryczne ciał stałych

elektryczne ciał stałych Wykład 22: Przewodnictwo elektryczne ciał stałych Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Własności elektryczne ciał

Bardziej szczegółowo

Proste struktury krystaliczne

Proste struktury krystaliczne Budowa ciał stałych Proste struktury krystaliczne sc (simple cubic) bcc (body centered cubic) fcc (face centered cubic) np. Piryt FeSe 2 np. Żelazo, Wolfram np. Miedź, Aluminium Struktury krystaliczne

Bardziej szczegółowo

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy Złącze p-n: dioda Półprzewodniki Przewodnictwo półprzewodników Dioda Dioda: element nieliniowy Przewodnictwo kryształów Atomy dyskretne poziomy energetyczne (stany energetyczne); określone energie elektronów

Bardziej szczegółowo

FIZYKA + CHEMIA. Jeszcze o teoriach (nie tylko fizycznych) Jeszcze o teoriach (nie tylko fizycznych) Jeszcze o teoriach (nie tylko fizycznych)

FIZYKA + CHEMIA. Jeszcze o teoriach (nie tylko fizycznych) Jeszcze o teoriach (nie tylko fizycznych) Jeszcze o teoriach (nie tylko fizycznych) Uniwersytet Warszawski Interdyscyplinarny makrokierunek Wydziału Fizyki i Wydziału Chemii Uniwersytetu Warszawskiego FIZYKA + CHEMIA od października 2009 wkrótce więcej informacji na stronie http://nano.fuw.edu.pl

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale

Bardziej szczegółowo

Nanostruktury krystaliczne

Nanostruktury krystaliczne Nanostruktury krystaliczne Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt 1. Nanotechnologia na codzień 2. Prawo Moora i jego konsekwencje a) Więcej! Szybciej! Taniej! b) Wyzwania i problemy

Bardziej szczegółowo

Podstawowe właściwości fizyczne półprzewodników WYKŁAD 2 SMK J. Hennel, Podstawy elektroniki półprzewodnikowej:, WNT, W-wa 2003

Podstawowe właściwości fizyczne półprzewodników WYKŁAD 2 SMK J. Hennel, Podstawy elektroniki półprzewodnikowej:, WNT, W-wa 2003 Podstawowe właściwości fizyczne półprzewodników WYKŁAD SMK J. Hennel, Podstawy elektroniki półprzewodnikowej:, WNT, W-wa 003 1. Podstawowe pojęcia. Wszystkie informacje dotyczące właściwości dynamicznych

Bardziej szczegółowo

Wytwarzanie niskowymiarowych struktur półprzewodnikowych

Wytwarzanie niskowymiarowych struktur półprzewodnikowych Większość struktur niskowymiarowych wytwarzanych jest za pomocą technik epitaksjalnych. Najczęściej wykorzystywane metody wzrostu: - epitaksja z wiązki molekularnej (MBE Molecular Beam Epitaxy) - epitaksja

Bardziej szczegółowo

Pasmo walencyjne Pasmo odszczepione spin orbitalnie Δ Fizyka Materii Skondensowanej Metale i półprzewodniki. Dynamika elektronów w krysztale

Pasmo walencyjne Pasmo odszczepione spin orbitalnie Δ Fizyka Materii Skondensowanej Metale i półprzewodniki. Dynamika elektronów w krysztale Fizyka Materii Skondensowanej Metale i półprzewodniki Pasmo walencyjne Pasmo odszczepione spin orbitalnie Δ 3 Δ Δ Dwa pasma (dziury ciężkie i lekkie) Γ Wydział Fizyki UW Jacek.Szczytko@fuw.edu.pl Wszystkie

Bardziej szczegółowo

W1. Właściwości elektryczne ciał stałych

W1. Właściwości elektryczne ciał stałych W1. Właściwości elektryczne ciał stałych Względna zmiana oporu właściwego przy wzroście temperatury o 1 0 C Materiał Opór właściwy [m] miedź 1.68*10-8 0.0061 żelazo 9.61*10-8 0.0065 węgiel (grafit) 3-60*10-3

Bardziej szczegółowo

2. Półprzewodniki. Istnieje duża jakościowa różnica między właściwościami elektrofizycznymi półprzewodników, przewodników i dielektryków.

2. Półprzewodniki. Istnieje duża jakościowa różnica między właściwościami elektrofizycznymi półprzewodników, przewodników i dielektryków. 2. Półprzewodniki 1 Półprzewodniki to materiały, których rezystywność jest większa niż rezystywność przewodników (metali) oraz mniejsza niż rezystywność izolatorów (dielektryków). Przykłady: miedź - doskonały

Bardziej szczegółowo

Podstawy krystalografii

Podstawy krystalografii Podstawy krystalografii Kryształy Pojęcie kryształu znane było już w starożytności. Nazywano tak ciała o regularnych kształtach i gładkich ścianach. Już wtedy podejrzewano, że te cechy związane są ze szczególną

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,

Bardziej szczegółowo

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl http://www.rk.kujawsko-pomorskie.pl/ Organizacja zajęć Kurs trwa 20 godzin lekcyjnych,

Bardziej szczegółowo

6. Emisja światła, diody LED i lasery polprzewodnikowe

6. Emisja światła, diody LED i lasery polprzewodnikowe 6. Emisja światła, diody LED i lasery polprzewodnikowe Typy rekombinacji Rekombinacja promienista Diody LED Lasery półprzewodnikowe Struktury niskowymiarowe OLEDy 1 Promieniowanie termiczne Rozkład Plancka

Bardziej szczegółowo

GaSb, GaAs, GaP. Joanna Mieczkowska Semestr VII

GaSb, GaAs, GaP. Joanna Mieczkowska Semestr VII GaSb, GaAs, GaP Joanna Mieczkowska Semestr VII 1 Pierwiastki grupy III i V układu okresowego mają mało jonowy charakter. 2 Prawie wszystkie te kryształy mają strukturę blendy cynkowej, typową dla kryształów

Bardziej szczegółowo

Teoria pasmowa ciał stałych Zastosowanie półprzewodników

Teoria pasmowa ciał stałych Zastosowanie półprzewodników Teoria pasmowa ciał stałych Zastosowanie półprzewodników Model atomu Bohra Niels Bohr - 1915 elektrony krążą wokół jądra jądro jest zbudowane z: i) dodatnich protonów ii) neutralnych neutronów Liczba atomowa

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj

Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj Repeta z wykładu nr 4 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Układy nieliniowe. Stabilizator - dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) Logiczna bramka NAND. w.7, p.1

Układy nieliniowe. Stabilizator - dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) Logiczna bramka NAND. w.7, p.1 Układy nieliniowe Układy nieliniowe odgrywają istotną rolę w nowoczesnej elektronice, np.: generatory sygnałów, stabilizatory, odbiorniki i nadajniki w telekomunikacji, zasialcze impulsowe stałego napięcia

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca

Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca Wstęp do Optyki i Fizyki Materii Skondensowanej Mateusz Goryca mgoryca@fuw.edu.pl Uniwersytet Warszawski 2015 Materia skondensowana OC 6 H 13 H 13 C 6 O OC 6 H 13 H 17 C 8 O H 17 C 8 O N N Cu O O H 21

Bardziej szczegółowo

VI. POMIAR ZALEŻNOŚCI OPORNOŚCI METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY

VI. POMIAR ZALEŻNOŚCI OPORNOŚCI METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY Oporność właściwa (Ωm) 1 VI. POMIAR ZALEŻNOŚCI OPORNOŚCI METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY Cel ćwiczenia: pomiar zależności oporności elektrycznej (rezystancji) metalu i półprzewodnika od temperatury,

Bardziej szczegółowo

2. Elektrony i dziury w półprzewodnikach

2. Elektrony i dziury w półprzewodnikach 2. Elektrony i dziury w półprzewodnikach 1 B III C VI 2 Związki półprzewodnikowe: 8 walencyjnych elektronów na walencyjnym orbitalu cząsteczkowym2 Krzem i german 1s 2 2s 2 2p 6 3s 2 3p 2 14 elektronów

Bardziej szczegółowo

III.4 Gaz Fermiego. Struktura pasmowa ciał stałych

III.4 Gaz Fermiego. Struktura pasmowa ciał stałych III.4 Gaz Fermiego. Struktura pasmowa ciał stałych Jan Królikowski Fizyka IVBC 1 Gaz Fermiego Gaz Fermiego to gaz swobodnych, nie oddziałujących, identycznych fermionów w objętości V=a 3. Poszukujemy N(E)dE

Bardziej szczegółowo

Atom Mn: wielobit kwantowy. Jan Gaj Instytut Fizyki Doświadczalnej

Atom Mn: wielobit kwantowy. Jan Gaj Instytut Fizyki Doświadczalnej Atom Mn: wielobit kwantowy Jan Gaj Instytut Fizyki Doświadczalnej Tomasz Kazimierczuk Mateusz Goryca Piotr Wojnar (IF PAN) Artur Trajnerowicz Andrzej Golnik Piotr Kossacki Jan Gaj Michał Nawrocki Ostrzeżenia

Bardziej szczegółowo

Skończona studnia potencjału

Skończona studnia potencjału Skończona studnia potencjału U = 450 ev, L = 100 pm Fala wnika w ściany skończonej studni długość fali jest większa (a energia mniejsza) Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach

Bardziej szczegółowo

Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski

Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Co to jest ekscyton? Co to jest ekscyton? h 2 2 2 e πε m* 4 0ε s Φ

Bardziej szczegółowo

Wykład 21: Studnie i bariery cz.2.

Wykład 21: Studnie i bariery cz.2. Wykład 21: Studnie i bariery cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Przykłady tunelowania: rozpad alfa, synteza

Bardziej szczegółowo

Wykład VI. Teoria pasmowa ciał stałych

Wykład VI. Teoria pasmowa ciał stałych Wykład VI Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie

Bardziej szczegółowo

Laboratorium inżynierii materiałowej LIM

Laboratorium inżynierii materiałowej LIM Laboratorium inżynierii materiałowej LIM wybrane zagadnienia fizyki ciała stałego czyli skrót skróconego skrótu dr hab. inż.. Ryszard Pawlak, P prof. PŁP Fizyka Ciała Stałego I. Wstęp Związki Fizyki Ciała

Bardziej szczegółowo

Wykład III. Teoria pasmowa ciał stałych

Wykład III. Teoria pasmowa ciał stałych Wykład III Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 13 Janusz Andrzejewski Scaledlugości Janusz Andrzejewski 2 Scaledługości Simple molecules

Bardziej szczegółowo

PÓŁPRZEWODNIKI W ELEKTRONICE. Powszechnie uważa się, że współczesna elektronika jest elektroniką półprzewodnikową.

PÓŁPRZEWODNIKI W ELEKTRONICE. Powszechnie uważa się, że współczesna elektronika jest elektroniką półprzewodnikową. PÓŁPRZEWODNIKI W ELEKTRONICE Powszechnie uważa się, że współczesna elektronika jest elektroniką półprzewodnikową. 1 Półprzewodniki Półprzewodniki to ciała stałe nieorganiczne lub organiczne o przewodnictwie

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

NanoTechnologia Wydział Fizyki Uniwersytetu Warszawskiego Zakład Fizyki Ciała Stałego

NanoTechnologia  Wydział Fizyki Uniwersytetu Warszawskiego Zakład Fizyki Ciała Stałego NanoTechnologia Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko Wydział Fizyki Uniwersytetu Warszawskiego Zakład Fizyki Ciała Stałego. Nanotechnologia na codzień 2. Jak działa komputer? a) Trochę

Bardziej szczegółowo

3.4 Badanie charakterystyk tranzystora(e17)

3.4 Badanie charakterystyk tranzystora(e17) 152 Elektryczność 3.4 Badanie charakterystyk tranzystora(e17) Celem ćwiczenia jest wyznaczenie charakterystyk tranzystora npn w układzie ze wspólnym emiterem W E. Zagadnienia do przygotowania: półprzewodniki,

Bardziej szczegółowo

Wprowadzenie do ekscytonów

Wprowadzenie do ekscytonów Proces absorpcji można traktować jako tworzenie się, pod wpływem zewnętrznego pola elektrycznego, pary elektron-dziura, które mogą być opisane w przybliżeniu jednoelektronowym. Dokładniejszym podejściem

Bardziej szczegółowo

Nanostruktury i nanotechnologie

Nanostruktury i nanotechnologie Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka

Bardziej szczegółowo

"Podstawy układów mikroelektronicznych" dla kierunku Technologie Kosmiczne i Satelitarne

Podstawy układów mikroelektronicznych dla kierunku Technologie Kosmiczne i Satelitarne Materiały do wykładu "Podstawy układów mikroelektronicznych" dla kierunku Technologie Kosmiczne i Satelitarne Część 1. Technologia. dr hab. inż. Waldemar Jendernalik Katedra Systemów Mikroelektronicznych,

Bardziej szczegółowo

Współczesna fizyka ciała stałego

Współczesna fizyka ciała stałego Współczesna fizyka ciała stałego Struktury półprzewodnikowe o obniżonej wymiarowości studnie kwantowe, druty kwantowe, kropki kwantowe.. fulereny, nanorurki, grafen. Kwantowe efekty rozmiarowe Ograniczenie

Bardziej szczegółowo

Układy nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1

Układy nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1 Układy nieliniowe Układy nieliniowe odgrywają istotną rolę w nowoczesnej elektronice, np.: generatory sygnałów, stabilizatory, odbiorniki i nadajniki w telekomunikacji, zasialcze impulsowe stałego napięcia

Bardziej szczegółowo

Ekscyton w morzu dziur

Ekscyton w morzu dziur Ekscyton w morzu dziur P. Kossacki, P. Płochocka, W. Maślana, A. Golnik, C. Radzewicz and J.A. Gaj Institute of Experimental Physics, Warsaw University S. Tatarenko, J. Cibert Laboratoire de Spectrométrie

Bardziej szczegółowo

PL B1. INSTYTUT TECHNOLOGII ELEKTRONOWEJ, Warszawa, PL INSTYTUT FIZYKI POLSKIEJ AKADEMII NAUK, Warszawa, PL

PL B1. INSTYTUT TECHNOLOGII ELEKTRONOWEJ, Warszawa, PL INSTYTUT FIZYKI POLSKIEJ AKADEMII NAUK, Warszawa, PL PL 221135 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 221135 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 399454 (22) Data zgłoszenia: 06.06.2012 (51) Int.Cl.

Bardziej szczegółowo

Wykład V Wiązanie kowalencyjne. Półprzewodniki

Wykład V Wiązanie kowalencyjne. Półprzewodniki Wykład V Wiązanie kowalencyjne. Półprzewodniki Wiązanie kowalencyjne molekuła H 2 Tworzenie wiązania kowalencyjnego w molekule H 2 : elektron w jednym atomie przyciągany jest przez jądro drugiego. Wiązanie

Bardziej szczegółowo

Przerwa energetyczna w germanie

Przerwa energetyczna w germanie Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania

Bardziej szczegółowo

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy

Bardziej szczegółowo

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek Lasery półprzewodnikowe przewodnikowe Bernard Ziętek Plan 1. Rodzaje półprzewodników 2. Parametry półprzewodników 3. Złącze p-n 4. Rekombinacja dziura-elektron 5. Wzmocnienie 6. Rezonatory 7. Lasery niskowymiarowe

Bardziej szczegółowo

Badanie emiterów promieniowania optycznego

Badanie emiterów promieniowania optycznego LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 9 Badanie emiterów promieniowania optycznego Cel ćwiczenia: Zapoznanie studentów z podstawowymi charakterystykami emiterów promieniowania optycznego. Badane elementy:

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 10 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Defekty - Mając na myśli rzeczywistą powierzchnię nie można w rozważaniach

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Podstawy

Bardziej szczegółowo

2. Elektrony i dziury w półprzewodnikach

2. Elektrony i dziury w półprzewodnikach 2. Elektrony i dziury w półprzewodnikach 1 B III C VI 2 Związki półprzewodnikowe: 8 walencyjnych elektronów na walencyjnym orbitalu cząsteczkowym2 Rozszczepienie elektronowych poziomów energetycznych Struktura

Bardziej szczegółowo

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury.

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury. WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie

Bardziej szczegółowo

Złącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET

Złącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET Złącza p-n, zastosowania Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET Złącze p-n, polaryzacja złącza, prąd dyfuzyjny (rekombinacyjny) Elektrony z obszaru n na złączu dyfundują

Bardziej szczegółowo

+ + Struktura cia³a sta³ego. Kryszta³y jonowe. Kryszta³y atomowe. struktura krystaliczna. struktura amorficzna

+ + Struktura cia³a sta³ego. Kryszta³y jonowe. Kryszta³y atomowe. struktura krystaliczna. struktura amorficzna Struktura cia³a sta³ego struktura krystaliczna struktura amorficzna odleg³oœci miêdzy atomami maj¹ tê sam¹ wartoœæ; dany atom ma wszêdzie takie samo otoczenie najbli szych s¹siadów odleg³oœci miêdzy atomami

Bardziej szczegółowo

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11

Bardziej szczegółowo

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Podstawy Fizyki Półprzewodników

Podstawy Fizyki Półprzewodników Podstawy Fizyki Półprzewodników Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski konsultacje: poniedziałek godz. 15:00-17:00, pok. 310 A-1 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

Bardziej szczegółowo

Układy nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1

Układy nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1 Układy nieliniowe Układy nieliniowe odgrywają istotną rolę w nowoczesnej elektronice, np.: generatory sygnałów, stabilizatory, odbiorniki i nadajniki w telekomunikacji, zasialcze impulsowe stałego napięcia

Bardziej szczegółowo

Pytać! Nanotechnologie (II) Jeszcze o teoriach (nie tylko fizycznych)

Pytać! Nanotechnologie (II) Jeszcze o teoriach (nie tylko fizycznych) Nanotechnologie (II) Jeszcze o teoriach (nie tylko fizycznych) Rys. źródło: Internet Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko Półprzewodniki a.studnie i.studnie i ekscytony ii.lasery iii.dwuwymiarowe

Bardziej szczegółowo

Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik

Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ FIZYKI TECHNICZNEJ I MATEMATYKI STOSOWANEJ EKSCYTONY. Seminarium z Molekularnego Ciała a Stałego Jędrzejowski Jaromir

POLITECHNIKA GDAŃSKA WYDZIAŁ FIZYKI TECHNICZNEJ I MATEMATYKI STOSOWANEJ EKSCYTONY. Seminarium z Molekularnego Ciała a Stałego Jędrzejowski Jaromir POLITECHNIKA GDAŃSKA WYDZIAŁ FIZYKI TECHNICZNEJ I MATEMATYKI STOSOWANEJ EKSCYTONY W CIAŁACH ACH STAŁYCH Seminarium z Molekularnego Ciała a Stałego Jędrzejowski Jaromir Co to sąs ekscytony? ekscyton to

Bardziej szczegółowo

IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski

IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski 1 1 Dioda na złączu p n Zgodnie z wynikami, otrzymanymi na poprzednim wykładzie, natężenie prądu I przepływającego przez złącze p n opisane jest wzorem Shockleya

Bardziej szczegółowo