NanoTechnologia Wydział Fizyki Uniwersytetu Warszawskiego Zakład Fizyki Ciała Stałego
|
|
- Rafał Wierzbicki
- 8 lat temu
- Przeglądów:
Transkrypt
1 NanoTechnologia Wydział Fizyki Uniwersytetu Warszawskiego Zakład Fizyki Ciała Stałego. Nanotechnologia na codzień 2. Jak działa komputer? a) Trochę logiki b) Od bramki do bramki c) Jak działa tranzystor 3. Prawo Moora i jego konsekwencje a) Więcej! Szybciej! Taniej! b) Wyzwania i problemy 4. Nanotechnologie a) JAK? a) Bottom-up, czyli samoorganizacja b) Top-down, czyli (nano)technologia b) CO? a) Studnie, druty, kropki b) Nanorurki i nanomaszyny c) Bio IBM 36 atomów kobaltu na podłoŝu z miedzi tworzy korale. Elektrony na powierzchni miedzi oddziałują z atomem kobaltu umieszczonym w ognisku elipsy tworząc kwantowy miraŝ. b NanoTechnologia -9, a,b,c < nm a c Nauka InŜynieria Technologia Nanotechnologia w kulturze Nanotechnologia na codzień Motoryzacja (Hummer H2 sport utility truck) Budownictwo Samoczyszczący się beton Elektronika Wyświetlacze OLED Ubrania (Nano-Tex) Zdrowie (filtr krwinek) Kosmetyki Sport
2 Nanotechnologia na codzień AGD Samoczyszcząca się lodówka Samsung Nano SilverSeal AGD Wyświetlacz nano CRT Carbon Nanotube (CNT) Motorola 25 NanoDynamics Revolution Energia Ogniwa paliwowe NEC Corp. Nowe materiały NASA Dlaczego XXI w? mili mikro nano Dlaczego XXI w? Jak to działa? Trochę logiki NOT OR AND cdn... WEJŚCIE WYJŚCIE Sumator: = = Parowóz dziejów Przez ostatnie 4 lat na badania technologii krzemowej wydano bilion (ang. trillion) 2 USD mili mikro nano = = = 2 = = 3 = = 4 = - 2
3 Jak to działa? Trochę logiki NOT OR AND WEJŚCIE WYJŚCIE 2 Od bramki do bramki. AND OR AND OR Od bramki do bramki. Jak działa tranzystor? Lampa próŝniowa jako przełącznik Potrzeba było przełączników: szybkich i niezawodnych. Na początku (r)ewolucji koszty, rozmiar, pobór mocy, łatwość obsługi, uniwersalność, skalowalność, kompatybilność nie miały duŝego znaczenia... Eniac - max. 6h 3
4 958 Trochę historii Pierwszy układ scalony (IC Integrated Circuit) wykonany przez Jacka Kilby ego na germanie w Texas Instruments (2 Nagroda Nobla z fizyki). NiezaleŜnie Robert Noyce (Fairchild) zbudował IC na krzemie. Źródło: (985) i88 (974) 286 (982) i888 (978) IBM PC Pentium (993) Pentium III (999) Źródło: Intel Pentium 4 (2) 42 tranzystorów technologia,8 mikrona. Zegar,5 GHz 6 warstw Rozmiar procesorów Intel (w skali) Nanotechnologia Core Duo Extreme X68 (26) 29 tranzystorów technologia 65 nm Zegar 2,93 GHz 8 warstw Moc 75 W Pentium D 9 (26) 376 tranzystorów technologia 65 nm Zegar 3,2 GHz 8 warstw Moc 5W AMD Athlon 64 FX-62 (26) tranzystorów technologia 9 nm. Zegar 2,8 GHz 9 warstw Moc 25W Źródło: Intel, 4
5 TRENDY: Pierwsze Prawo Moore a Źródło: Intel Rozmiary Wirus Ebola 6 nm Rhinowirus 3 nm Ebola Nanotechnologia Średnica ludzkiego włosa nm Dł. fali światła widzialnego Najnowszy tranzystor Intela nm Promień Bohra,5 nm Średnica krwinki czerwonej Średnica DNA, nanorurek 2 nm Źródło: 5-Processing_Technology Nanotechnologia Nanotechnologia,2 nm SiO 2 9 nm generation transistor (Intel 23) Źródło: Intel Źródło: Intel 5
6 Dlaczego XXI w? Parowóz dziejów Przez ostatnie 4 lat na badania technologii krzemowej wydano bilion (ang. trillion) 2 USD 2 nano 98 mikro 96 mili TRENDY: Pierwsze Prawo Moore a Ilość komponentów (tranzystory, połączenia, izolacje itd.) w IC podwaja się co około 8 miesięcy. Rozmiar liniowy komponentów równieŝ zmniejsza się wykładniczo w czasie. Te trendy nie mogą być kontynuowane w nieskończoność. Co zastąpi technologię Si? Z czego będzie wynikała ta zmiana technologii? EKONOMIA Źródło: Intel PROBLEM: Drugie Prawo Moore a Granice miniaturyzacji? Myślimy, Ŝe tranzystor jest zbudowany tak. 25 nm MOSFET Produkcja od 28 Koszt pojedynczego komponentu maleje wykładniczo o ok. 35% na rok. ALE: Koszt fabryki produkującej chipy rośnie takŝe wykładniczo! W 225 roku fabryka procesorów kosztowałaby bilion USD ( 2 USD) 4,2 nm MOSFET Produkcja??? Ten trend w oczywisty sposób równieŝ nie moŝe być kontynuowany! Źródło: Intel Asen Asenov, Glasgow David Williams Hitachi-Cambridge IEEE Trans Electron Dev 5(9), 837 (23) 6
7 Nanotechnologie JAK? Bottom-up, czyli samoorganizacja Top-down, czyli (nano)technologia CO? Studnie, druty, kropki Nanorurki i nanomaszyny Bottom-up Wydział (nano)chemii UW Nanorurki, nanowąsy i kropki TiO2 nanotube materials ZnO nanocząstka Au Nanorurka Si DNA 7
8 Magnetyczne QD s Jacek Szczytko Farby Stand-alone QD Paint-On Lasers By Aria Pearson ScienceNOW Daily News 2 April 26 4 nm PbS QD Now, a team at the University of Toronto in Canada [...] the researchers suspended quantum dots--nanometer-sized particles of semiconductors--in a liquid and painted the suspension on the inside of a tiny glass tube. Energia ogniwa sloneczne Kropki + bio Cu(In,Ga)Se 2 (also called CIGS) compound semiconductor solar electricity conversion efficiency of 2.8% A PbSe Quantum Dot as seen through a transmission electon microscope (TEM). 8
9 Kropki + bio Science, Vol 3, Issue 566, 8-8, 4 April 23 Kropki + bio Science, Vol 3, Issue 566, 8-8, 4 April 23 Nanorurki Nanorurki moŝna sobie wyobrazić jako warstwy atomów węgla (takie jak w graficie), które zostały zrolowane. RozróŜniamy orientacje: Armchair Zig-zag Chiral Winda do nieba Orientacja jest zdefiniowana przez wektor chiralny (n,m) c h = n a + m b J.Basak, D.Mitra, S.Sinha Carbon nanotube: the next generation sensors presentation Paweł Tomasz Pęczkowski 9
10 Nanomaszyny Large Gear Drives Small Gear Gear and Shaft Operation Powered Sharf Powered Gear Bio-nano-silnik (ATPaza) Nanoroboty Nano-samochód Y. Shira/Rice University They found the nanocar was quite stable on the surface remaining parked until the surface was heated above 7 C - presumably because of strong adhesion between the fullerene wheels and the underlying gold. Flat gold surface was used to prevent the nanocar actually roll around on its fullerene wheels, rather than slip like a car on ice. Between 7 C and 225 C, the researchers observed that the nanocar moved around by translational motion and pivoting. The translational motion was always in a direction perpendicular to the handcar s axle, indicating that it moves by rolling rather than sliding. Nano Tech Web
11 Top-down Vincent Laforet/The New York Times How do we make information processing circuits now?. Silicon technology predominates 2. Current circuits ~ 9 - transistors 3. Wafers - 3mm, ~ 3 chips 4. Photolithography, deposition, etching etc 5. Typically ~2 mask steps, 5-2 process steps Nanotubes as molecular quantum wires Nano Tech Web [ S. Kawata et al., Nature42, 697 (2) ] 7µm 2µm (3 hours to make) λ = 78nm resolution = 5nm
12 Nanotechnologie JAK? Bottom-up, czyli samoorganizacja Top-down, czyli (nano)technologia CO? Studnie, druty, kropki Nanorurki i nanomaszyny Studnie Struktury niskowymiarowe Low-dimensional Semiconductor Systems Druty Kropki t 2D D D DISCRETE ELECTRONIC STRUCTURE Hubert J. Krenner MOCVD Studnie Kwantowe Studnia kwantowa Lasery półprzewodnikowe E c t D(E) E FUW Pasteura 7 E c E MOCVD Osadzanie z atomową precyzją warstw o róŝnym składzie lub domieszkowaniu 2D E 2
13 Studnie Kwantowe Więcej: Studnie Struktury niskowymiarowe Low-dimensional Semiconductor Systems Druty Kropki t 2D D D DISCRETE ELECTRONIC STRUCTURE Hubert J. Krenner Druty Druty Photo by Peidong Yang/UC Berkeley, courtesy of Science 3
14 Druty 5 nm Si nanowire Studnie Struktury niskowymiarowe Low-dimensional Semiconductor Systems Druty Kropki t 2D D D DISCRETE ELECTRONIC STRUCTURE Hubert J. Krenner EPITAXIAL LAYER (e.g. InAs) Wzrost kropek kwantowych Energy Quantum Dot = cgs hω = X SUBSTRATE (GaAs) Island formation α + = 2 β2 α Time Hubert J. Krenner Walter Schottky Institut and Physik Department E24, TU München e -.25µm x.25µm TEM Defect-free semiconductor clusters on a 2D quantum well wetting layer Hubert J. Krenner 4
15 GaN/AlGaN QD s Wzrost K. Pakuła, a, AFM - Rafał BoŜek T=3K Minimum step~5 nm Maximum step ~ µm T=4.2K Minimum step~5 nm Maximum step ~ nm A.Babinski, et al. Physica E 26 (25) 9 FUW HoŜa 69 Doświadczenie 3 µ m.2- µ m c575 GaN/AlGaN QD s Nano i bio (gekon) PL Intensity (arb. units) czas energia 3,38 3,385 3,39 3,395 Energy (ev) czas µpl- Katarzyna Surowiecka et al. 5
16 Nano i bio (gekon) 5x x 2x 4x 8x 5x Nano i bio (gekon) 3x 6x Nano i bio (gekon) Biologiczne kryształy fotoniczne 6x Paweł Tomasz Pęczkowski 6
17 Nanotechnologie CENT Centrum Nauki i Technologii UW Centrum Naukowo Technologiczne UW Podziękowania Zakład Fizyki Ciała Stałego Nowe technologie Jacek.Szczytko@fuw.edu.pl. Koniec technologii krzemowej? Prawo Moora i jego konsekwencje (czyli o postępie technologicznym) 2. Kwanty, stany, pasma (czyli mechanika kwantowa dla początkujących). 3. Miniaturyzujemy I (czyli nano jest trendy) 4. Minaturyzujemy II (czyli studnie, druty, kropki). 5. Miniaturyzujemy III (o nanorurkach). 6. Miniaturyzujemy IV (o nanomaszynach). 7. Komputery I (czyli o przyszłych informatykach) 8. Komputery II (czyli o przyszłych komputerach) 9. Kwantowa kryptografia i teleportacja I (czyli o splątaniu kwantowym).. Kwantowa kryptografia i teleportacja II (czyli o kodach i kluczach).. Optoelektronika (czyli o manipulowaniu światłem). 2. W smutnym kolorze blue (czyli o niebieskim laserze i białych diodach). 3. Spintronika stosowana. Dlaczego elektrony kręcą? (czyli o spinie) 4. Kolorowe obrazy (czyli o wyświetlaczach). 5. Czy komputer moŝe myśleć? 6. Prezentacja prac studentów Aula, WF HoŜa 69 Środy 7:5-9: Popularnonaukowy! Dialog z przyroda musi byc prowadzony w jezyku matematyki, w przeciwnym razie przyroda nie odpowiada na nasze pytania. Michał Heller 7
NanoTechnologia. Nanotechnologia w kulturze. Nanotechnologia na codzień. Nanotechnologie od półprzewodników do DNA. Nauka InŜynieria Technologia
Nanotechnologie od półprzewodników do DNA. Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt 1. Nanotechnologia na codzień 2. Jak działa komputer? a) Od bramki do bramki b) Jak działa tranzystor
Nanostruktury krystaliczne
Nanostruktury krystaliczne Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt 1. Nanotechnologia na codzień 2. Prawo Moora i jego konsekwencje a) Więcej! Szybciej! Taniej! b) Wyzwania i problemy
Jak TO działa? Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: *******
Co to są półprzewodniki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 TRENDY: Prawo Moore a TRENDY:
Disruptive Technolgies technologie, które zmieniają świat.
Disruptive Technolgies technologie, które zmieniają świat. Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt Uniwersytet Warszawski Nowe technologie Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt
FIZYKA + CHEMIA. Wydział Fizyki UW. Wykłady FUW. od października 2009
Uniwersytet Warszawski Interdyscyplinarny makrokierunek Wydziału Fizyki i Wydziału Chemii Uniwersytetu Warszawskiego FIZYKA + CHEMIA od października 2009 wkrótce więcej informacji na stronie http://nano.fuw.edu.pl
NOWE TECHNOLOGIE
NOWE TECHNOLOGIE Jacek.Szczytko@fuw.edu.pl IBM http://www.fuw.edu.pl/~zfcs/ Dialog z przyrodą musi być prowadzony w języku matematyki, w przeciwnym razie przyroda nie odpowiada na nasze pytania. Michał
FIZYKA + CHEMIA. Jeszcze o teoriach (nie tylko fizycznych) Jeszcze o teoriach (nie tylko fizycznych) Jeszcze o teoriach (nie tylko fizycznych)
Uniwersytet Warszawski Interdyscyplinarny makrokierunek Wydziału Fizyki i Wydziału Chemii Uniwersytetu Warszawskiego FIZYKA + CHEMIA od października 2009 wkrótce więcej informacji na stronie http://nano.fuw.edu.pl
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się
Edukacja przez badania. Internet dla Szkół 20 lat! Wolność, prywatność, bezpieczeństwo
Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji Edukacja przez badania Hoża 69: 1921 2014 r. Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW Wydział
Nanostruktury krystaliczne
Nanostruktury krystaliczne Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt 1. Nanotechnologia na codzień 2. Prawo Moora i jego konsekwencje a) Więcej! Szybciej! Taniej! b) Wyzwania i problemy
Nanostruktury krystaliczne
Nanostruktury krystaliczne Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt 1. Nanotechnologia na codzień 2. Prawo Moora i jego konsekwencje a) Więcej! Szybciej! Taniej! b) Wyzwania i problemy
Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji
Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW Edukacja przez badania Hoża 69: 1921-2014 r. 2014-09-25
Disruptive Technolgies technologie, które zmieniają świat.
Disruptive Technolgies technologie, które zmieniają świat. Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt Uniwersytet Warszawski Wykład przygotowany w ramach IV Letniej Praktyki Badawczej
Jak TO działa? Nanotechnologia. TRENDY: Prawo Moore a. Kwietniowa Wiedza i Życie 2010
Nanotechnologia Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 Kwietniowa Wiedza i Życie 2010 TRENDY:
Pytać! Nanotechnologie (II) Jeszcze o teoriach (nie tylko fizycznych)
Nanotechnologie (II) Jeszcze o teoriach (nie tylko fizycznych) Rys. źródło: Internet Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko Półprzewodniki a.studnie i.studnie i ekscytony ii.lasery iii.dwuwymiarowe
Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å
Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia
Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca
Wstęp do Optyki i Fizyki Materii Skondensowanej Mateusz Goryca mgoryca@fuw.edu.pl Uniwersytet Warszawski 2015 Nanotechnologia Uniwersytet Warszawski 2015 T k E E e B c F e T m k n 2 3 2 0 * 2 2 T k E E
Jak TO działa? Do czego służą studnie, druty, kropki kwantowe? Półprzewodniki. Heterostruktury półprzewodnikowe
Do czego służą studnie, druty, kropki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 Półprzewodniki
Nowe technologie. Kwanty, stany, pasma mechanika kwantowa dla początkujących Jacek Szczytko, Wydział Fizyki UW. Trochę historii.
Kwanty, stany, pasma mechanika kwantowa dla początkujących Jacek Szczytko, Wydział Fizyki UW 1.. 3. Czy dwa półprzewodniki dają cały Rys. źródło: IM Nowe technologie 1. Koniec technologii krzemowej? Prawo
Fizyka 3.3. prof.dr hab. Ewa Popko p.231a
Fizyka 3.3 prof.dr hab. Ewa Popko www.if.pwr.wroc.pl/~popko ewa.popko@pwr.edu.pl p.231a Fizyka 3.3 Literatura 1.J.Hennel Podstawy elektroniki półprzewodnikowej WNT Warszawa 1995. 2. B. Ziętek, Optoelektronika,
Współczesna fizyka ciała stałego
Współczesna fizyka ciała stałego Struktury półprzewodnikowe o obniŝonej wymiarowości studnie kwantowe, druty kwantowe, kropki kwantowe fulereny, nanorurki, grafen Kwantowe efekty rozmiarowe Ograniczenie
Fizyka 3.3. prof.dr hab. Ewa Popko p.231a
Fizyka 3.3 prof.dr hab. Ewa Popko www.if.pwr.wroc.pl/~popko ewa.popko@pwr.edu.pl p.231a Fizyka 3.3 Literatura 1.J.Hennel Podstawy elektroniki półprzewodnikowej WNT Warszawa 1995. 2.W.Marciniak Przyrządy
NOWE TECHNOLOGIE. Wtorki17:30-19:00 Sala Duża Doświadczalna. Nowe technologie
NOWE TECHNOLOGIE Wtorki7:3-9: Sala Duża Doświadczalna IBM Nowe technologie Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt Google: Jacek Szczytko Login: student Hasło: ****** Nowe technologie
http://www.fuw.edu.pl/~zfcs/ Nowe technologie
http://www.fuw.edu.pl/~zfcs/ Nowe technologie. Koniec technologii krzemowej? Prawo Moora i jego konsekwencje (czyli o postępie technologicznym) 2. Kwanty, stany, pasma (czyli mechanika kwantowa dla początkujących).
Atom Mn: wielobit kwantowy. Jan Gaj Instytut Fizyki Doświadczalnej
Atom Mn: wielobit kwantowy Jan Gaj Instytut Fizyki Doświadczalnej Tomasz Kazimierczuk Mateusz Goryca Piotr Wojnar (IF PAN) Artur Trajnerowicz Andrzej Golnik Piotr Kossacki Jan Gaj Michał Nawrocki Ostrzeżenia
dr Rafał Szukiewicz WROCŁAWSKIE CENTRUM BADAŃ EIT+ WYDZIAŁ FIZYKI I ASTRONOMI UWr
dr Rafał Szukiewicz WROCŁAWSKIE CENTRUM BADAŃ EIT+ WYDZIAŁ FIZYKI I ASTRONOMI UWr WYTWARZANIE I ZASTOSOWANIE NANOCZĄSTEK O OKREŚLONYCH WŁAŚCIWOŚCIACH WROCŁAWSKIE CENTRUM BADAŃ EIT+ WIELKOŚCI OBSERWOWANYCH
Plan. Kropki kwantowe - część III spektroskopia pojedynczych kropek kwantowych. Kropki samorosnące. Kropki fluktuacje szerokości
Plan Kropki kwantowe - część III spektroskopia pojedynczych kropek kwantowych Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika 1. Techniki pomiarowe 2. Podstawowe wyniki 3. Struktura
Kropki samorosnące. Optyka nanostruktur. Gęstość stanów. Kropki fluktuacje szerokości. Sebastian Maćkowski. InAs/GaAs QDs. Si/Ge QDs.
Kropki samorosnące Optyka nanostruktur InAs/GaAs QDs Si/Ge QDs Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon:
Współczesna fizyka ciała stałego
Współczesna fizyka ciała stałego Struktury półprzewodnikowe o obniżonej wymiarowości studnie kwantowe, druty kwantowe, kropki kwantowe.. fulereny, nanorurki, grafen. Kwantowe efekty rozmiarowe Ograniczenie
FIZYKA + CHEMIA. Kampus Ochota, Warszawa. Fizyka kwantowa dla początkujących. Kwantowy świat nanotechnologii
Uniwersytet Warszawski Interdyscyplinarny makrokierunek Wydziału Fizyki i Wydziału Chemii Uniwersytetu Warszawskiego Kampus Ochota, Warszawa FIZYK + CHEMI od października 009 http://nano.fuw.edu.pl Fizyka
PROJEKTOWANIE UKŁADÓW VLSI
prof. dr hab. inż. Andrzej Kos Tel. 34.35, email: kos@uci.agh.edu.pl Pawilon C3, pokój 505 PROJEKTOWANIE UKŁADÓW VLSI Forma zaliczenia: egzamin Układy VLSI wczoraj i dzisiaj Pierwszy układ scalony -
Nanofizyka co wiemy, a czego jeszcze szukamy?
Nanofizyka co wiemy, a czego jeszcze szukamy? Maciej Maśka Zakład Fizyki Teoretycznej UŚ Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ...czyli dlaczego NANO
Przewodność elektryczna półprzewodników
Przewodność elektryczna półprzewodników p koncentracja dziur n koncentracja elektronów Domieszkowanie półprzewodników donory i akceptory 1 Koncentracja nośników ładunku w półprzewodniku domieszkowanym
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 13 Janusz Andrzejewski Scaledlugości Janusz Andrzejewski 2 Scaledługości Simple molecules
Układy scalone. wstęp
Układy scalone wstęp Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Układy scalone Układ scalony (ang. intergrated
Fotowoltaika - jak zamienić fotony na prąd?
Fotowoltaika - jak zamienić fotony na prąd? Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW Przerwa energetyczna http://www.rpi.edu/~schubert/light-emitting-diodes-dot-org/chap11/f11-04-r.jpg 2013-12-27 2
Nanostruktury i nanotechnologie
Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl http://www.rk.kujawsko-pomorskie.pl/ Organizacja zajęć Kurs trwa 20 godzin lekcyjnych,
Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer
Sprzęt komputerowy 2 Autor prezentacji: 1 prof. dr hab. Maria Hilczer Budowa komputera Magistrala Procesor Pamięć Układy I/O 2 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący
Nanostruktury, spintronika, komputer kwantowy
Nanostruktury, spintronika, komputer kwantowy Wykªad dla uczniów Gimnazjum Nr 2 w Krakowie I. Nanostruktury Skala mikrometrowa 1µm (mikrometr) = 1 milionowa cz ± metra = 10 6 m obiekty mikrometrowe, np.
Centrum Materiałów Zaawansowanych i Nanotechnologii
Centrum Materiałów Zaawansowanych i Nanotechnologii sprawozdanie za okres I 2010 XII 2011 Prof. dr hab. Jan Misiewicz www.cmzin.pwr.wroc.pl Centrum Materiałów Zaawansowanych i Nanotechnologii (CMZiN) Jest
Przejścia optyczne w cząsteczkach
Przejścia optyczne w cząsteczkach Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt http://www.sciencecartoonsplus.com/ Podziękowania za pomoc w przygotowaniu zajęć: Prof. dr hab. Paweł Kowalczyk
Materiały fotoniczne
Materiały fotoniczne Półprzewodniki Ferroelektryki Mat. organiczne III-V, II-VI, III-N - źródła III-V (λ=0.65 i 1.55) II-IV, III-N niebieskie/zielone/uv - detektory - modulatory Supersieci, studnie Kwantowe,
Urządzenia półprzewodnikowe
Urządzenia półprzewodnikowe Diody: - prostownicza - Zenera - pojemnościowa - Schottky'ego - tunelowa - elektroluminescencyjna - LED - fotodioda półprzewodnikowa Tranzystory - tranzystor bipolarny - tranzystor
Rozszczepienie poziomów atomowych
Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek
Wytwarzanie niskowymiarowych struktur półprzewodnikowych
Większość struktur niskowymiarowych wytwarzanych jest za pomocą technik epitaksjalnych. Najczęściej wykorzystywane metody wzrostu: - epitaksja z wiązki molekularnej (MBE Molecular Beam Epitaxy) - epitaksja
FIZYKA + CHEMIA. Technologie disruptive czyli ciężkie życie futurologa. Edukacja przez badania. Plan wykładu.
Technologie disruptive czyli ciężkie życie futurologa Uniwersytet Warszawski Interdyscyplinarny makrokierunek WydziałuFizyki i WydziałuChemii Uniwersytetu Warszawskiego FIZYKA + CHEMIA http://nano.fuw.edu.pl
Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer
Sprzęt komputerowy 2 Autor prezentacji: 1 prof. dr hab. Maria Hilczer Budowa komputera Magistrala Procesor Pamięć Układy I/O 2 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący
GaSb, GaAs, GaP. Joanna Mieczkowska Semestr VII
GaSb, GaAs, GaP Joanna Mieczkowska Semestr VII 1 Pierwiastki grupy III i V układu okresowego mają mało jonowy charakter. 2 Prawie wszystkie te kryształy mają strukturę blendy cynkowej, typową dla kryształów
The role of band structure in electron transfer kinetics at low dimensional carbons
The role of band structure in electron transfer kinetics at low dimensional carbons Paweł Szroeder Instytut Fizyki, Uniwersytet Mikołaja Kopernika, ul. Grudziądzka 5/7, 87-100 Toruń, Poland Reakcja przeniesienia
Bity, P-bity, Q-bity. Quantum Computer II (QC) Bramki kubitowe. Bramki kubitowe HARDWARE. Jacek.Szczytko@fuw.edu.pl. Jacek.Szczytko@fuw.edu.
Quantum Computer II (QC) Jacek Szczytko, Wydział Fizyki UW. a. Logika bramek b. Kwantowe algorytmy c. Jak zbudować taki komputer? HARDWARE Bity, P-bity, Q-bity Kwantowym odpowiednikiem klasycznego bitu
SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force
SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy
FIZYKA WSPÓŁCZESNA. Janusz Adamowski
FIZYKA WSPÓŁCZESNA Janusz Adamowski 1 Wykłady dla studentów 2. stopnia studiów inżynierskich AGH Motto wykładów: FIZYKA (WSPÓŁCZESNA) stanowi podstawę działania przyrządów obecnej i przyszłej techniki
Technika mikroprocesorowa
Technika mikroprocesorowa zajmuje się przetwarzaniem danych w oparciu o cyfrowe programowalne układy scalone. Systemy przetwarzające dane w oparciu o takie układy nazywane są systemami mikroprocesorowymi
FIZYKA + CHEMIA Uniwersytet Warszawski
Uniwersytet Warszawski Interdyscyplinarny makrokierunek Wydziału Fizyki i Wydziału Chemii Uniwersytetu Warszawskiego Disruptive Technolgies technologie, które zmieniają świat. Jacek.Szczytko@fuw.edu.pl
Technika cyfrowa Inżynieria dyskretna cz. 2
Sławomir Kulesza Technika cyfrowa Inżynieria dyskretna cz. 2 Wykład dla studentów III roku Informatyki Wersja 5.0, 10/10/2015 Generacje układów scalonych Stopień scalenia Liczba elementów aktywnych Zastosowania
Budowa komputera. Magistrala. Procesor Pamięć Układy I/O
Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz
Budowa komputera. Magistrala. Procesor Pamięć Układy I/O
Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz
Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk
Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk Promotor: dr hab. inż. Bogusława Adamowicz, prof. Pol. Śl. Zadania pracy Pomiary transmisji i odbicia optycznego
Zastosowanie technologii montażu powierzchniowego oraz nowoczesnych systemów inspekcji optycznej w przemyśle elektronicznym.
ZARZĄDZANIE I INŻYNIERIA PRODUKCJI Zastosowanie technologii montażu powierzchniowego oraz nowoczesnych systemów inspekcji optycznej w przemyśle elektronicznym. RYS HISTORICZNY ROZWOJU ELEKTRONIKI Elektronika
Teoria pasmowa ciał stałych Zastosowanie półprzewodników
Teoria pasmowa ciał stałych Zastosowanie półprzewodników Model atomu Bohra Niels Bohr - 1915 elektrony krążą wokół jądra jądro jest zbudowane z: i) dodatnich protonów ii) neutralnych neutronów Liczba atomowa
Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA
Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA B V B C ZEWNĘTRZNE POLE ELEKTRYCZNE B C B V B D = 0 METAL IZOLATOR PRZENOSZENIE ŁADUNKÓW ELEKTRYCZNYCH B C B D B V B D PÓŁPRZEWODNIK PODSTAWOWE MECHANIZMY
Skalowanie układów scalonych Click to edit Master title style
Skalowanie układów scalonych Charakterystyczne parametry Technologia mikroelektroniczna najmniejszy realizowalny rozmiar (ang. feature size), liczba bramek (układów) na jednej płytce, wydzielana moc, maksymalna
Półprzewodniki.
Półprzewodniki Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt Uniwersytet Warszawski 01 NRGIA LKTRONÓW Teoria pasmowa ciał stałych. pasmo puste pasmo puste pasmo puste pasmo pełne pasmo pełne
Ekscyton w morzu dziur
Ekscyton w morzu dziur P. Kossacki, P. Płochocka, W. Maślana, A. Golnik, C. Radzewicz and J.A. Gaj Institute of Experimental Physics, Warsaw University S. Tatarenko, J. Cibert Laboratoire de Spectrométrie
Własności transportowe niejednorodnych nanodrutów półprzewodnikowych
Własności transportowe niejednorodnych nanodrutów półprzewodnikowych Maciej Wołoszyn współpraca: Janusz Adamowski Bartłomiej Spisak Paweł Wójcik Seminarium WFiIS AGH 13 stycznia 2017 Streszczenie nanodruty
"Podstawy układów mikroelektronicznych" dla kierunku Technologie Kosmiczne i Satelitarne
Materiały do wykładu "Podstawy układów mikroelektronicznych" dla kierunku Technologie Kosmiczne i Satelitarne Część 1. Technologia. dr hab. inż. Waldemar Jendernalik Katedra Systemów Mikroelektronicznych,
Skończona studnia potencjału
Skończona studnia potencjału U = 450 ev, L = 100 pm Fala wnika w ściany skończonej studni długość fali jest większa (a energia mniejsza) Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach
Elektronika z plastyku
Elektronika z plastyku Adam Proń 1,2 i Renata Rybakiewicz 2 1 Komisariat ds Energii Atomowej, Grenoble 2 Wydział Chemiczny Politechniki Warszawskiej Elektronika krzemowa Krzem Jan Czochralski 1885-1953
Centrum Materiałów Zaawansowanych i Nanotechnologii
Centrum Materiałów Zaawansowanych i Nanotechnologii sprawozdanie za okres X 2008 XII 2009 Prof. dr hab. Jan Misiewicz www.cmzin.pwr.wroc.pl Centrum Materiałów Zaawansowanych i Nanotechnologii (CMZiN) Jest
Fizyka 3.3. dr hab. Ewa Popko, prof. P.Wr. www.if.pwr.wroc.pl/~popko ewa.popko@pwr.wroc.pl p.231a
Fizyka 3.3 dr hab. Ewa Popko, prof. P.Wr. www.if.pwr.wroc.pl/~popko ewa.popko@pwr.wroc.pl p.31a Fizyka 3.3 Literatura 1.J.Hennel Podstawy elektroniki półprzewodnikowej WNT Warszawa 1995..W.Marciniak Przyrządy
Architektury komputerów Architektury i wydajność. Tomasz Dziubich
Architektury komputerów Architektury i wydajność Tomasz Dziubich Przetwarzanie potokowe Przetwarzanie sekwencyjne Przetwarzanie potokowe Architektura superpotokowa W przetwarzaniu potokowym podczas niektórych
Skalowanie układów scalonych
Skalowanie układów scalonych Technologia mikroelektroniczna Charakterystyczne parametry najmniejszy realizowalny rozmiar (ang. feature size), liczba bramek (układów) na jednej płytce, wydzielana moc, maksymalna
Arkusz1. Wyniki CPUbenchmark.net na dzień 11.05.2012
Wyniki CPUbenchmark.net na dzień 11.05.2012 AMD A4-3300 APU 1731 AMD A4-3300M APU 1643 AMD A4-3305M APU 1414 AMD A4-3310MX APU 1378 AMD A4-3320M APU 1477 AMD A4-3400 APU 1704 AMD A4-3420 APU 1823 AMD A6-3400M
Przyrządy i układy półprzewodnikowe
Przyrządy i układy półprzewodnikowe Prof. dr hab. Ewa Popko ewa.popko@pwr.edu.pl www.if.pwr.wroc.pl/~popko p.231a A-1 Zawartość wykładu Wy1, Wy2 Wy3 Wy4 Wy5 Wy6 Wy7 Wy8 Wy9 Wy10 Wy11 Wy12 Wy13 Wy14 Wy15
Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych komputera kwantowego
Stanisław Bednarek Zespół Teorii Nanostruktur i Nanourządzeń Katedra Informatyki Stosowanej i Fizyki Komputerowej WFiIS AGH Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych
Elementy Elektroniczne
Elementy Elektroniczne dr hab. inż Piotr Płotka pok. 301 tel. 347-1634 e-mail: pplotka@eti.pg.gda.pl Nagroda Nobla w fizyce 2009 Za przełomowe osiągnięcia w dziedzinie przesyłania światła we włóknach optycznych
Powierzchnie cienkie warstwy nanostruktury. Józef Korecki, C1, II p., pok. 207
Powierzchnie cienkie warstwy nanostruktury Józef Korecki, C1, II p., pok. 207 korecki@uci.agh.edu.pl http://korek.uci.agh.edu.pl/priv/jk.htm Obiekty niskowymiarowe Powierzchnia Cienkie warstwy Wielowarstwy
Sprawy organizacyjne
1 Sprawy organizacyjne Zajęcia laboratoryjne: CHEMIA: piątki, 14:15 18:00 TECHNOLOGIA CHEMICZNA: środy, 10:15 14:00 Miejsce zajęć (zgodnie z podanym planem): Katedra Fizyki Molekularnej (dr Izabela Bobowska)
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 2 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Ogniwa fotowoltaiczne
Ogniwa fotowoltaiczne Efekt fotowoltaiczny: Ogniwo słoneczne Symulacja http://www.redarc.com.au/solar/about/solarpanels/ Historia 1839: Odkrycie efektu fotowoltaicznego przez francuza Alexandre-Edmond
WYDZIAŁ ZARZĄDZANIA Elementy (przyrządy) elektroniczne
Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej WYDZIAŁ ZARZĄDZANIA Elementy (przyrządy) elektroniczne Prof. dr hab. inż. Andrzej Jakubowski Prof. nzw. dr hab. inż. Lidia Łukasiak
Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.
Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:
Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca
Wstęp do Optyki i Fizyki Materii Skondensowanej Mateusz Goryca mgoryca@fuw.edu.pl Uniwersytet Warszawski 2015 Materia skondensowana OC 6 H 13 H 13 C 6 O OC 6 H 13 H 17 C 8 O H 17 C 8 O N N Cu O O H 21
Wykład 21: Studnie i bariery
Wykład 1: Studnie i bariery Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 01.06.017 Wydział Informatyki, Elektroniki i 1 Równanie
Rewolucja informatyczna od wewnątrz
Rewolucja informatyczna od wewnątrz Tomasz Dietl Laboratorium Kriogeniki i Spintroniki Instytutu Fizyki PAN Instytut Fizyki Teoretycznej UW punkty widzenie: konsekwencje: ekonomiczne, społeczne, polityczne,...
Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz
Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy
Wstęp do algorytmiki kwantowej
Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Komputer kwantowy - co to właściwie jest? Komputer kwantowy Komputer, którego zasada działania nie może zostać wyjaśniona bez użycia formalizmu mechaniki
Rodzaj obliczeń. Data Nazwa klienta Ref. Napędy z pasami klinowymi normalnoprofilowymi i wąskoprofilowymi 4/16/ :53:55 PM
Rodzaj obliczeń Data Nazwa klienta Ref Napędy z pasami klinowymi normalnoprofilowymi i wąskoprofilowymi 4/16/2007 10:53:55 PM Rodzaj obciążenia, parametry pracy Calculation Units SI Units (N, mm, kw...)
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki
Maciej Czapkiewicz. Magnetic domain imaging
Maciej Czapkiewicz Magnetic domain imaging Phase diagram of the domain walls Kerr geometry MOKE (Kerr) Magnetometer MOKE signal hysteresis loops [Pt/ Co] 3 [Pt/Co] 3 /Pt(0.1 nm)/irmn 10 2 5 1 Rotation
Dom Oprogramowanie Sprzęt komputerowy Benchmarki Usługi Sklep Wsparcie Forum Strona główna CPU Benchmarki»procesory
PassMark Intel vs AMD CPU Benchmarks - High End 1 Twój koszyk Poszukiwanie O Nas Dom Oprogramowanie Sprzęt komputerowy Benchmarki Usługi Sklep Wsparcie Forum Strona główna CPU Benchmarki»procesory Benchmarki
6. Emisja światła, diody LED i lasery polprzewodnikowe
6. Emisja światła, diody LED i lasery polprzewodnikowe Typy rekombinacji Rekombinacja promienista Diody LED Lasery półprzewodnikowe Struktury niskowymiarowe OLEDy 1 Promieniowanie termiczne Rozkład Plancka
Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Półprzewodniki i elementy z półprzewodników homogenicznych Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja
Złącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET
Złącza p-n, zastosowania Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET Złącze p-n, polaryzacja złącza, prąd dyfuzyjny (rekombinacyjny) Elektrony z obszaru n na złączu dyfundują
Z.R. Żytkiewicz IF PAN I Konferencja. InTechFun
Z.R. Żytkiewicz IF PAN I Konferencja Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych InTechFun 9 kwietnia 2010 r., Warszawa
Home Software Hardware Benchmarks Services Store Support Forums About Us
Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» CPU Benchmarks» CPU List CPU Benchmarks Video Card Benchmarks Hard Drive Benchmarks RAM PC Systems Android
Opracowanie nowych koncepcji emiterów azotkowych ( nm) w celu ich wykorzystania w sensorach chemicznych, biologicznych i medycznych.
Opracowanie nowych koncepcji emiterów azotkowych (380 520 nm) w celu ich wykorzystania w sensorach chemicznych, biologicznych i medycznych. (zadanie 14) Piotr Perlin Instytut Wysokich Ciśnień PAN 1 Do
Elementy przełącznikowe
Elementy przełącznikowe Dwie główne grupy: - niesterowane (diody p-n lub Schottky ego), - sterowane (tranzystory lub tyrystory) Idealnie: stan ON zwarcie, stan OFF rozwarcie, przełączanie bez opóźnienia
Komunikacja w nanoskali. Pawel Kulakowski, KT AGH
Komunikacja w nanoskali Pawel Kulakowski, KT AGH 1 Plan wykładu 1. Jak stworzyć nową dziedzinę badań? Przykład Tadashiego Nakano 2. Nanokomunikacja: powody i główne kierunki rozwoju dziedziny 3. Zjawisko