WYKŁAD 3 (godz. 5 -) Polimeryzacja anionowa.

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYKŁAD 3 (godz. 5 -) Polimeryzacja anionowa."

Transkrypt

1 WYKŁAD 3 (godz. 5 -) Polimeryzacja anionowa.

2 1. Znaczenie polimeryzacji anionowej 2. Odkrycie przez M. Szwarca polimeryzacji żyjącej 3. Inicjatory 4. Kinetyka -zależność stałych szybkości reakcji elementarnych od budowy aktywnego centrum 5. Synteza - kopolimery blokowe, szczepione, gwiazdy i in.

3 Zdolność do polimeryzacji anionowej monomerów winylowych *) jest związana z efektem indukcyjnym podstawników: grupa przyciągająca elektrony może indukować ładunek dodatni na sąsiednich atomach wskutek silniejszego związania ze sobą pary elektronów podwójnego wiązania : SO 2 R> CN> F> Cl> Br> COOH ( COOR) najczęściej: J> OR> SR> C 6 H 5 > NR 2 > H> R> CH (R) ; CH COOR < CH 3 > ; CH CN ; C CN ; C CN CN COOR CH CONH 2 ; CH CH ; C(CH 3 ) CH (!) *) polimeryzacji jonowej (anionowej i kationowej oraz jonowo koordynacyjnej) związków cyklicznych poświęcone będą oddzielne wykłady

4 Odkrycie polimeryzacji żyjącej- Michał Szwarc, dr h.c. pierwsza praca: Nature, 1956 w żyjącej polimeryzacji nie ma zakończenia ani przeniesienia łańcucha*; po przereagowaniu monomeru A można wprowadzić nową porcje monomeru A i wznowić polimeryzację lub wprowadzić monomer B i otrzymać kopolimer blokowy: a * + A a * + B a b * * R t = R tr = 0 } konsekwencje kinetyczne:

5 Zalety polimeryzacji anionowej w syntezie polimerów: Trwałość aktywnych centrów: -Określona masa molowa polimerów- jeśli szybkie inicjowanie i bez zakończenia: R + nm ; M n = n[m]/[r ] -wąski rozkład; M w /M n 1.1 (Poisson) ( <M n > ) - funkcjonalizowanie- końce łańcuchów (grupy końcowe) - synteza kopolimerów blokowych (elastoplasty, jonowo-niejonowe) - synteza kopolimerów szczepionych - makrocząsteczki w kształcie gwiazdy

6 Zalety polimeryzacji anionowej: - kopolimery blokowe: właściwy dobór reaktywności CH (kationy pominięto) np.:... CH +... CH O O PEO(PSt)PEO ; PSt(PEO)PSt ; } warunki w wykładzie o kopolimerach - kopolimery szczepione np.: CH 3 CH 3... PMMA ( C) PMMA PMMA ( C) PMMA... C O C O... PSt OCH 3 PSt + CH 3 O.

7 - metoda anionowej polimeryzacji znana od dawna: butadien/na - poliizopren- syntetyczny kauczuk naturalny (1953-6) oraz polibutadien (1,4- cis-) cis-.. CH CH CH CH... CH 3 CH 3 trans- CH CH... CH CH... BU najważniejsza realizacja przemysłowa: - kopolimer styren-butadien-styren - kopolimer trójblokowy> elastoplast ST

8 Ważniejsze inicjatory: - karboaniony - jony amidkowe (np:. CH 3 ; ) (np:. H 2 N ; (C 2 H 5 ) 2 N <amidek potasu> H 2 N, K ) - jony alkoholanowe/fenolanowe <alkoholany, fenolany> - jony karboksylanowe (np:. CH 3 COO ) - mocne nukleofile (kowalencyjne zwitterjony) trzeciorzędowe aminy, fosfiny) - metale (litowce- przeniesienie elektronu) Różne struktury fizyczne jonów (tak samo w polimeryzacji kationowej): XY X, Y X Y X + Y związek kowalencyjny para jonów kontaktowa (zwarta) para jonów rozdzielona wolne jony

9 Inicjatory: - karboaniony: często stosowany n-butylolit: CH 3 Li rozpuszczalny w węglowodorach (częściowo kowalencyjny?) (Na, K - nierozpuszczalne) tworzy agregaty (zob. propagacja) <tetra-heksamery> (n- BuLi) bezpośrednia addycja: (n- CH 3, Li ) x H C 4 H 9 C, Li Y n- C 4 H 9, Li ; n-c 4 H 9, Li H + C Y sec-, tert- nie tworzą agregatów, Mt ; CH 3 C, Mt ; CH 3 CH Mt ; n-buli + X karboaniony z pierścieniami aromatycznymi- lepiej rozpuszczalne w węglowodorachcis- orientacja dienów

10 - przeniesienie elektronu: * bezpośrednie (Na Na + e - ) ; + CH : : Na, CH <niebieski roztwór w THF> <solwatowany elektron> dimer Na, CH CH, Na CH itd + * z udziałem pośrednika (charakterystyczna absorpcja w świetle widzialnym; zielony czerwony; ilościowa ocena) rodniko-aniony (Scott/Szwarc) Na +, Na naftalen (również inne, ale antracen zbyt trwały) przyłączenie (zob. ROP) ponowne przeniesienie <styren>

11 - zwitterjony ( jony obojnacze ) zarówno w polimeryzacji monomerów winylowych jak i monomerów cyklicznych (z monomerami zawierającymi grupy odciągające elektrony- mocne akceptory) R 3 N + C CN COOR R 3 N C CN COOR (ale nawet H 2 O!) dobrze udokumentowane: (trudność: rozdzielenie ładunków) <zob. ROP>* C CN CN ; CH NO 2 ; * (ROP: ring-opening polymerization : polimeryzacja z otwarciem pierścienia)

12 Kinetyka polimeryzacji -d[m] 1. = k p [P ln([m] o /[M]) = k [I] t dt [M] o -[M] 2. Jeśli R tr = R t = 0 ; P n = ; ( P n = f(α) ) [I] o ln([m] o /[M]) P n ) k p [I] o t } [M] = [M] o - P [I] o ; -ln(1- [I] P n /[M] o ) = k [I] t α aby wykazać żyjący charakter polimeryzacji, należy wykazać jednocześnie prostoliniowość ln([m] o /[M]) = f(t) oraz prostoliniowość P n = f(([m] o - [M])/[M] o )

13 ln (1 - [I] P n /[M] o ) = k [I] t konwersja w % (skala log) -ln(1-p [I] o /[M] o ) P n czas, s polimeryzacja żyjąca krzywe kinetyczne b-f odpowiadają polimeryzacji z zakończeniem i/lub przeniesieniem łańcucha o intensywności b < f

14 Kinetyka anionowej polimeryzacji: k i I + M IM (P 1 ) P 1 + M k p IP 2 (P 2 ) k p P 2 + M P 3 [P i ] = Σ [jony] + [pary jonów] +... [P i ] można zmierzyć metodami UV, ViS, NMR, (np. CH 3 J) [jony]: przewodnictwo jonowe P i + M P i+1 (jeśli k i >k p ) -d[m]/dt = k p [P ] [M]; [P ] = [I] o ln ([M] o /[M]) = k p [I] t [M]: UV, ViS, IR, NMR, SEC (HPLC-GPC), GLC, dylatometria, polarymetria.

15 Roztwór żyjącego polimeru (żyjących makrocząsteczek) Roztwór monomeru Celka optyczna (oraz płytka ) Roztwór monomeru Roztwór żyjącego polimeru

16 CH wyłącznie pary jonów; np., 25 o C -dm/dt= kk p [M] [P K] [P K K ] = [I] o ; ln([m] o /[M]) = k [I] t a więc : kk p = {ln([m] o /[M])}/[I] t kation k p K Li r 0.94 Na r 3.4 K r 19.8 Rb r 21.5 O O Mała zdolność do solwatacji jonów oraz niska stała dielektryczna. stałe szybkości rosną ze wzrostem rozmiaru kationu: maleje oddziaływanie pomiędzy przeciwjonami. Cs r 24.5

17 Indywidualne stałe szybkości propagacji: jony i pary jonów w równowadze (obserwacja jonów i par jonów w kationie trifenylometyliowym) ~, R p = -d[m]/dt = k p [P i ] [M] + k p [P i ] [M] [jony] [P ] stopień dysocjacji α = = ; [jony] + [pary jonów] [P i ] + [PK i ] [P i ] = α [I] 0 ; [P i ] = (1 - α) [I] 0 ; ([P i ] + [P i ] = [I] 0 ) ; K dys K dys ~ + ; [P ] P + ; K dys = [jony] 2 [pary jonów] α 2 2 [I] o K = α 2 dys = [I] o ( jeśli 1 >> α ) ; K ; (1 - α) [I] dys = α 2 [I] 0 α = K 1/2-1/2 dys [I] 0 ; o k p app = α -d[m] [I] o [M]dt app = αk p + (1 - α) k p = k p ; k p + (1 - α) k p ; = α k p + k p - α k p k p app = k p + α (k p - k p ) -d[m] k app = k p + (k p - k p ) K 1/2-1/2 p =. dys [I] [I] o o [M]dt [I] o -1/2

18 Jeżeli występują jednocześnie pary jonów i wolne jony: k app K K p = ln ([M] o /[M])/[I] t = k p + (k p - k p ) K 1/2 [I] -1/2 o k p = 10 4 k p app Li Na K Rb kation Ri/A o k 10 7 k p K k p K THF DiOX Li k p K 1/2 ) k p K dys Cs [I] o -1/2 Polimeryzacja styrenu w THF (20 o C) K dys : L -1 ; k p : mol s -1 Na K Rb Cs

19 Pary jonów rozdzielone rozpuszczalnikiem: Energie aktywacji reakcji elementarnych i energie aktywacji (poprawnie: współczynniki temperaturowe) reakcji złożonych: - kiedy występują wyłącznie jony lub pary jonów jednego typu można (z zależności od k p oraz kk p od temperatury) wyznaczyć parametry aktywacyjne: H ; HK ; S ; S K : pozorne parametry aktywacyjne są mylące i na ogół bezużyteczne

20 log k K p jest liniową funkcją 1/T w rozpuszczalnikach o małej zdolności solwatacyjnej (na ogół idącej w parze ze stałą dielektryczną ε). W r-rach THF: 3-Me THF, w pewnym zakresie temperatur, stała szybkości była mylnie traktowana jako stała szybkości reakcji elementarnej (rośnie z obniżeniem temp.: ujemna energia aktywacji nie ma sensu) K f (k p ) ± 3-metylo THF THF wprowadzenie eterów koronowych lub kryptandów przesuwa równowagę w stronę rr (ss) <rozdzielone rozpuszczalnikiem> ±... CH, Na (+ THF) O O Na O O pary kontaktowe (pk) 10 3, K -1 obydwie pary rozdzielone rozpuszczalnikiem (rr)

21 Obserwacja par jonów rozdzielonych rozpuszczalnikiem: w r-rze CH 3 CH 3 O H Li K cs =[Fl // Li ]/ [Fl, Li ] = 0.02 K cs = 0.07 dla 9-(2 heksylo) FlLi W niższej temperaturze silniejsza solwatacja; większy udział rr. Zależność absorbancji (log ([I]/[I] o )) 9-(2-heksylo)-fluorenylolitu w 2,5-dimetylo THF od temperatury. (Przewodnictwo jonowe uległo zmianie tylko w stopniu odpowiednim do zmiany temperatury: równowaga pomiędzy parami jonów kontaktowymi i solwatowanymi)

22 CH, Na Wykres Arrheniusa: log k app p = f(1/t) (równanie Arrheniusa: k r = A -Ea/kT ) dla kk p = f(1/t), a więc pozornej stałej szybkości, w której zawarte są różne stałe, odpowiadające różnym strukturom aktywnych centrów: w różnych rozpuszczalnikach pj º p 2 j º j º jpj (i in) º pjpj Na wykresie podane są wyłącznie stałe szybkości polimeryzacji z udziałem par jonów (z wykresu k p app = f [I] o -1/2 ) 1) w HMPA wyłącznie rr 2) w 1,4-DiOX wyłącznie pk 3) w THF: pk º rr

23 Podsumowanie:... CH, Na w O ; 20 o C k p : 10 5 K k p : 10 4 mol s -1 K k p : 10 1 K dys : 10-8 L -1 K cs : 10-3

24 Udział par jonów rozdzielonych rozpuszczalnikiem?... E..., S jonizacja solwatacja dysocjacja (WJ) 2 oznacza rozdział ale również zewnętrzną solwatację:... O ; wewnętrzna solwatacja... O O O zewnętrzna solwatacja w warunkach wyeliminowania E i WJ: K cs...,... (K cs : [kontaktowe]/[rr]) (S) S O K cs (St, Na ) : CH 3 O OCH 3 : 0.13 ; : ; : 10-4 ; : <10-5 ; O O O

25 d[m] - [M][I] o dt CHEMIA MAKROCZĄSTECZEK Rzeczywiste udziały w propagacji: 1. Jeśli tylko : K orazk k p app = γ k p K + (1 - γ)k p k p app = K [ K ] [ K ] γ = ; K cs = 10-3 ) [ K] + [ K ] [ K] równe wkłady a więc γ= K cs = Jeśli tylko: oraz [ ] [ ] K 2 α = ; K dys = 10-8 [ ] +[ K ] [, ] prawie k app p = α k p + (1 - α)kk wyłącznie ; p α 10-4 = 10-8 ; = α 2 [I] o na jonach k app p = α 2 = 10-4 ([I] o = 10-4 M) α = Jeśli tylko: oraz K ; K dys 10-8 L -1 ; prawie wyłącznie na K (rr) K K p k p ; α = 10-2 (tylko 1% WJ)

26 Podsumowanie: anionowa polimeryzacja styrenu: K K k p (DiOX) k p (THF) Li Na K Rb Cs w THF słabnie solwatacja; maleje efektywny rozmiar kationu w DiOX kationy są b. słabo solwatowane. Efektywny rozmiar wynika z własnego rozmiaru bez solwatacji O O Li O O k p >> k p K w propagacji z udziałem par jonów: przezwyciężenie oddziaływania pomiędzy przeciwjonami

27 Indywidualne stałe szybkości w polimeryzacji metakrylanu metylu: C(CH 3 )COOCH 3 w r-rze O ; - 98 o C (w celu uniknięcia reakcji ubocznych) K k p (mol -1 L s -1 ) Li : 1.0 ; Na ~30; K ~ 33 różnice pomiędzy wartościami stałych szybkości w roztworze THF są takie same, jak w polimeryzacji styrenu w r-rze dioksanu powód: wewnętrzna solwatacja: H 3 C δ CH 3... C C OCH C C 3 Mt H 3 CO O O δ (rozpuszczalnik na zewnątrz )

28 Regulowanie szybkości polimeryzacji anionowej (podobnie kationowej): Ogólne zasady :... m n,cat... -m n+1,cat sposoby wpływania na reaktywność, selektywność oraz mikrostrukturę: (selektywność: k p /k t(tr) ) ; DP n = R p /R t(tr) (szybkość wzrostu/ suma szybkości reakcji ubocznych) zmiana budowy aktywnych centrów: - spolaryzowane wiązania (polimeryzacja pseudojonowa) - kontaktowe pary jonów - solwatowane (wewnętrznie i zewnętrznie) pary jonów - wolne jony - agregaty: homo- i hetero- (potrójne ; pary par ) (M. Fontanille, 2002, IUPAC, Pekin)

29 Wzrost reaktywności drogą zwiększenia udziału bardziej reaktywnej formy jonowej pozostającej w równowadze z formami mniej reaktywnymi: pary jonów jony (rozpuszczalnik) zwiększenie zdolności solwatacyjnej i stałej dialektrycznej rozpuszczalnika CH 3 N O CH 3 CH 3 P N CH 3 CH N 3 CH 3 ε THF ~7 RS, Na ε HMPTA ~30 K dys : (ponad 10x przyspieszenie) <większy udział wolnych jonów> wady: k p > k i (ale pełna konwersja monomeru) mała selektywność (P n [M] o /[I] o ) I max PS, Na : 343 nm 550 nm (reakcje zakończenia)

30 cd.: wzrost reaktywności: przekształcenie pj kontaktowych w rozdzielone ( loose ) pj z udziałem eterów koronowych lub kryptandów (np.) N N PS, Li + N O O O N O PS O O O LiO PS O O Li N N nieaktywny alkoholan etery koronowe reagują nieodwracalnie z PS

31 Zwiększenie reaktywności dzięki solwatacji; kryptandy: usunięcie fragmentów eterowych: polimeryzacja bez zakończenia: PS, H 3 C CH 3 CH 3 CH CH 3 3 CH 3 N N N N Li ; oraz PS, Li N N CH 3 CH 3 N N H 3 C CH 3 CH 3 CH 3 k app p = 750 mol -1. L. s -1 ; k app p = 0.13 mol -1. L. s -1

32 Podwójna rola TMEDA: R p : małe [P ], R p duże [P ] (~PS, Li ) n ~PS, Li + TMEDA ~PS, Li N duże stężenie: agregaty małe stężenie: nie ma agregatów N (2) -d[s] log dt[s] TMEDA; 1 rząd wobec [I] o x x x x bez TMEDA: 1 / 2 rząd wobec [I] o log [ PS, Li przy dużych stężeniach jonów TMEDA- rozbija agregaty; przy małych stężeniach jonów nie ma agregatów ] - solwatowana para bardziej reaktywna niż agregat (pp) - solwatowana para mniej reaktywna niż unimer <trudniejsza koordynacja>

33 Zmniejszenie reaktywności w polimeryzacji anionowej styrenu (BASF) < > cel: - polimeryzacja w wysokiej temperaturze (najchętniej w masie) - wyeliminowanie problemów występujących w polimeryzacji rodnikowej -wąski rozkład mas molowych

34 Anionowa polimeryzacja styrenu, inicjowana sec-bu Li ; połączenia kompleksowe ze związkami metaloorganicznym (Mg) PS, Li + R 2 Mg Ln Rp/M zależność szybkości od r= [Mg]/[Li] Mn (g/mol) zależność Mn od r Mn th (Li alone) Mn th (Li + Mg) Mn exp Mg / Li ratio z obliczeń: jeden dodatkowy łańcuch na jedną cząsteczkę R 2 Mg

35 Budowa połączeń kompleksowych (PSLi) 2 º 2PSLi + (n-hex) 2 Mg º n-hex 2 Mg: 2PSLi λ max = 326 nm λ max = 350 nm n-hex 2 Mg: 2PSLi + n-hex 2 Mg º 2(n-Hex 2 Mg: 2PSLi) λ max = 350 nm λ max = 310 nm (n-hex 2 Mg: 2PSLi) + n-hex 2 Mg º 2(n-Hex 2 Mg: 2PSLi) λ max = 310 nm λ max = 325 nm

36 Budowa połączeń kompleksowych w polimeryzacji anionowej styrenu wobec RLi + R 2 Mg S PS Li Mg n-hex nowe centrum aktywne n-hex PS Li Mg PS n-hex n-hex Li PS Mg n-hex + n-hex 2 Mg Li PS Mg n-hex + PSMg n-hex PS n-hex n-hex n-hex

37 MALDi-TOF polistyrenu otrzymanego wobec połączeń kompleksowych s-buli/(n-heksyl) 2 Mg

38 Selektywność i trwałość połączeń RLi/R 2 Mg w polimeryzacji styrenu (PSLi 10-3 M; 100 o C) PSLi R p /[M] (min -1 ) 18.6 R t (min -1 ) 10-4 k p /k t (min -1 ) 10 3 R 2 MgPSLi (r= 2) (Fontanille, 2002)

39 Anionowe polimeryzacje z udziałem zakończenia i przenoszenia - zakończenie przez połączenie lub dysproporcjonowanie: typowe dla polimeryzacji rodnikowej:...- ~ + ~ -... k tp...- ~ ~ ~ + ~ -... k td ~ + CH 3 ~ -... nie występuje w polimeryzacjach jonowych (an/cat) główny wróg : H 2 O, O 2 : atmosferylia np.:...- ~ + H 2 O...- ~ CH 3 + OH...- ~ + O 2 OO

40 Zakończenie (lub zwolnienie) w rezultacie niewłaściwego przyłączenia monomeru ( wrong monomer addition ) np.... CH + CH. CH CH H trwała (względnie) struktura

41 Spontaniczne, nieodwracalne zakończenie... CH CH, Na -H (anion... CH CH CH + NaH wodorkowy) oraz: "H "... CH CH, Na +... CH CH CH... CH + Na... C CH CH UV-ViS 350 m: 535 m: wiśniowy - fioletowy (wrzosowy) trwały anion allilowy

42 W polimeryzacji metakrylanu metylu występuje przeniesienie i zakończenie: -wewnątrzcząsteczkowo i międzycząsteczkowo (makrocząsteczka lub monomer) CH 3 CH 3 CH 3... C C C C O C O C O... H 3 C O OCH 3 C CH 3 C C C O OCH C 3 OCH 3 OCH 3 OCH 3 O C CH 3 OCH 3 O OCH jak uniknąć: 3 H 3 C C CH 3 * przeciwjon bez metalu (np. R 4 N )... C C + CH C O 3 O * + LiOR/LiCl: zmniejsza OCH nukleofilowość (reaktywność-selektywność) 3 C * w dobrych rozp-kach (zapobiega cyklizacji) O C CH 3 OCH 3 (kation opuszczono)

43 Agregacja aktywnych centrów; <Nowy rodzaj polimeryzacji żyjącej: mimo chwilowej dezaktywacji> ten problem będzie oddzielnie i dokładnie omówiony: ROP n... CH CH,Li k p aktywny k ag... CH CH, Li k deag Li, CH CH (np. "para par") - n zależy od warunków: [ ], temp, monomeru -szybkość polimeryzacji zależy od k ag /k deag -można rozłożyć agregaty: nie aktywny (tetramery, heksamery) N Li N N N ; O O Li O O itp.

44 Zalety polimeryzacji anionowej: różnorodna architektura makrocząsteczek o ściśle ustalonej budowie i znanych rozmiarach modele (właściwości) (np.): makrocząsteczki w kształcie gwiazdy CHEMIA MAKROCZĄSTECZEK Synteza modeli Cl 3 PSt (lub PBu ) + Cl Cl : znana liczba ramion oraz ich masa cząsteczkowa

45 Przegląd struktur ( architektur ) makrocząsteczek (o szczególnej budowie) otrzymanych metodą anionowej polimeryzacji kopolimery diblokowe kopolimery multiblokowe polimery gwiaździste; kopolimery gwiaździste; : różne funkcje; łącznie z fullerenem kopolimery szczepione; kometa; sztanga itd.

46 Polimeryzacja anionowa: ogólna metoda syntezy polimerów rozgałęzionych, szczepionych, gwiazd i in. I. Wielofunkcyjny inicjator: żyjąca + np. polimeryzacja II. Wielofunkcyjny związek zakończający: żyjąca polimeryzacja +

47 Asymetryczne gwiazdy: A 1 A 1 A 2 x Asymetria mas cząsteczkowych Asymetria topologiczna Asymetria grup końcowych

48 Ogólny (niezbyt dogodny) sposób postępowania w syntezie asymetrycznych struktur: 1. Wykorzystanie różnic w reaktywności: itd 2. Stosowanie dużego nadmiaru jednego ze składników: np. PS A Li + CH 3 SiCl 3 (duży nadmiar) PS A Si(CH 3 )Cl 2 (nadmiar ) PS B Li lub inny PS A Si(CH 3 )(PS B ) 2 B (np.: A B )

49 Wielofunkcyjne związki zakończające: Si CH 3 SiCl 2 H Pt THF, 50 o C Cl Cl Si CH 3 Cl CH 3 Si Cl Si Cl Si CH 3 Cl Cl Si Cl CH 3 Si =CHMgBr THF, r.t. Si Si Si CH 3 SiCl 2 H Pt THF, 50 o C Si zob. Chem. Rev. 2001, 101 (12)

50 cd. z poprzedniej strony: Cl Si Cl Cl Cl Cl Si Si Si Cl Cl Cl Si Si Si Si Si Cl Si Si Cl Cl Cl Cl Si Cl Si Cl Cl

51 Przykłady syntezy makrocząsteczek o różnorodnej architekturze: 18-o ramienna gwiazda Synteza 18-o ramiennego poliizoprenu: Cl 3 Si SiCl CHMgBr ( 6-o ramienna gwiazda) ( CH) 3 Si Si(CH ) HSiCl 3 H 2 PtCl 3 (Cl 3 Si ) 3 Si Si( SiCl 3 ) 3 (CS18) (sekwencje można powtarzać: 6 18 itd. II (18 atomów Cl) CS18 + PILi - 18LiCl (PI) 18 CS

52 Urządzenia stosowane w badaniach polimeryzacji anionowej: pompa dyfuzyjna x x x x (10-6 mm) linia próżniowa <do syntezy (PI) 18 CS (1)>

53 Etapy syntezy (PI) 18 CS (2): (D) initiator CS-18 (A) (C) MeOH monomer (a) (B)

54 Etapy syntezy (PI) 18 CS (3): (D) initiator MeOH monomer (B)

55 Etapy syntezy (PI) 18 CS (4): (B) (D) Water + Ice Woda, zimna Water, Woda, ciepła 25 0 C

56 Etapy syntezy (PI) 18 CS (5): MeOH CS-18 initiator

57 Etapy syntezy (PI) 18 CS (6): MeOH

58 Etapy syntezy (PI) 18 CS (7): MeOH CS-18

59 Wyniki syntezy (PI) 18 CS (8) N.Hadichristidis

60 Synteza kopolimeru szczepionego (grzebień): =CH =CH Mg (nadmiar) THF Cl MgCl =CH CH 3 Cl Si Cl (nadmiar) =CH MgCl 2 MgCl CH 3 H 3 C Si CH 3 Cl CH CH, Li +, Li CH 3 Si CH 3 CH 3 Si CH 3 Cl

61 Synteza makrocząsteczek- dendrymerów 2G: CH Li + Is Li H 3 C Si CH 3 Cl 3 Li + Cl Si Cl CH 3

62 Makromonomery i polimakromonomery: s-bu sec-buli (n) ( CH) n CH 3 Si CH 3 Cl makromonomer

63 Makromonomery i polimakromonomery Synteza 4(-chlorodimetylosililo)styrenu (CDMSS): dichlorodimetylosilan odczynnik Grignarda Macromolecules, 36, 3783 (2003)

64 Aparat do syntezy i polimeryzacji makromonomerów: Macromolecules, 36, 3783 (2003)

65 DiferentialRefractiveIndex CHEMIA MAKROCZĄSTECZEK GPC makromonomerów i polimakromonomerów: smmi1 Mn=1300 I=1.10 b PsMMI2 Mn=35300, I= g smmi x 10 mol s-buli Mn(calc)=35400 c PsMMI3 Mn=68500, I= g smmi x 10 mol s-buli Mn(calc)= Elution Volume (ml) M n : obliczone z M w (LALLS) oraz PDI (SEC)

66 Od żyjącej gwiazdy do dendrymerów oraz szczotek: Li Li żyjąca makromolekularna szczotka żyjąca gwiazda

67 Pochodne żyjących makrocząsteczek- szczotek : Homogwiazda żyjące molekularne szczotki Kształt litery H Mikto Kopolimer trójblokowy (Heterogwiazda)

68 Makrocząsteczka- dendrymer 2G Żyjąca gwiazda Makrocząsteczka- dendrymer 2G

69 Synteza makrocząsteczek podwójnie szczepionych: PS Li + CH 3 Cl Si Cl CH 3 Si Cl PI Li CH 3 Si *) styren CH 3 Si s-buli *) wykorzystanie różnicy w reaktywnościach pierwszej i drugiej grupy w R 2 SiCl 2

70 Makrocząsteczka- kometa (parasol) (szczotka do zębów?) CH CH butadien + s-buli Bu [ CH] 9 CH Li 1. styren 2. t-buoh Bu [ CH] 10 [ CH] 260 H CH HSi(CH 3 )Cl 2 Pt Bu [ CH] 10 [ CH] 260 H Si(CH 3 )Cl 2 (I) butadien + s-buli PB Li (II) (I) + (II) PS PB kopolimer

71 sztanga sec- BuLi n CH CH Dipiperidinoetan CH CH (I) Li n (I) + m CH CH CH n CH Li m (II) (II) + SiMe 2 Cl 2 CH CH n CH m CH CH m CH n (III) + 2LiCl (III) Pt katalizator CH CH HSi(CH 3 )Cl 2 n m CH CH CH m CH n Cl Si Cl CH 3 (IV) Cl Si Cl CH 3 (IV) + 1,4-PBdLi (1,4-PBdLi) 32 PS(1,4-PBd) 32

72 sztanga, cd. CHEMIA MAKROCZĄSTECZEK sec- BuLi n CH CH Dipiperidinoetan CH CH Li n (I) (I) + m CH CH CH n CH Li m (II) (II) + SiMe 2 Cl 2 CH CH n CH m CH CH m CH n (III) + 2LiCl (III) Pt katalizator CH CH HSi(CH 3 )Cl 2 n m CH CH CH m CH n Cl Si Cl CH 3 (IV) Cl Si Cl CH 3 (IV) + 1,4-PBdLi (1,4-PBdLi) 32 PS(1,4-PBd) 32 Schematycznie: * + n ( ) n * ( ) n ( ) m * ( ) n ( ) 2m ( ) n ( ) n ( ) 2m ( ) n * ( ) n ( ) 2m ( ) n

73 sztanga Makrocząsteczka: sztanga zbudowana ze sztywnej osi (polistyren), na której osadzone są gwiazdy o znanej liczbie ramion (f) Macromolecules, 35, 6592 (2002)

74 A B A B B B A A A A KOPOLIMER A 2 B 1 A 2 W KSZTAŁCIE LITERY H KOPOLIMER (A 1 B 1 ) 2 B 1 W KSZTAŁCIE LITERY PI A B A A B A KOPOLIMER A 3 B 1 A 3 KOPOLIMER A 5 B 1 A 5 hantle? sztangi?

75 kopolimery trójblokowe: (St-Bu-MM) Cylindry PS otoczone pierścieniami PB w matrycy PMM Kulisty PB na granicy rozdziału pomiędzy PS i PMM Cylindry PB na granicy rozdziału pomiędzy PS i PMM Cylindry PS otoczone helikalnymi pasmami PB w matrycy PMM PS/PB/PMM Cylindry PS i PB upakowane heksagonalnie w matrycy PMM Zależność struktury od składu ( udziału składników ) Stadler, Moguncja

Polimeryzacja anionowa. Wykłady: 6 8 (9)

Polimeryzacja anionowa. Wykłady: 6 8 (9) Polimeryzacja anionowa. Wykłady: 6 8 (9) Zdolność do polimeryzacji anionowej monomerów winylowych *) jest związana z efektem indukcyjnym podstawników: grupa przyciągająca elektrony może indukować ładunek

Bardziej szczegółowo

Chemia i technologia polimerów. Wykład 9/10 Polimeryzacja jonowa monomerów nienasyconych

Chemia i technologia polimerów. Wykład 9/10 Polimeryzacja jonowa monomerów nienasyconych Chemia i technologia polimerów Wykład 9/10 Polimeryzacja jonowa monomerów nienasyconych Porównania Niemal wszystkie związki z podwójnym wiązaniem C=C ulegają polimeryzacji rodnikowej. W polimeryzacji jonowej

Bardziej szczegółowo

POLIMERYZACJA RODNIKOWA (PR)

POLIMERYZACJA RODNIKOWA (PR) Polimeryzacja żyjąca from which irreversible chain transfer and termination are absent when growing macromolecules should at least retain an ability to grow (powtórzenie) ln M DP n d[m]

Bardziej szczegółowo

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2 PODSTAWY CEMII INŻYNIERIA BIOMEDYCZNA Wykład Plan wykładu II,III Woda jako rozpuszczalnik Zjawisko dysocjacji Równowaga w roztworach elektrolitów i co z tego wynika Bufory ydroliza soli Roztwory (wodne)-

Bardziej szczegółowo

CHEMIA POLIMERÓW I MATERIAŁÓW POLIMEROWYCH

CHEMIA POLIMERÓW I MATERIAŁÓW POLIMEROWYCH Pytania, Ser. II II. 4 1. Polimery amorficzne w różnych zakresach temperatur (Tg Tp) 2. Krystalizacja polimerów. 3. Polimery ciekłokrystaliczne (będzie jeszcze wykład) II. 5. 1. Materiały polimerowe; struktura

Bardziej szczegółowo

Wykład 3. Makrocząsteczki w roztworze i w stanie skondensowanym.

Wykład 3. Makrocząsteczki w roztworze i w stanie skondensowanym. Wykład 3 Makrocząsteczki w roztworze i w stanie skondensowanym. Roztwory polimerów Zakresy stężeń: a) odległości pomiędzy środkami masy kłębków większe niż średnice kłębków b) odległości

Bardziej szczegółowo

Polimeryzacja monomerów cyklicznych z otwarciem pierścienia

Polimeryzacja monomerów cyklicznych z otwarciem pierścienia Polimeryzacja monomerów cyklicznych z otwarciem pierścienia (Ring- opening polymerization ) Cz. I.: monomery zawierające heteroatomy Polimeryzacja z otwarciem pierścienia jest metodą interesująca i

Bardziej szczegółowo

EFEKT SOLNY BRÖNSTEDA

EFEKT SOLNY BRÖNSTEDA EFEKT SLNY RÖNSTED Pojęcie eektu solnego zostało wprowadzone przez rönsteda w celu wytłumaczenia wpływu obojętnego elektrolitu na szybkość reakcji zachodzących między jonami. Założył on, że reakcja pomiędzy

Bardziej szczegółowo

Obliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Obliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Obliczenia chemiczne Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny 1 STĘŻENIA ROZTWORÓW Stężenia procentowe Procent masowo-masowy (wagowo-wagowy) (% m/m) (% w/w) liczba gramów substancji rozpuszczonej

Bardziej szczegółowo

Otrzymywanie halogenków alkilów

Otrzymywanie halogenków alkilów Otrzymywanie halogenków alkilów 1) Wymiana grupy OH w alkoholach C O H HX 2) reakcja podstawienia alkanów C X H 3 C CH CH 2 HBr C H 3 OH H 3 C CH CH 2 C H 3 Br h + + CH CH 2 3 Cl 2 Cl HCl CH CH 3 3 CH

Bardziej szczegółowo

CHEMIA MAKROCZĄSTECZEK (POLIMERÓW)

CHEMIA MAKROCZĄSTECZEK (POLIMERÓW) CHEMIA MAKROCZĄSTECZEK (POLIMERÓW) Model makrocząsteczki polietylenu o masie cząsteczkowej 100 000 Rzeczywista długość makrocząsteczki 0.001 mm. Powiększenie: x 10 7 (0.001 mm 10 m) ARCHITEKTURA MAKROCZĄSTECZEK

Bardziej szczegółowo

Zagadnienia. Budowa atomu a. rozmieszczenie elektronów na orbitalach Z = 1-40; I

Zagadnienia. Budowa atomu a. rozmieszczenie elektronów na orbitalach Z = 1-40; I Nr zajęć Data Zagadnienia Budowa atomu a. rozmieszczenie elektronów na orbitalach Z = 1-40; I 9.10.2012. b. określenie liczby cząstek elementarnych na podstawie zapisu A z E, również dla jonów; c. określenie

Bardziej szczegółowo

Szkło. T g szkła używanego w oknach katedr wynosi ok. 600 C, a czas relaksacji sięga lat. FIZYKA 3 MICHAŁ MARZANTOWICZ

Szkło. T g szkła używanego w oknach katedr wynosi ok. 600 C, a czas relaksacji sięga lat. FIZYKA 3 MICHAŁ MARZANTOWICZ Szkło Przechłodzona ciecz, w której ruchy uległy zamrożeniu Tzw. przejście szkliste: czas potrzebny na zmianę konfiguracji cząsteczek (czas relaksacji) jest rzędu minut lub dłuższy T g szkła używanego

Bardziej szczegółowo

Kopolimery statystyczne. Kopolimery blokowe. kopolimerów w blokowych. Sonochemiczna synteza -A-A-A-A-A-A-A-B-B-B-B-B-B-B-B-B-B- Typowe metody syntezy:

Kopolimery statystyczne. Kopolimery blokowe. kopolimerów w blokowych. Sonochemiczna synteza -A-A-A-A-A-A-A-B-B-B-B-B-B-B-B-B-B- Typowe metody syntezy: 1 Sonochemiczna synteza kopolimerów w blokowych Kopolimery statystyczne -A-B-A-A-B-A-B-B-A-B-A-B-A-A-B-B-A- Kopolimery blokowe -A-A-A-A-A-A-A-B-B-B-B-B-B-B-B-B-B- Typowe metody syntezy: Polimeryzacja żyjąca

Bardziej szczegółowo

Wykład 6. Korzystałem z : R. Morrison, R. Boyd: Chemia organiczna (wyd. ang.)

Wykład 6. Korzystałem z : R. Morrison, R. Boyd: Chemia organiczna (wyd. ang.) Wykład 6 Korzystałem z : R. Morrison, R. Boyd: Chemia organiczna (wyd. ang.) Dieny Dieny są alkenami, których cząsteczki zawierają 2 podwójne wiązania C=C. Zasadnicze właściwości dienów są takie jak alkenów.

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY ODPOWIEDZI I SCEMAT PUNKTOWANIA POZIOM ROZSZERZONY Zdający otrzymuje punkty tylko za poprawne rozwiązania, precyzyjnie odpowiadające poleceniom zawartym w zadaniach. Odpowiedzi niezgodne z poleceniem (nie

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY ODPOWIEDZI I SCEMAT PUNKTOWANIA POZIOM ROZSZERZONY Zdający otrzymuje punkty tylko za poprawne rozwiązania, precyzyjnie odpowiadające poleceniom zawartym w zadaniach. Odpowiedzi niezgodne z poleceniem (nie

Bardziej szczegółowo

Wykład 9. Praktyczne metody otrzymywania polimerów. Polimeryzacja w masie roztworze emulsji fazie gazowej na granicy rozdziału faz

Wykład 9. Praktyczne metody otrzymywania polimerów. Polimeryzacja w masie roztworze emulsji fazie gazowej na granicy rozdziału faz Wykład 9 Praktyczne metody otrzymywania polimerów. Polimeryzacja w masie roztworze emulsji fazie gazowej na granicy rozdziału faz etody syntezy polimerów onomery: Produkty gazowe (etylen, propylen, izobutylen)

Bardziej szczegółowo

Repetytorium z wybranych zagadnień z chemii

Repetytorium z wybranych zagadnień z chemii Repetytorium z wybranych zagadnień z chemii Mol jest to liczebność materii występująca, gdy liczba cząstek (elementów) układu jest równa liczbie atomów zawartych w masie 12 g węgla 12 C (równa liczbie

Bardziej szczegółowo

WARSZTATY olimpijskie. Co już było: Atomy i elektrony Cząsteczki i wiązania Stechiometria Gazy, termochemia Równowaga chemiczna Kinetyka

WARSZTATY olimpijskie. Co już było: Atomy i elektrony Cząsteczki i wiązania Stechiometria Gazy, termochemia Równowaga chemiczna Kinetyka WARSZTATY olimpijskie Co już było: Atomy i elektrony Cząsteczki i wiązania Stechiometria Gazy, termochemia Równowaga chemiczna inetyka WARSZTATY olimpijskie Co będzie: Data Co robimy 1 XII 2016 wasy i

Bardziej szczegółowo

Transport jonów: kryształy jonowe

Transport jonów: kryształy jonowe Transport jonów: kryształy jonowe Jodek srebra AgI W 420 K strukturalne przejście fazowe I rodzaju do fazy α stopiona podsieć kationowa. Fluorek ołowiu PbF 2 zdefektowanie Frenkla podsieci anionowej, klastry

Bardziej szczegółowo

Wykład 7. Metody otrzymywania polimerów. 2. Polikondensacja i poliaddycja

Wykład 7. Metody otrzymywania polimerów. 2. Polikondensacja i poliaddycja Wykład 7 Metody otrzymywania polimerów. 2. Polikondensacja i poliaddycja Kinetyka i termodynamika polikondensacji (pknd) gólna charakterystyka procesów polimeryzacji: 1. Polimeryzacja łańcuchowa 2. Polikondensacja

Bardziej szczegółowo

Wszystkie arkusze maturalne znajdziesz na stronie: arkuszematuralne.pl

Wszystkie arkusze maturalne znajdziesz na stronie: arkuszematuralne.pl Egzamin maturalny z chemii - model odpowiedzi poziom rozszerzony Zdający otrzymuje punkty tylko za poprawne rozwiązania, precyzyjnie odpowiadające poleceniom zawartym w zadaniach. Odpowiedzi niezgodne

Bardziej szczegółowo

Więcej arkuszy znajdziesz na stronie: arkusze.pl

Więcej arkuszy znajdziesz na stronie: arkusze.pl Egzamin maturalny z chemii - model odpowiedzi poziom rozszerzony Zdający otrzymuje punkty tylko za poprawne rozwiązania, precyzyjnie odpowiadające poleceniom zawartym w zadaniach. Odpowiedzi niezgodne

Bardziej szczegółowo

OCENIANIE ARKUSZA POZIOM PODSTAWOWY

OCENIANIE ARKUSZA POZIOM PODSTAWOWY Próbny egzamin maturalny z chemii OCENIANIE ARKUSZA POZIOM PODSTAWOWY Zdający otrzymuje punkty tylko za poprawne rozwiązania, precyzyjnie odpowiadające poleceniom zawartym w zadaniach. Odpowiedzi niezgodne

Bardziej szczegółowo

CHEMIA 10 WĘGLOWODORY I ICH FLUOROWCOPOCHODNE. ALKOHOLE I FENOLE. IZOMERIA. POLIMERYZACJA.

CHEMIA 10 WĘGLOWODORY I ICH FLUOROWCOPOCHODNE. ALKOHOLE I FENOLE. IZOMERIA. POLIMERYZACJA. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 2017/2018 www.medicus.edu.pl tel. 501 38 39 55 CHEMIA 10 WĘGLOWODORY I ICH FLUOROWCOPOCHODNE. ALKOHOLE I FENOLE. IZOMERIA.

Bardziej szczegółowo

Inne koncepcje wiązań chemicznych. 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań?

Inne koncepcje wiązań chemicznych. 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań? Inne koncepcje wiązań chemicznych 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań? Model VSEPR wiązanie pary elektronowe dzielone między atomy tworzące wiązanie.

Bardziej szczegółowo

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil Spektroskopia Spotkanie pierwsze Prowadzący: Dr Barbara Gil Temat rozwaŝań Spektroskopia nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na

Bardziej szczegółowo

fermentacja alkoholowa erozja skał lata dni KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 min Karkonosze Pielgrzymy (1204 m n.p.m.)

fermentacja alkoholowa erozja skał lata dni KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 min Karkonosze Pielgrzymy (1204 m n.p.m.) Kinetyka chemiczna lata erozja skał Karkonosze Pielgrzymy (1204 m n.p.m.) fermentacja alkoholowa dni min KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 s ms fs http://www2.warwick.ac.uk/fac/sci/chemistry/research/stavros/stavrosgroup/overview/

Bardziej szczegółowo

MATERIAŁY POMOCNICZE 1 GDYBY MATURA 2002 BYŁA DZISIAJ CHEMIA ZESTAW EGZAMINACYJNY PIERWSZY ARKUSZ EGZAMINACYJNY I

MATERIAŁY POMOCNICZE 1 GDYBY MATURA 2002 BYŁA DZISIAJ CHEMIA ZESTAW EGZAMINACYJNY PIERWSZY ARKUSZ EGZAMINACYJNY I MATERIAŁY POMOCNICZE 1 GDYBY MATURA 00 BYŁA DZISIAJ OKRĘ GOWA K O M I S J A EGZAMINACYJNA w KRAKOWIE CHEMIA ZESTAW EGZAMINACYJNY PIERWSZY Informacje ARKUSZ EGZAMINACYJNY I 1. Przy każdym zadaniu podano

Bardziej szczegółowo

Mechanizm dehydratacji alkoholi

Mechanizm dehydratacji alkoholi Wykład 5 Mechanizm dehydratacji alkoholi I. Protonowanie II. odszczepienie cząsteczki wody III. odszczepienie protonu Etap 1 Reakcje alkenów Najbardziej reaktywne jest wiązanie podwójne, lub jego sąsiedztwo

Bardziej szczegółowo

CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU.

CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU. CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU. Projekt zrealizowany w ramach Mazowieckiego programu stypendialnego dla uczniów szczególnie uzdolnionych

Bardziej szczegółowo

Chemia organiczna. Mechanizmy reakcji chemicznych. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego

Chemia organiczna. Mechanizmy reakcji chemicznych. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego Chemia organiczna Mechanizmy reakcji chemicznych Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego 1 homoliza - homolityczny rozpad wiązania w jednym z reagentów; powstają produkty zawierające

Bardziej szczegółowo

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania I. Elektroujemność pierwiastków i elektronowa teoria wiązań Lewisa-Kossela

Bardziej szczegółowo

Stechiometria w roztworach. Woda jako rozpuszczalnik

Stechiometria w roztworach. Woda jako rozpuszczalnik Stechiometria w roztworach Woda jako rozpuszczalnik Właściwości wody - budowa cząsteczki kątowa - wiązania O-H O H kowalencyjne - cząsteczka polarna δ + H 2δ O 105 H δ + Rozpuszczanie + oddziaływanie polarnych

Bardziej szczegółowo

Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek

Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek Monika Gałkiewicz Zad. 1 () Podaj wzory dwóch dowolnych kationów i dwóch dowolnych anionów posiadających

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. a RT.

Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. a RT. Ćwiczenie 12, 13. Kinetyka chemiczna. Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. Szybkość reakcji chemicznej jest związana

Bardziej szczegółowo

Chemia I Semestr I (1 )

Chemia I Semestr I (1 ) 1/ 6 Inżyniera Materiałowa Chemia I Semestr I (1 ) Osoba odpowiedzialna za przedmiot: dr inż. Maciej Walewski. 2/ 6 Wykład Program 1. Atomy i cząsteczki: Materia, masa, energia. Cząstki elementarne. Atom,

Bardziej szczegółowo

Konfiguracja elektronowa atomu

Konfiguracja elektronowa atomu Konfiguracja elektronowa atomu ANALIZA CHEMICZNA BADANIE WŁAŚCIWOŚCI SUBSTANCJI KONTROLA I STEROWANIE PROCESAMI TECHNOLOGICZNYMI Właściwości pierwiastków - Układ okresowy Prawo okresowości Mendelejewa

Bardziej szczegółowo

3p - za poprawne obliczenie stężenia procentowego i molowego; 2p - za poprawne obliczenie jednej wymaganej wartości;

3p - za poprawne obliczenie stężenia procentowego i molowego; 2p - za poprawne obliczenie jednej wymaganej wartości; Zadanie Kryteria oceniania i model odpowiedzi Punktacja 1. 2. 3. 4. 2p - za poprawne 5 połączeń w pary zdań z kolumny I i II 1p - za poprawne 4 lub 3 połączenia w pary zdań z kolumny I i II 0p - za 2 lub

Bardziej szczegółowo

Model odpowiedzi i schemat oceniania arkusza I

Model odpowiedzi i schemat oceniania arkusza I Model odpowiedzi i schemat oceniania arkusza I Zdający otrzymuje punkty tylko za poprawne rozwiązania, precyzyjnie odpowiadające poleceniom zawartym w zadaniach. Gdy do jednego polecenia zdający poda dwie

Bardziej szczegółowo

IX Podkarpacki Konkurs Chemiczny 2016/2017. ETAP II r. Godz

IX Podkarpacki Konkurs Chemiczny 2016/2017. ETAP II r. Godz KOPKCh IX Podkarpacki Konkurs Chemiczny 2016/2017 ETAP II 17.12.2016 r. Godz. 10.30-12.30 Uwaga! Masy molowe pierwiastków i związków podano na końcu zestawu. Zadanie 1 (10 pkt) 1. Płytkę Zn zanurzono do

Bardziej szczegółowo

VIII Podkarpacki Konkurs Chemiczny 2015/2016

VIII Podkarpacki Konkurs Chemiczny 2015/2016 III Podkarpacki Konkurs Chemiczny 015/016 ETAP I 1.11.015 r. Godz. 10.00-1.00 Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 (10 pkt) 1. Kierunek której reakcji nie zmieni się pod wpływem

Bardziej szczegółowo

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania I. Elektroujemność pierwiastków i elektronowa teoria wiązań Lewisa-Kossela

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA WĘGLOWODORY

PRZYKŁADOWE ZADANIA WĘGLOWODORY PRZYKŁADOWE ZADANIA WĘGLOWODORY INFORMACJA DO ZADAŃ 678 680 Poniżej przedstawiono wzory półstrukturalne lub wzory uproszczone różnych węglowodorów. 1. CH 3 2. 3. CH 3 -CH 2 -CH C CH 3 CH 3 -CH-CH 2 -C

Bardziej szczegółowo

RÓWNOWAGI W ROZTWORACH ELEKTROLITÓW

RÓWNOWAGI W ROZTWORACH ELEKTROLITÓW RÓWNOWAGI W ROZTWORACH ELETROLITÓW Opracowanie: dr Jadwiga Zawada, dr inż. rystyna Moskwa, mgr Magdalena Bisztyga 1. Dysocjacja elektrolityczna Substancje, które podczas rozpuszczania w wodzie (lub innych

Bardziej szczegółowo

O MATURZE Z CHEMII ANALIZA TRUDNYCH DLA ZDAJĄCYCH PROBLEMÓW

O MATURZE Z CHEMII ANALIZA TRUDNYCH DLA ZDAJĄCYCH PROBLEMÓW O MATURZE Z CHEMII ANALIZA TRUDNYCH DLA ZDAJĄCYCH PROBLEMÓW Jolanta Baldy Politechnika Wrocławska, 6 listopada 2015 r. Matura 2015 z chemii w liczbach Średni wynik procentowy Województwo dolnośląskie Województwo

Bardziej szczegółowo

Chemia ogólna nieorganiczna Wykład XII Kinetyka i statyka chemiczna

Chemia ogólna nieorganiczna Wykład XII Kinetyka i statyka chemiczna Chemia ogólna nieorganiczna Wykład 10 14 XII 2016 Kinetyka i statyka chemiczna Elementy kinetyki i statyki chemicznej bada drogi przemiany substratów w produkty szybkość(v) reakcji chem. i zależność od

Bardziej szczegółowo

erozja skał lata KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 min Karkonosze Pielgrzymy (1204 m n.p.m.)

erozja skał lata KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 min Karkonosze Pielgrzymy (1204 m n.p.m.) Kinetyka chemiczna erozja skał Karkonosze Pielgrzymy (1204 m n.p.m.) fermentacja alkoholowa lata min KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 s ms fs http://www2.warwick.ac.uk/fac/sci/chemistry/research/stavros/stavrosgroup/overview/

Bardziej szczegółowo

Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph

Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph Dysocjacja elektrolitów W drugiej połowie XIX wieku szwedzki chemik S.A. Arrhenius doświadczalnie udowodnił, że substancje

Bardziej szczegółowo

wykład 6 elektorochemia

wykład 6 elektorochemia elektorochemia Ogniwa elektrochemiczne Ogniwo elektrochemiczne składa się z dwóch elektrod będących w kontakcie z elektrolitem, który może być roztworem, cieczą lub ciałem stałym. Elektrolit wraz z zanurzona

Bardziej szczegółowo

1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru

1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru 1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru 2. Na podstawie struktury cząsteczek wyjaśnij dlaczego N 2 jest bierny a Cl 2 aktywny chemicznie? 3. Które substancje posiadają budowę

Bardziej szczegółowo

Chemia i technologia polimerów. Wykład 7 Polimeryzacja rodnikowa cz. 3

Chemia i technologia polimerów. Wykład 7 Polimeryzacja rodnikowa cz. 3 Chemia i technologia polimerów Wykład 7 Polimeryzacja rodnikowa cz. 3 Przeniesienie łaocucha w polimeryzacji rodnikowej k d k i Inicjowanie: I 2R ; R + M P 1 Propagacja: k p P n + M P n+1 Zakooczenie:

Bardziej szczegółowo

CHEMIA MAKROCZĄSTECZEK (POLIMERÓW) Uniwersytet Jagielloński Kraków,

CHEMIA MAKROCZĄSTECZEK (POLIMERÓW) Uniwersytet Jagielloński Kraków, Wykład 1 CEMIA MAKROCZĄSTECZEK (POLIMERÓW) Uniwersytet Jagielloński Kraków, 2003-2004 Stanisław Penczek Polska Akademia Nauk Centrum Badań Molekularnych i Makromolekularnych, Łódź CEMIA MAKROCZĄSTECZEK

Bardziej szczegółowo

wykład monograficzny O niektórych sposobach udoskonalania procesów katalizowanych metalami i ich związkami

wykład monograficzny O niektórych sposobach udoskonalania procesów katalizowanych metalami i ich związkami wykład monograficzny niektórych sposobach udoskonalania procesów katalizowanych metalami i ich związkami rocesy katalizowane kompleksami metali Wybrane przykłady ydroodsiarczanie ropy naftowej e, Mo ydroformylacja

Bardziej szczegółowo

Formularz opisu przedmiotu (formularz sylabusa) dotyczy studiów I i II stopnia. Kinetyka i Mechanizmy polireakcji

Formularz opisu przedmiotu (formularz sylabusa) dotyczy studiów I i II stopnia. Kinetyka i Mechanizmy polireakcji Załącznik nr 1 do zarządzenia nr 11 Rektora UW z dnia 19 lutego 2010 r. w sprawie opisu w Uniwersyteckim Katalogu Przedmiotów zamieszczonym w Uniwersyteckim Systemie Obsługi Studiów (USOS) i zgodnym ze

Bardziej szczegółowo

Wiązania. w świetle teorii kwantów fenomenologicznie

Wiązania. w świetle teorii kwantów fenomenologicznie Wiązania w świetle teorii kwantów fenomenologicznie Wiązania Teoria kwantowa: zwiększenie gęstości prawdopodobieństwa znalezienia elektronów w przestrzeni pomiędzy atomami c a a c b b Liniowa kombinacja

Bardziej szczegółowo

Sprawdzian 1. CHEMIA. Przed próbną maturą. (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 32. Imię i nazwisko ...

Sprawdzian 1. CHEMIA. Przed próbną maturą. (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 32. Imię i nazwisko ... CHEMIA Przed próbną maturą Sprawdzian 1. (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 32 Imię i nazwisko Liczba punktów Procent 2 Zadanie 1. Cząsteczka pewnej substancji chemicznej

Bardziej szczegółowo

Zestaw pytań egzaminu inŝynierskiego przeprowadzanego w Katedrze Fizykochemii i Technologii Polimerów dla kierunku CHEMIA

Zestaw pytań egzaminu inŝynierskiego przeprowadzanego w Katedrze Fizykochemii i Technologii Polimerów dla kierunku CHEMIA Zestaw pytań egzaminu inŝynierskiego przeprowadzanego w Katedrze Fizykochemii i Technologii Polimerów dla kierunku CHEMIA 1. Metody miareczkowania w analizie chemicznej, wyjaśnić działanie wskaźników 2.

Bardziej szczegółowo

Polimeryzacja rodnikowa

Polimeryzacja rodnikowa Polimeryzacja rodnikowa Cz I. Ogólne zależności Inicjowanie, propagacja, przenoszenie, zakończenie Kinetyka reakcji elementarnych Budowa/reaktywność (I) Cz II. Żyjąca polimeryzacja rodnikowa Cz III. Polimeryzacja

Bardziej szczegółowo

Wykład 4. Anna Ptaszek. 27 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 4. Anna Ptaszek 1 / 31

Wykład 4. Anna Ptaszek. 27 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 4. Anna Ptaszek 1 / 31 Wykład 4 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 27 października 2015 1 / 31 Podstawy kinetyki chemicznej pochodna funkcji i jej interpretacja, pojęcie szybkości i prędkości, stechiometria

Bardziej szczegółowo

Elektrochemia Wydział SiMR, kierunek IPEiH II rok I stopnia studiów, semestr IV. Treść wykładu

Elektrochemia Wydział SiMR, kierunek IPEiH II rok I stopnia studiów, semestr IV. Treść wykładu Elektrochemia Wydział SiMR, kierunek IPEiH II rok I stopnia studiów, semestr IV dr inż. Leszek Niedzicki Sprawy organizacyjne 30 godzin wykładu Zaliczenie na ostatnim wykładzie Poprawa (jeśli będzie potrzebna)

Bardziej szczegółowo

Wykład 4. Anna Ptaszek. 9 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 4. Anna Ptaszek 1 / 29

Wykład 4. Anna Ptaszek. 9 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 4. Anna Ptaszek 1 / 29 Wykład 4 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 9 października 2015 1 / 29 Podstawy kinetyki chemicznej pochodna funkcji i jej interpretacja, pojęcie szybkości i prędkości, stechiometria

Bardziej szczegółowo

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II MDEL DPWIEDZI I SEMAT ENIANIA ARKUSZA II. Zdający otrzymuje punkty tylko za całkowicie prawidłową odpowiedź.. Gdy do jednego polecenia są dwie odpowiedzi (jedna prawidłowa, druga nieprawidłowa), to zdający

Bardziej szczegółowo

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11

Bardziej szczegółowo

CHEMIA 10. Oznaczenia: R - podstawnik węglowodorowy, zwykle alifatyczny (łańcuchowy) X, X 2 - atom lub cząsteczka fluorowca

CHEMIA 10. Oznaczenia: R - podstawnik węglowodorowy, zwykle alifatyczny (łańcuchowy) X, X 2 - atom lub cząsteczka fluorowca INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna tel. 0501 38 39 55 www.medicus.edu.pl CHEMIA 10 WĘGLOWODORY I ICH FLUOROWCOPOCHODNE.

Bardziej szczegółowo

ZWIĄZKI MAGNEZOORGANICZNE. Krystyna Dzierzbicka

ZWIĄZKI MAGNEZOORGANICZNE. Krystyna Dzierzbicka ZWIĄZKI MAGNEZRGANIZNE Krystyna Dzierzbicka Związki metaloorganiczne, do których zaliczamy między innymi magnezo- i litoorganiczne są związkami posiadającymi bezpośrednie wiązanie węgiel-metal (np. Na,

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Próbny egzamin maturalny z chemii 00r. ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Zdający otrzymuje punkty tylko za poprawne rozwiązania, precyzyjnie odpowiadające poleceniom zawartym w zadaniach.

Bardziej szczegółowo

EGZAMIN MATURALNY Z CHEMII

EGZAMIN MATURALNY Z CHEMII Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO MCH-W1D1P-021 EGZAMIN MATURALNY Z CHEMII Instrukcja dla zdającego Czas pracy 90 minut 1. Proszę sprawdzić, czy arkusz

Bardziej szczegółowo

ZWIĄZKI KOMPLEKSOWE SOLE PODWÓJNE

ZWIĄZKI KOMPLEKSOWE SOLE PODWÓJNE ZWIĄZKI KOMPLEKSOWE SOLE PODWÓJNE Sole podwójne - to sole zawierające więcej niż jeden rodzaj kationów lub więcej niż jeden rodzaj anionów. Należą do nich m. in. ałuny, np. ałun glinowo-potasowy K 2 Al

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY Egmin maturalny z chemii 1 ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY Zdający otrzymuje punkty tylko poprawne rozwiąnia, precyzyjnie odpowiadające poleceniom wartym w daniach. Poprawne rozwiąnia

Bardziej szczegółowo

1. Jaką funkcję w procesach polimeryzacji wolnorodnikowej pełnią niŝej wymienione związki?: (5 pkt.) O 2

1. Jaką funkcję w procesach polimeryzacji wolnorodnikowej pełnią niŝej wymienione związki?: (5 pkt.) O 2 Imię i nazwisko:... Suma punktów:...na 89 moŝliwych 1. Jaką funkcję w procesach polimeryzacji wolnorodnikowej pełnią niŝej wymienione związki?: (5 pkt.) OH H O O CN N N CN O 2 N C 2. Jakie 3 wady i 3 zalety

Bardziej szczegółowo

Materiał diagnostyczny poziom rozszerzony Kryteria oceniania model odpowiedzi

Materiał diagnostyczny poziom rozszerzony Kryteria oceniania model odpowiedzi Zdający otrzymuje punkty tylko za poprawne rozwiązania, precyzyjnie odpowiadające poleceniom zawartym w zadaniach. Odpowiedzi niezgodne z poleceniem ( nie na temat) są traktowane jako brak odpowiedzi.

Bardziej szczegółowo

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej metodę (teorię): metoda wiązań walencyjnych (VB)

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej metodę (teorię): metoda wiązań walencyjnych (VB) CZĄSTECZKA Stanislao Cannizzaro (1826-1910) cząstki - elementy mikroświata, termin obejmujący zarówno cząstki elementarne, jak i atomy, jony proste i złożone, cząsteczki, rodniki, cząstki koloidowe; cząsteczka

Bardziej szczegółowo

EGZAMIN MATURALNY Z CHEMII

EGZAMIN MATURALNY Z CHEMII KOD ZDAJĄCEGO WPISUJE ZDAJĄCY PO OTRZYMANIU ARKUSZA WPISAĆ PO ROZKODOWANIU PRACY IMIĘ NAZWISKO EGZAMIN MATURALNY Z CHEMII ARKUSZ I MAJ - CZERWIEC ROK 2002 CHEMIA Arkusz egzaminacyjny I Uzyskane punkty

Bardziej szczegółowo

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA EGZAMINACYJNEGO 2006

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA EGZAMINACYJNEGO 2006 MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA EGZAMINACYJNEGO 006 Zdający otrzymuje punkty tylko za poprawne rozwiązania, precyzyjnie odpowiadające poleceniom zawartym w zadaniach. Poprawne rozwiązania

Bardziej szczegółowo

III Podkarpacki Konkurs Chemiczny 2010/2011. ETAP I r. Godz Zadanie 1

III Podkarpacki Konkurs Chemiczny 2010/2011. ETAP I r. Godz Zadanie 1 III Podkarpacki Konkurs Chemiczny 2010/2011 KOPKCh ETAP I 22.10.2010 r. Godz. 10.00-12.00 Zadanie 1 1. Jon Al 3+ zbudowany jest z 14 neutronów oraz z: a) 16 protonów i 13 elektronów b) 10 protonów i 13

Bardziej szczegółowo

pierwszorzędowe drugorzędowe trzeciorzędowe (1 ) (2 ) (3 )

pierwszorzędowe drugorzędowe trzeciorzędowe (1 ) (2 ) (3 ) FLUOROWCOPOCODNE alogenki alkilowe- Cl C 2 -C 2 -C 2 -C 3 C 3 -C-C 3 C 2 -C-C 3 pierwszorzędowe drugorzędowe trzeciorzędowe (1 ) (2 ) (3 ) I C 3 C 3 Cl-C 2 -C=C 2 Cl-C-C=C 2 1 2 3 Allilowe atom fluorowca

Bardziej szczegółowo

RJC A-B A + B. Slides 1 to 27

RJC A-B A + B. Slides 1 to 27 Reakcje Rodnikowe rodniki substytucja addycja polimeryzacje A-B A + B Slides 1 to 27 Reakcje Organiczne... powstawanie i rozrywanie wiązań kowalencyjnych. Addycja A + B AB Podstawienie AB + C A + BC Eliminacja

Bardziej szczegółowo

Równowagi w roztworach wodnych

Równowagi w roztworach wodnych Równowagi w roztworach wodnych Stan i stała równowagi reakcji chemicznej ogólnie Roztwory, rozpuszczalność, rodzaje stężeń, iloczyn rozpuszczalności Reakcje dysocjacji Stopień dysocjacji Prawo rozcieńczeń

Bardziej szczegółowo

d[a] = dt gdzie: [A] - stężenie aspiryny [OH - ] - stężenie jonów hydroksylowych - ] K[A][OH

d[a] = dt gdzie: [A] - stężenie aspiryny [OH - ] - stężenie jonów hydroksylowych - ] K[A][OH 1 Ćwiczenie 7. Wyznaczanie stałej szybkości oraz parametrów termodynamicznych reakcji hydrolizy aspiryny. Chemiczna stabilność leków jest ważnym terapeutycznym problemem W przypadku chemicznej niestabilności

Bardziej szczegółowo

Egzamin maturalny z chemii - poziom rozszerzony Kryteria oceniania - model odpowiedzi. Kryteria oceniania

Egzamin maturalny z chemii - poziom rozszerzony Kryteria oceniania - model odpowiedzi. Kryteria oceniania ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Zdający otrzymuje punkty tylko za poprawne rozwiązania, precyzyjnie odpowiadające poleceniom zawartym w zadaniach. Odpowiedzi niezgodne z poleceniem

Bardziej szczegółowo

- w nawiasach kwadratowych stężenia molowe.

- w nawiasach kwadratowych stężenia molowe. Cz. VII Dysocjacja jonowa, moc elektrolitów, prawo rozcieńczeń Ostwalda i ph roztworów. 1. Pojęcia i definicja. Dysocjacja elektroniczna (jonowa) to samorzutny rozpad substancji na jony w wodzie lub innych

Bardziej szczegółowo

KI + Pb(NO 3 ) 2 PbI 2 + KNO 3. fermentacja alkoholowa

KI + Pb(NO 3 ) 2 PbI 2 + KNO 3. fermentacja alkoholowa Kinetyka chemiczna KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 fermentacja alkoholowa czynniki wpływaj ywające na szybkość reakcji chemicznych stęż ężenie reagentów w (lub ciśnienie gazów w jeżeli eli reakcja przebiega

Bardziej szczegółowo

Spektrometria mas (1)

Spektrometria mas (1) pracował: Wojciech Augustyniak Spektrometria mas (1) Spektrometr masowy ma źródło jonów, które jonizuje próbkę Jony wędrują w polu elektromagnetycznym do detektora Metody jonizacji: - elektronowa (EI)

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

Obliczenia stechiometryczne, bilansowanie równań reakcji redoks

Obliczenia stechiometryczne, bilansowanie równań reakcji redoks Obliczenia stechiometryczne, bilansowanie równań reakcji redoks Materiały pomocnicze do zajęć wspomagających z chemii opracował: dr Błażej Gierczyk Wydział Chemii UAM Obliczenia stechiometryczne Podstawą

Bardziej szczegółowo

Wykład 9. Membrany jonowymienne i prądowe techniki membranowe (część 1) Opracowała dr Elżbieta Megiel

Wykład 9. Membrany jonowymienne i prądowe techniki membranowe (część 1) Opracowała dr Elżbieta Megiel Wykład 9 Membrany jonowymienne i prądowe techniki membranowe (część 1) Opracowała dr Elżbieta Megiel Membrany jonowymienne Membrany jonowymienne heterogeniczne i homogeniczne. S. Koter, Zastosowanie membran

Bardziej szczegółowo

1. Jaką funkcję w procesach polimeryzacji wolnorodnikowej pełnią niŝej wymienione związki?: (5 pkt.)

1. Jaką funkcję w procesach polimeryzacji wolnorodnikowej pełnią niŝej wymienione związki?: (5 pkt.) Imię i nazwisko:... Suma punktów:...na 89 moŝliwych 1. Jaką funkcję w procesach polimeryzacji wolnorodnikowej pełnią niŝej wymienione związki?: (5 pkt.) O...... O O O O O... N 2... H O O... 2. Jakie 3

Bardziej szczegółowo

dla której jest spełniony warunek równowagi: [H + ] [X ] / [HX] = K

dla której jest spełniony warunek równowagi: [H + ] [X ] / [HX] = K RÓWNOWAGI W ROZTWORACH Szwedzki chemik Svante Arrhenius w 1887 roku jako pierwszy wykazał, że procesowi rozpuszczania wielu substancji towarzyszy dysocjacja, czyli rozpad cząsteczek na jony naładowane

Bardziej szczegółowo

Reakcje chemiczne. Typ reakcji Schemat Przykłady Reakcja syntezy

Reakcje chemiczne. Typ reakcji Schemat Przykłady Reakcja syntezy Reakcje chemiczne Literatura: L. Jones, P. Atkins Chemia ogólna. Cząsteczki, materia, reakcje. Lesław Huppenthal, Alicja Kościelecka, Zbigniew Wojtczak Chemia ogólna i analityczna dla studentów biologii.

Bardziej szczegółowo

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

CHEMIA. Wymagania szczegółowe. Wymagania ogólne CHEMIA Wymagania ogólne Wymagania szczegółowe Uczeń: zapisuje konfiguracje elektronowe atomów pierwiastków do Z = 36 i jonów o podanym ładunku, uwzględniając rozmieszczenie elektronów na podpowłokach [

Bardziej szczegółowo

Równowagi w roztworach wodnych

Równowagi w roztworach wodnych Równowagi w roztworach wodnych V 1 A + B = C + D V 2 Szybkości reakcji: v 1 = k 1 c A c B v 2 = k 2 c C c D ogólnie Roztwory, rozpuszczalność, rodzaje stężeń, iloczyn rozpuszczalności Reakcje dysocjacji

Bardziej szczegółowo

KONDUKTOMETRIA. Konduktometria. Przewodnictwo elektrolityczne. Przewodnictwo elektrolityczne zaleŝy od:

KONDUKTOMETRIA. Konduktometria. Przewodnictwo elektrolityczne. Przewodnictwo elektrolityczne zaleŝy od: KONDUKTOMETRIA Konduktometria Metoda elektroanalityczna oparta na pomiarze przewodnictwa elektrolitycznego, którego wartość ulega zmianie wraz ze zmianą stęŝenia jonów zawartych w roztworze. Przewodnictwo

Bardziej szczegółowo

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń:

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń: Chemia - klasa I (część 2) Wymagania edukacyjne Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca Dział 1. Chemia nieorganiczna Lekcja organizacyjna. Zapoznanie

Bardziej szczegółowo

Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj.

Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj. Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj. Tytuł i numer rozdziału w podręczniku Nr lekcji Temat lekcji Szkło i sprzęt laboratoryjny 1. Pracownia chemiczna.

Bardziej szczegółowo

MECHANIZMY FRAGMENTACJI ZWIĄZKÓW ORGANICZNYCH. Copyright 2003 Witold Danikiewicz

MECHANIZMY FRAGMENTACJI ZWIĄZKÓW ORGANICZNYCH. Copyright 2003 Witold Danikiewicz MECANIZMY FAGMENTACJI ZWIĄZKÓW GANICZNYC Copyright 2003 Cechy charakterystyczne zjawiska fragmentacji jonów proces jednocząsteczkowy; szybkość fragmentacji jest mała w porównaniu z szybkością rozpraszania

Bardziej szczegółowo

Sprawdzian 2. CHEMIA. Przed próbną maturą. (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 34. Imię i nazwisko ...

Sprawdzian 2. CHEMIA. Przed próbną maturą. (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 34. Imię i nazwisko ... CHEMIA Przed próbną maturą Sprawdzian 2. (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 34 Imię i nazwisko... Liczba punktów Procent 2 Informacja do zadań 1 i 2. Naturalny chlor występuje

Bardziej szczegółowo

Wiązania kowalencyjne

Wiązania kowalencyjne Wiązania kowalencyjne (pierw. o dużej E + pierw. o dużej E), E < 1,8 TERIE WIĄZANIA KWALENCYJNEG Teoria hybrydyzacji orbitali atomowych Teoria orbitali molekularnych Teoria pola ligandów YBRYDYZACJA RBITALI

Bardziej szczegółowo