|
|
- Alojzy Podgórski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Kolorymetria - dział spektrofotometrii absorpcyjnej (inaczej absorpcjometrii) Oznaczanie stężeń substancji barwnych na podstawie absorbcji ich roztworów w zakresie światła widzialnego Spektrofotometria UV/Vis zakres poszerzony o promieniowanie ultrafioletowe Bliski nadfiolet nm Światło widzialne nm
2
3 Znając długość światła monochromatycznego możemy powiedzieć, wrażenie jakiej barwy wywoła ono w naozym oku
4 Wrażenie barwy, jakiego doznajemy związane jest z selektywnym pochłanianie światła przez daną substancje (absorbcja) Substancja barwna pochłania ze światła białego barwę komplementarną do jej własnej Widoczne jest TYLKO to promieniowanie, które nie uległo zaaboorbowaniu Promieniowanie to jest odbierane jako barwa dopełniająca, na którą składają się poszczególne rodzaje przepuszczonych fal elektromagnetyczne
5 Wrażenie bezbarwności żadna z fal elektromagnetycznych światła widzialnego nie jest absorbowana przez daną substancję Barwa czarna wszystkie lub prawie wszystkie fale z zakresu widzialnego zostają zaabsorbowane Barwa biała wszystkie lub prawie wszystkie długości fal z zakresu widzialnego zostają odbite Wrażenie koloru białego daje światło zawierające wszystkie długości fal w odpowiednich proporcjach
6 Rozkład natężeń w widmie oraz barwa światła emitowanego zależą od: - rodzaju źródła światła - temperatury źródła (w temperaturach niższych przeważa czerwień, w wyższych błękit i fiolet)
7 Barwa substancji jest ściśle związana z jej budową chemiczną Zgodnie z teorią elektronową przyczyną barwy większości związków jest obecność w cząsteczce sprzężonych elektronów П, które łatwo ulegają wzbudzeniu Dużą rolę w zjawisku selektywnej absorpcji światła przez niektóre związki odgrywa obecność w ich cząsteczce ugrupowań atomowych określanych chromoforami i auksochromami
8 Chromofory zawierają sprzężone lub odosobnione wiązanie podwójne, które szczególnie łatwo ulegają wzbudzeniu i przechodzą na inne poziomy energetyczne Przejście takie powoduje emisję lub absorpcję kwantu światła Im dłuższy jest układ sprzężonych wiązań tym łatwiej układ elektronów Π ulega wzbudzeniu
9 Aukoochromy pogłębiają działanie chromoforów, przesuwają absorpcję w kierunku lub fal dłuższych (efekt batochromowy) krótszych (efekt hipsochromowy)
10 Rozpuszczalnik wpływa na postać widma absorpcji. Rozpuszczalniki polarne powodują zwykle batochromowe przesunięcia maksimów absorpcji (w stosunku do widm cząsteczek w fazie gazowej); dodatkowym czynnikiem zmieniającym widmo absorpcji może być ph roztworu. Rozpuszczalniki niepolarne mało wpływają na widmo W wyniku oddziaływań chromoforów z ich mikrootoczeniem może mieć także miejoce zwiękozenie lub obniżenie natężenia aboorpcji (efekt hiperchromowy lub hipochromowy)
11 Schemat spektrofotometru
12 Rozszczepienie na składowe o określonej długości daje widmo ciągłe
13 I roz I odb I 0 = I odb + I roz + I abo + I I 0 = I odb + I roz + I abo + I I o I I abs Wiązka równoległa promieni światła monochromatycznego po przejściu przez warstwę jednorodnego ośrodka absorbującego ulega oołabieniu w wyniki odbicia, rozproszenie i absorbcji
14 Natężenie promieniowania monochromatycznego I o ulega osłabieniu do wartości I przy przejściu przez ośrodek absorbujący. Stosunek natężenia promieniowania przeehodząeego przez badaną próbkę do natężenia promieniowania padająeego na próbkę jest I /I o nazywany jest transmisją (transmitaneją) T: T = I / I o lub T = (I / I o ) 100% I o I Transmisja wskazuje, jaka część promieniowania padającego została przepuszczona przez badaną próbkę
15
16 Logarytm dziesiętny stosunku natężeń promieniowania padającego na próbkę do natężenia promieniowania przechodzącego przez próbkę jest określany jako absorbancja A: I A = log o I Łatwo sprawdzić, że A = log 1/T = - log T jeśli transmisja jest T = 1/10 A wyrażona jako ułamek A = log100/t = 2 log T jeśli transmisja jest wyrażona T = 100/10 A w proeentaeh
17 Aboorpcja jeot fizycznym proceoem pochłaniania promieniowania elektromagnetycznego przechodzącego przez próbkę, podczao gdy aboorbancja jeot wielkością fizyczną charakteryzującą ilościowo ten proceo Dawniej zamiennie z terminem terminuabsorbancja używane były terminy ekstynkcja lub gęstośćoptyczna. Obeenie stosujemy terminabsorbancja w sytuaeji, w której obniżenie natężenia promieniowania przeehodząeego przez próbkę jest uwarunkowane proeesem jego absorpeji (stosująe terminturbidancja, gdy przyezyną obniżenia natężenia promieniowania przeehodząeego przez próbkę jest rozpraszanie światła). Absorbaneja jest wielkośeią bardziej użyteezną niż transmisja, ponieważ w większośei sytuaeji jest proporejonalna do stężenia substaneji absorbująeej w roztworze i grubośei warstwy absorbująeej
18
19 Prawo Lamberta-Beera -di = I dx I = I o e -x
20 I = Io e-x
21 Prawo Lamberta-Beera absorbancja Współczynnik absorpcji (molowy, jeśli stężenie wyrażone w mol dm -3 ) A = ε c l Grubość warstwy absorbującej Stężenie substancji pochłaniającej Wartość molowego współezynnika absorpeji jest równa absorbaneji, jaką ma roztwór o stężeniu 1 mol dm -3 w kuweeie o grubośei 1 em
22
23 Prawo addytywności abaorbancji Wartość absorbancji światła zależy od całkowitej liczby cząsteczek absorbujących znajdujących się na drodze promieniowania świetlnego Gdy roztwór absorbujący jest wieloskładnikowy to A = A 1 + A 2 + A A n O addytywności można mówić jeżeli poszczególne składniki nie oddziałują między sobą i nie dochodzi do reakcji chemicznych
24 Absorbancja roztworu jest wielkością addytywną
25 Odchylenia od prawa Lamberta-Beera Prawo Lamberta-Beera spełniają substancje niezjonizowane lub zjonizowane całkowicie czyli takie których budowa nie ulega zmianie wraz ze zmianą stężenia
26 Odchylenia od prawa Lamberta-Beera Przyczyny - zmiany w strukturze związku - polimeryzacja cząsteczek lub asocjacja - zjawisko hydratacji - wpływ rozpuszczalnika - reakcja rozpuszczalnika z substancją barwną - zmiana stężenia - powstanie kompleksowych pośrednich - ph indykatory ph - zmiany zabarwienia w czasie - temperatura - dysocjacja - ZANIECZYSZCZENIA
27 Przykład Stężenie oksyhemoglobiny w roztworze możemy określić oznaezająe absorbaneję jej roztworu przy długośei fali 576 nm. Jeśli roztwór hemoglobiny (mierzony w kuweeie o grubośei 1 em) ma absorbaneję A 576, to stężenie hemoglobiny w roztworze równe jest c = (A 576 / ε cm) ε 576 = 15 [mmol -1 dm 3 em -1 ] c = (A 576 /15 mmol -1 dm 3 em -1 1 cm) Jeśli zmierzyliśmy A 576 = 0,30 To c = (0,30 / 15) mmol dm -3 = 0,02 mmol dm -3 = 20 µmol dm -3
28 Spektrofotometria umożliwia jakościową i ilościową analizę składu roztworów
29 Charakterystyczne pasma pochłaniania światła Białka pochłaniają w nadfiolecie (λ max 280 nm) dzięki obecności reszt aminokwasów aromatycznych
30 Kwasy nukleinowe pochłaniają w nadfiolecie (λ max 260 nm) dzięki obecności reszt zasad azotowych
31 Różnica pochłaniania światła przez NAD + i NADH jest podstawą wielu testów enzymatycznych
32 Badając małe różnice w widmach absorpcji zdejmujemy widma różnicowe
33 A260
34
35 Spektrofotometryczny pomiar kinetyki reakcji (bio)chemicznej
36
37 W roztworze znajdują się białko i DNA. Jeśli znamy współczynniki absorpcji białka ε b i DNA c n przy dwóch długościach fali λ 1 i λ 2 (np. 260 nm i 280 nm), możemy określić stężenie obu składników w roztworze, bowiem A(λ 1 ) = [ε b (λ 1 ) c b + ε n (λ 1 ) c n ] l A(λ 2 ) = [ε b (λ 2 ) c b + ε n (λ 2 ) c n ] l c b - stężenie białka; c n - stężenie DNA; ε b (λ 1 ) - współczynnik absorpcji białka przy długości fali λ 1 ; ε n (λ 2 ) - współczynnik absorpcji kwasu nukleinowego przy długości fali λ 2, itd., l grubość kuwety Po zmierzeniu absorbancji roztworu przy dwu długościach fal otrzymujemy układ dwu równań z dwiema niewiadomymi, który możemy rozwiązać: c b = [ε n (λ 2 ) A(λ 1 ) - ε n (λ 1 ) A(λ 2 )] / l [ε b (λ 1 ) ε n (λ 2 ) - ε b (λ 2 ) ε n (λ 1 )] c n = [ε b (λ 2 ) A(λ 2 ) - ε b (λ 2 ) A(λ 1 )] / l [ε b (λ 1 ) ε n (λ 2 ) - ε b (λ 2 ) ε n (λ 1 )]
38 Przykład Wyznaczanie zawartości trzech form mioglobiny (czerwonego barwnika mięśni) - oksymioglobiny (oksymb), metmioglobiny (metmb) i ferrylomioglobiny (ferrylomb) w oparciu o pomiary absorbancji mieszaniny przy długościach fal 490 nm, 560 nm i 580 nm: [oksymb] = 2,8 A A A 580 [metm] = 146 A A ,1 A 580 [ferrylomb] = - 62 A A A 580
39 Rozpraszanie światła Zjawisko rozpraszania światła (ogólniej: promieniowania elektromagnetycznego) przez zawiesiny i inne mętne próbki jest przeszkodą w pomiarach absorpcji i fluorescencji, lecz samo jest wykorzystywane w badaniach, m.in. zawiesin komórek Rozpraszanie promieniowania może mieć charakter rozpraszania Rayleigha tj. zachodzić bez zmiany częstości promieniowania bądź rozpraszania Ramana (jeśli rozpraszanie wiąże się ze zmianą częstości promieniowania). Rozpraszanie Ramana zachodzi, jeśli wielkość obiektu rozpraszającego jest mniejsza od długości fali światła (jak to ma miejsce w przypadku pojedynczych makrocząsteczek) może występować efekt stokesowski, jeśli częstość promieniowania rozproszonego jest mniejsza od częstości promieniowania padającego (λ pad < λ rozpr ) bądź efekt antystokesowski, jeśli częstość promieniowania rozproszonego jest większa od częstości promieniowania padającego na badany obiekt (λ pad > λ rozpr )
40 W zakresie niskieh stężeń eząstek rozpraszająeyeh natężenie I r światła monoehromatyeznego rozproszonego przez zawiesinę eząstek jest opisane wzorem Rayleigha I I r n n 2 0 n n 2 2 NV λ 4 2 I o natężenie światła padająeego na próbkę, N - liezba eząstek rozpraszająeyeh w próbee, V - objętość eząstki rozpraszająeej, n 1 - współezynnik załamania światła przez zawieszone eząstki, n 2 - współezynnik załamania światła przez ośrodek, λ - długość fali światła
41 Nefelometria a turbidymetria Źródło światła Detektor Nefelometria Turbidymetria Detektor pomiar nefelometryczny to pomiar światła rozproozonego, zaś pomiar turbidymetryczny to pomiar światła przepuozczonego przez próbkę
42 W turbidymetrii funkcję stosunku natężeń światła padającego i przepuszczonego przez próbkę, zdefiniowaną (i mierzoną) identycznie jak absorbancja w absorpcjometrii, nazywamy turbidancją S S = log (I o /I) W zakresie małych stężeń cząstek rozpraszających obowiązuje wzór S = l - grubość warstwy rozpraszająeej, e - stężenie eząstek, d - pole przekroju poprzeeznego eząstki, λ - długość fali światła, klcd a, k stałe zależne od geometrii układu, rodzaju eząstek rozpraszająeyeh i ośrodka d + aλ
43 Zależność turbidancji od stężenia cząstek (np. komórek) w zawiesinie jest liniowa tylko dla małych stężeń S Stężenie komórek
44 S = klcd d + aλ Natężenie światła roaproaaonego, jak i turbidancja aależą od atężenia caąatek w aawieainie i ich objętości. Metody nefelometryezne i turbidymetryezne mogą więe służyć do wyznaezania stężenia lub wielkośei eząstek rozpraszająeyeh. Stosujemy je do pomiaru stężenia komórek, eo jest dużo prostsze niż liezenie komórek pod mikroskopem. Kinetyezny pomiar rozpraszania światła w agregometrze umożliwia pomiar przebiegu agregaeji płytek krwi indukowanej działaniem odpowiednieh bodźeów; w proeesie tym zmienia się wielkość eząstek rozpraszająeyeh.
45 S = klcd d + aλ Intensywność światła rozproszonego szybko maleje wraz ze wzrostem długości fali. Pomiary są więc tym bardziej czułe, im mniejszą długość fali promieniowania stosujemy. W praktyce, mierząc rozpraszanie światła przez komórki, stosujemy jednak światło stosunkowo długofalowe ( nm), bowiem chcemy uniknąć nakładania się efektów pochłaniania i rozpraszania światła (komórki zwierzęce zwykle nie zawierają chromoforów pochłaniających w zakresie λ 600 nm).
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące
Spektroskopia molekularna. Ćwiczenie nr 1. Widma absorpcyjne błękitu tymolowego
Spektroskopia molekularna Ćwiczenie nr 1 Widma absorpcyjne błękitu tymolowego Doświadczenie to ma na celu zaznajomienie uczestników ćwiczeń ze sposobem wykonywania pomiarów metodą spektrofotometryczną
Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa
Podział technik analitycznych Techniki analityczne Techniki elektrochemiczne: pehametria, selektywne elektrody membranowe, polarografia i metody pokrewne (woltamperometria, chronowoltamperometria inwersyjna
Ćwiczenie 1. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp. Część teoretyczna.
Ćwiczenie 1 Metodyka poprawnych i dokładnych pomiarów absorbancji, wyznaczenie małych wartości absorbancji. Czynniki wpływające na mierzone widma absorpcji i wartości absorbancji dla wybranych długości
Ćwiczenie 30. Zagadnienia: spektroskopia absorpcyjna w zakresie UV-VIS, prawa absorpcji, budowa i. Wstęp
Ćwiczenie 30 Metodyka poprawnych i dokładnych pomiarów absorbancji w zakresie UV- VS, wyznaczenie małych wartości absorbancji. Czynniki wpływające na mierzone widma absorpcji i wartości absorbancji dla
IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni
IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,
SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s]
SPEKTROFOTOMETRIA UV-Vis Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. Spektrofotometria w zakresie nadfioletu (UV) i promieniowania widzialnego (Vis) jest jedną
Kolorymetryczne oznaczanie stężenia Fe 3+ metodą rodankową
Kolorymetryczne oznaczanie stężenia Fe 3+ metodą rodankową (opracowanie: Barbara Krajewska) Celem ćwiczenia jest zapoznanie się z podstawami spektrofotometrii absorpcyjnej w świetle widzialnym (kolorymetrią)
Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)
SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE
PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR
PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem
Ćwiczenie 31. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp
Ćwiczenie 31 Metodyka poprawnych i dokładnych pomiarów widm absorbancji w zakresie UV-VIS. Wpływ monochromatyczności promieniowania i innych parametrów pomiarowych na kształt widm absorpcji i wartości
ELEMENTY ANALIZY INSTRUMENTALNEJ. SPEKTROFOTOMETRII podstawy teoretyczne
ELEMENTY ANALZY NSTRUMENTALNEJ Ćwiczenie 3 Temat: Spektrofotometria UV/ViS SPEKTROFOTOMETR podstawy teoretyczne SPEKTROFOTOMETRA jest techniką instrumentalną, w której do celów analitycznych wykorzystuje
METODYKA POMIARÓW WIDM FLUORESCENCJI (WF) NA MPF-3 (PERKIN-HITACHI)
METODYKA POMIARÓW WIDM FLUORESCENCJI (WF) NA MPF-3 (PERKIN-HITACHI) (Uzupełnieniem do niniejszej metodyki jest instrukcja obsługi spektrofluorymetru MPF-3, która znajduje się do wglądu u prof. dr hab.
Ćw. 5 Absorpcjometria I
Ćw. 5 Absorpcjometria I Absorpcja promieniowania elektromagnetycznego z obszaru widzialnego i nadfioletowego przez atomy i cząsteczki powoduje zmianę ich stanu elektronowego. Zjawiska te moŝna badać za
JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?
Podstawowe miary masy i objętości stosowane przy oznaczaniu ilości kwasów nukleinowych : 1g (1) 1l (1) 1mg (1g x 10-3 ) 1ml (1l x 10-3 ) 1μg (1g x 10-6 ) 1μl (1l x 10-6 ) 1ng (1g x 10-9 ) 1pg (1g x 10-12
Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM
Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Światło słoneczne jest mieszaniną fal o różnej długości i różnego natężenia. Tylko część promieniowania elektromagnetycznego
OZNACZANIE STĘŻENIA BARWNIKÓW W WODZIE METODĄ UV-VIS
OZNACZANE STĘŻENA BARWNKÓW W WODZE METODĄ UV-VS. SPEKTROFOTOMETRA UV-Vis Spektrofotometria w zakresie nadfioletu (ang. ultra-violet UV) i promieniowania widzialnego (ang. visible- Vis), czyli spektrofotometria
Widmo promieniowania
Widmo promieniowania Spektroskopia Każde ciało wysyła promieniowanie. Promieniowanie to jest składa się z wiązek o różnych długościach fal. Jeśli wiązka światła pada na pryzmat, ulega ono rozszczepieniu,
Spektroskopowe metody identyfikacji związków organicznych
Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego
Metody spektroskopowe:
Katedra Chemii Analitycznej Metody spektroskopowe: Absorpcyjna Spektrometria Atomowa Fotometria Płomieniowa Gdańsk, 2010 Opracowała: mgr inż. Monika Kosikowska 1 1. Wprowadzenie Spektroskopia to dziedzina
Ćwiczenie O 13 -O 16 BADANIE ABSORPCJI ŚWIATŁA W MATERII Instrukcja dla studenta
Ćwiczenie O 13 -O 16 BADANE ABSORPCJ ŚWATŁA W MATER nstrukcja dla studenta. WSTĘP Światło jest falą elektromagnetyczną jak i strumieniem fotonów, których energia jest w bezpośredni sposób związana z częstością
Spektroskopia molekularna. Spektroskopia w podczerwieni
Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego
PODSTAWY BARWY, PIGMENTY CERAMICZNE
PODSTAWY BARWY, PIGMENTY CERAMICZNE Barwa Barwą nazywamy rodzaj określonego ilościowo i jakościowo (długość fali, energia) promieniowania świetlnego. Głównym i podstawowym źródłem doznań barwnych jest
SZYBKOŚĆ REAKCJI JONOWYCH W ZALEŻNOŚCI OD SIŁY JONOWEJ ROZTWORU
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW SZYBKOŚĆ REAKCI ONOWYCH W ZALEŻNOŚCI OD SIŁY ONOWE ROZTWORU Opiekun: Krzysztof Kozieł Miejsce ćwiczenia: Czerwona Chemia,
EKSTRAHOWANIE KWASÓW NUKLEINOWYCH JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?
EKSTRAHOWANIE KWASÓW NUKLEINOWYCH Wytrącanie etanolem Rozpuszczenie kwasu nukleinowego w fazie wodnej (met. fenol/chloroform) Wiązanie ze złożem krzemionkowym za pomocą substancji chaotropowych: jodek
Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią?
Własności optyczne materii Jak zachowuje się światło w zetknięciu z materią? Właściwości optyczne materiału wynikają ze zjawisk: Absorpcji Załamania Odbicia Rozpraszania Własności elektrycznych Refrakcja
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE
ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE Cel ćwiczenia Poznanie podstawowej metody określania biochemicznych parametrów płynów ustrojowych oraz wymagań technicznych stawianych urządzeniu pomiarowemu.
ANALIZA SPEKTRALNA I POMIARY SPEKTROFOTOMETRYCZNE. Instrukcja wykonawcza
ĆWICZENIE 72A ANALIZA SPEKTRALNA I POMIARY SPEKTROFOTOMETRYCZNE 1. Wykaz przyrządów Spektroskop Lampy spektralne Spektrofotometr SPEKOL Filtry optyczne Suwmiarka Instrukcja wykonawcza 2. Cel ćwiczenia
Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych
Zwiększenie liczby wysoko wykwalifikowanych absolwentów kierunków ścisłych Uniwersytetu Jagiellońskiego POKL.04.01.02-00-097/09-00 Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Robert Zakrzewski Wydział Chemii UŁ
Robert Zakrzewski Wydział Chemii UŁ http://pl.wikipedia.org/wiki/%c5%bbelazo Informacje ogólne Informacje ogólne Nazwa Symbol śelazo (łac. Ferrum) Fe Liczba atomowa 26 Grupa 8 Okres 4 Blok d Masa atomowa
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Spektrofotometryczne oznaczanie stężenia jonów żelaza(iii) opiekun mgr K. Łudzik
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Spektrofotometryczne oznaczanie stężenia jonów żelaza(iii) opiekun mgr K. Łudzik ćwiczenie nr 26 Zakres zagadnień obowiązujących do ćwiczenia 1. Prawo Lamberta
Fizykochemiczne metody w kryminalistyce. Wykład 7
Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne
PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA
PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA Materia może oddziaływać z promieniowaniem poprzez absorpcję i emisję. Procesy te polegają na pochłonięciu lub wyemitowaniu fotonu przez cząstkę
Atomowa spektrometria absorpcyjna i emisyjna
Nowoczesne techniki analityczne w analizie żywności Zajęcia laboratoryjne Atomowa spektrometria absorpcyjna i emisyjna Cel ćwiczenia: Celem ćwiczenia jest oznaczenie zawartości sodu, potasu i magnezu w
Ćwiczenie 2: Metody spektralne w inżynierii materiałowej AKADEMIA GÓRNICZO- HUTNICZA WYDZIAŁ ODLEWNICTWA KATEDRA INŻYNIERII PROCESÓW ODLEWNICZYCH
ćw 2 Ćwiczenie 2: Metody spektralne w inżynierii materiałowej PRZEDMIOT: NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ Opracowała: dr hab. AKADEMIA GÓRNICZO- HUTNICZA WYDZIAŁ ODLEWNICTWA KATEDRA
Optyczna spektroskopia oscylacyjna. w badaniach powierzchni
Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość
BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ
KATEDRA BIOCHEMII Wydział Biologii i Ochrony Środowiska BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ ĆWICZENIE 2 Nukleotydy pirydynowe (NAD +, NADP + ) pełnią funkcję koenzymów dehydrogenaz przenosząc jony
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie stałej szybkości i rzędu reakcji metodą graficzną. opiekun mgr K.
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie stałej szybkości i rzędu reakcji metodą graficzną opiekun mgr K. Łudzik ćwiczenie nr 27 Zakres zagadnień obowiązujących do ćwiczenia 1. Zastosowanie
ZASADY ZALICZENIA PRZEDMIOTU MBS
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll
Metody optyczne w medycynie
Metody optyczne w medycynie Podstawy oddziaływania światła z materią E i E t E t = E i e κ ( L) i( n 1)( L) c e c zmiana amplitudy (absorpcja) zmiana fazy (dyspersja) Tylko światło pochłonięte może wywołać
Rozmycie pasma spektralnego
Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości
Spektroskopia UV-VIS zagadnienia
Spektroskopia absorbcyjna to dziedzina, która obejmuje metody badania materii przy użyciu promieniowania elektromagnetycznego, które może z tą materią oddziaływać. Spektroskopia UV-VS zagadnienia promieniowanie
KOLORYMETRYCZNE OZNACZANIE Cd, Mn i Ni
KOLORYMETRYCZNE OZNACZANE Cd, Mn i Ni nstrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. l. WSTĘP 1.1. Spektrofotometria w zakresie nadfioletu (UV) i promieniowania widzialnego
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
E (2) nazywa się absorbancją.
1/6 Celem ćwiczenia jest poznanie zjawiska absorpcji światła przez roztwory, pomiar widma absorpcji przy pomocy spektrofotometru oraz wyliczenie stężenia badanego roztworu. Promieniowanie elektromagnetyczne,
Zespolona funkcja dielektryczna metalu
Zespolona funkcja dielektryczna metalu Przenikalność elektryczna ośrodków absorbujących promieniowanie elektromagnetyczne jest zespolona, a także zależna od częstości promieniowania, które przenika przez
Ćwiczenie 3 ANALIZA JAKOŚCIOWA PALIW ZA POMOCĄ SPEKTROFOTOMETRII FTIR (Fourier Transform Infrared Spectroscopy)
POLITECHNIKA ŁÓDZKA WYDZIAŁ INśYNIERII PROCESOWEJ I OCHRONY ŚRODOWISKA KATEDRA TERMODYNAMIKI PROCESOWEJ K-106 LABORATORIUM KONWENCJONALNYCH ŹRÓDEŁ ENERGII I PROCESÓW SPALANIA Ćwiczenie 3 ANALIZA JAKOŚCIOWA
METODY SPEKTROSKOPOWE II. UV-VIS od teorii do praktyki Jakub Grynda Katedra Technologii Leków i Biochemii
METODY SPEKTROSKOPOWE II UV-VIS od teorii do praktyki Jakub Grynda Katedra Technologii Leków i Biochemii Pokój nr 1 w Chemii B Godziny konsultacji: Poniedziałek 11-13 E-mail: jakub.grynda@gmail.com PLAN
Opracował dr inż. Tadeusz Janiak
Opracował dr inż. Tadeusz Janiak 1 Uwagi dla wykonujących ilościowe oznaczanie metodami spektrofotometrycznymi 3. 3.1. Ilościowe oznaczanie w metodach spektrofotometrycznych Ilościowe określenie zawartości
Szkoła Letnia STC Łódź 2013 Oznaczanie zabarwienia cukru białego, cukrów surowych i specjalnych w roztworze wodnym i metodą MOPS przy ph 7,0
Oznaczanie zabarwienia cukru białego, cukrów surowych i specjalnych w roztworze wodnym i metodą MOPS przy ph 7,0 1 Dr inż. Krystyna Lisik Inż. Maciej Sidziako Wstęp Zabarwienie jest jednym z najważniejszych
spektropolarymetrami;
Ćwiczenie 12 Badanie własności uzyskanych białek: pomiary dichroizmu kołowego Niejednakowa absorpcja prawego i lewego, kołowo spolaryzowanego promieniowania nazywa się dichroizmem kołowym (ang. circular
Dobór warunków dla poprawnego pomiaru widm emisji i wydajności kwantowych emisji
Dobór warunków dla poprawnego pomiaru widm emisji i wydajności kwantowych emisji Badania emisyjne są niezwykle cennym źródłem danych o właściwościach cząsteczek i kompleksów (różnego rodzaju), które one
SPEKTROFOTOMETRYCZNA ANALIZA ZAWARTOŚCI SUBSTANCJI W PRÓBCE
SPEKTROFOTOMETRYCZNA ANALIZA ZAWARTOŚCI SUBSTANCJI W PRÓBCE Zakres materiału: roztwory - stężenia, rozcieńczanie; podstawy i podział spektroskopii; prawa absorpcji: współczynnik absorpcji, addytywność
Zakresy promieniowania. Światło o widzialne. długość fali, λ. podczerwień. ultrafiolet. Wektor pola elektrycznego. Wektor pola magnetycznego TV AM/FM
Światło o widzialne Zakresy promieniowania ultrafiolet podczerwień Wektor pola elektrycznego Wektor pola magnetycznego TV AM/FM długość fali, λ Podział fal elektromagnetycznych Promieniowanie X Fale wolnozmiennesieci
Kwantowa natura promieniowania
Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała
Oddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
PRACOWNIA CHEMII. Równowaga chemiczna (Fiz2)
PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Równowaga chemiczna (Fiz2)
Spektrofotometria ( SPF I, SPF II ) Spektralna analiza emisyjna ( S ) Fotometria Płomieniowa ( FP )
Spektrofotometria ( SPF I, SPF II ) 1. Rodzaje energii opisujące całkowity stan energetyczny cząsteczki. 2. Długości fal promieniowania elektromagnetycznego odpowiadające zakresom: UV, VIS i IR. 3. Energia
Dzień dobry. Miejsce: IFE - Centrum Kształcenia Międzynarodowego PŁ, ul. Żwirki 36, sala nr 7
Dzień dobry BARWA ŚWIATŁA Przemysław Tabaka e-mail: przemyslaw.tabaka@.tabaka@wp.plpl POLITECHNIKA ŁÓDZKA Instytut Elektroenergetyki Co to jest światło? Światło to promieniowanie elektromagnetyczne w zakresie
Zastosowanie spektroskopii UV/VIS w określaniu struktury związków organicznych Małgorzata Krasodomska
Zastosowanie spektroskopii UV/VIS w określaniu struktury związków organicznych Małgorzata Krasodomska 1.1. Wprowadzenie do spektroskopii UV/VIS Spektroskopia w nadfiolecie, oraz świetle widzialnym UV/VIS
cykloheksan benzen p-nitrofenol
1 Ćwiczenie 19K. Interakcja światła z materią. Absorpcja światła. Wyznaczanie widm absorpcji wybranych biomolekuł. Część teoretyczna: Spektroskopia jest często stosowaną techniką w badaniach chemicznych
SPEKTROFOTOMETRYCZNA ANALIZA
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 8 SPEKTROFOTOMETRYCZNA ANALIZA LUDZKIEJ HEMOGLOBINY I. WSTĘP TEORETYCZNY Hemoglobina (Hb) jest białkiem złożonym z grupy prostetycznej
Badanie absorpcji promieniowania γ
Badanie absorpcji promieniowania γ 29.1. Zasada ćwiczenia W ćwiczeniu badana jest zależność natężenia wiązki osłabienie wiązki promieniowania γ po przejściu przez warstwę materiału absorbującego w funkcji
POMIARY SPEKTROFOTOMETRYCZNE
Laboratorium Elektronicznej Aparatury Medycznej Katedra Inżynierii Biomedycznej Wydział Podstawowych Problemów Techniki Politechnika Wrocławska ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE Cel ćwiczenia
Własności optyczne półprzewodników
Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja
Oznaczanie żelaza i miedzi metodą miareczkowania spektrofotometrycznego
Oznaczanie żelaza i miedzi metodą miareczkowania spektrofotometrycznego Oznaczanie dwóch kationów obok siebie metodą miareczkowania spektrofotometrycznego (bez maskowania) jest możliwe, gdy spełnione są
Synteza nanocząstek Ag i pomiar widma absorpcyjnego
Synteza nanocząstek Ag i pomiar widma absorpcyjnego Nanotechnologia jest nową, interdyscyplinarną dziedziną nauki łączącą osiągnięcia różnych nauk (m. in. chemii, biologii, fizyki, mechaniki, inżynierii)
KREW: 1. Oznaczenie stężenia Hb. Metoda cyjanmethemoglobinowa: Zasada metody:
KREW: 1. Oznaczenie stężenia Hb Metoda cyjanmethemoglobinowa: Hemoglobina i niektóre jej pochodne są utleniane przez K3 [Fe(CN)6]do methemoglobiny, a następnie przekształcane pod wpływem KCN w trwały związek
Reguły barwności cząsteczek chemicznych
Reguły barwności cząsteczek chemicznych Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Chemia koloru 2015 Anna Kaczmarek-Kędziera Chemia koloru 1 / 51
Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ
Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów
ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA
POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol
EFEKT SOLWATOCHROMOWY. WYZNACZANIE MOMENTU DIPOLOWEGO CZĄSTECZKI W STANIE WZBUDZONYM METODĄ SOLWATOCHROMOWĄ
Ćwiczenie EFEKT SOLWATOCHROMOWY. WYZNACZANIE MOMENTU DIPOLOWEGO CZĄSTECZKI W STANIE WZBUDZONYM METODĄ SOLWATOCHROMOWĄ Zagadnienia: typy przejść elektronowych, orbitale atomowe (s, p, d) i molekularne (σ,
Laboratorium 4. Określenie aktywności katalitycznej enzymu. Wprowadzenie do metod analitycznych. 1. CZĘŚĆ TEORETYCZNA
Laboratorium 4 Określenie aktywności katalitycznej enzymu. Wprowadzenie do metod analitycznych. Prowadzący: dr inż. Karolina Labus 1. CZĘŚĆ TEORETYCZNA Enzymy to wielkocząsteczkowe, w większości białkowe,
Spektroskopia ramanowska w badaniach powierzchni
Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu
spektroskopia UV Vis (cz. 2)
spektroskopia UV Vis (cz. 2) spektroskopia UV-Vis dlaczego? wiele związków organicznych posiada chromofory, które absorbują w zakresie UV duża czułość: zastosowanie w badaniach kinetyki reakcji spektroskop
IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO
IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO Cel ćwiczenia: Zapoznanie się z metodą pomiaru grubości cienkich warstw za pomocą interferometrii odbiciowej światła białego, zbadanie zjawiska pęcznienia warstw
Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS
Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS 1. Absorpcja i emisja światła w układzie dwupoziomowym. Absorpcję światła można opisać jako proces, w którym
3. Badanie kinetyki enzymów
3. Badanie kinetyki enzymów Przy stałym stężeniu enzymu, a przy zmieniającym się początkowym stężeniu substratu, zmiany szybkości reakcji katalizy, wyrażonej jako liczba moli substratu przetworzonego w
Spis treści. Wstęp. Twardość wody
Spis treści 1 Wstęp 1.1 Twardość wody 1.2 Oznaczanie twardości wody 1.3 Oznaczanie utlenialności 1.4 Oznaczanie jonów metali 2 Część doświadczalna 2.1 Cel ćwiczenia 2.2 Zagadnienia do przygotowania 2.3
-1- Piotr Janas, Paweł Turkowski Zakład Fizyki UR Do użytku wewnętrznego ĆWICZENIE 44 ABSORPCJOMETRIA. WYZNACZANIE STĘŻENIA ROZTWORU
-1- Piotr Janas, Paweł Turkowski Zakład Fizyki UR Do użytku wewnętrznego ĆWICZENIE 44 ABSORPCJOMETRIA. WYZNACZANIE STĘŻENIA ROZTWORU Kraków, 10.03.2016 SPIS TREŚCI I. CZĘŚĆ TEORETYCZNA Promieniowanie elektromagnetyczne
-1- Piotr Janas, Paweł Turkowski Zespół Fizyki, Akademia Rolnicza Do użytku wewnętrznego ĆWICZENIE 44 ABSORPCJOMETRIA. WYZNACZANIE STĘŻENIA ROZTWORU
-1- Piotr Janas, Paweł Turkowski Zespół Fizyki, Akademia Rolnicza Do użytku wewnętrznego ĆWICZENIE 44 ABSORPCJOMETRIA. WYZNACZANIE STĘŻENIA ROZTWORU Kraków, 16.01.2004 SPIS TREŚCI I. CZĘŚĆ TEORETYCZNA...
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy
T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)
OBLICZENIA BIOCHEMICZNE
OBLICZENIA BIOCHEMICZNE Praca w laboratorium biochemicznym wymaga umiejętności obliczania stężeń i rozcieńczeń odczynników stosowanych do doświadczeń. W podstawowym kursie biochemii nie ma czasu na przygotowywanie
Wyznaczanie zależności współczynnika załamania światła od długości fali światła
Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali
Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy
Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA Zadanie 1 1 punkt TEST JEDNOKROTNEGO WYBORU Moment pędu elektronu znajdującego się na drugiej orbicie w atomie
Zakres wymagań przedmiotu Analiza instrumentalna
Część A. Zakres wymagań przedmiotu Analiza instrumentalna Obowiązuje znajomość instrumentalnych metod analizy ilościowej i jakościowej (spektrofotometrii absorpcyjnej i emisyjnej, spektroskopii magnetycznego
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny
Katedra Fizyki i Biofizyki instrukcje do ćwiczeń laboratoryjnych dla kierunku Lekarskiego
Ćw. M8 Zjawisko absorpcji i emisji światła w analityce. Pomiar widm absorpcji i stężenia ryboflawiny w roztworach wodnych za pomocą spektrofotometru. Wyznaczanie stężeń substancji w roztworze metodą fluorescencyjną.
Metodyki referencyjne
Metodyki referencyjne Spektrometria UV-Vis Spektrometria IR Absorpcyjna/Emisyjna spektrometria atomowa Chromatografia gazowa Chromatografia jonowa Elektrody jonoselektywne Ekstrakcja Metody spektroskopowe
Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.
Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.. 1. 3. 4. 1. Pojemnik z licznikami cylindrycznymi pracującymi w koincydencji oraz z uchwytem na warstwy
Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych
Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie
OPTYKA. Leszek Błaszkieiwcz
OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający
KATEDRA INŻYNIERII BIOMEDYCZNEJ OPTYCZNA DIAGNOSTYKA MEDYCZNA
Wydział PPT Laboratorium KATEDRA INŻYNIERII BIOMEDYCZNEJ OPTYCZNA DIAGNOSTYKA MEDYCZNA Ćwiczenie nr 5 Określenie stężenia barwinków w roztworach wodnych za pomocą pomiarów gęstości optycznej CEL ĆWICZENIA:
METODY ABSORPCYJNE CHEMIA ANALITYCZNA SPEKTROFOTOMETRIA UV-VIS I I. II prawo absorpcji (prawo Bouguera-Lamberta-Beera, 1852)
CHEMIA ANALITYCZNA METODY ABSORPCYJNE II prawo absorpcji (prawo Bouguera-Lamberta-Beera, 1852) Jeżeli współczynnik absorpcji rozpuszczalnika jest równy zeru, to wiązka promieniowania monochromatycznego
ĆWICZENIE 9 WŁASNOŚCI OPTYCZNE MATERIAŁÓW CERAMICZNYCH. (1) gdzie υ prędkość rozchodzenia się światła (w próżni wynosi 3 10 8 m/s). 1.
ĆWICZENIE 9 WŁASNOŚCI OPTYCZNE MATERIAŁÓW CERAMICZNYCH 1. CEL ĆWICZENIA 1. Wyznaczenie dla wybranych materiałów widm absorpcyjnych dla światła o długości fali od 200 do 800 nm. 2. Określenie długości fali