Badanie współzależności zmiennych liczbowych korelacja

Wielkość: px
Rozpocząć pokaz od strony:

Download "Badanie współzależności zmiennych liczbowych korelacja"

Transkrypt

1 Badanie współzależności zmiennych liczbowych korelacja Aktualizacja 2017 JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska

2 Plan wykładu 1. Badanie współzależności między dwoma zmiennymi 2. Od kowariancji do korelacji 3. Współczynnik korelacji liniowej (K. Pearsona) 4. Własności korelacji 5. Związki przyczynowo - skutkowe 6. Korelacje pozorne 7. Liniowa zależność między dwoma zmiennymi: Prosta regresja

3 Motywacje Dotychczas badanie jednej zmiennej Badania struktury zbiorowości opierały się na obserwacjach tylko jednej cechy (zmiennej), a jeśli brano pod uwagę kilka cech, to każdą analizowano oddzielnie. Testy dla pojedynczych wymiarów (zmiennych) Wiele zjawisk dotyczy jednak danych wielowymiarowych Typowe zainteresowania w spojrzeniu na rzeczywistość oraz w badaniach naukowych Potrzeba badania wielu zmiennych oraz ich wzajemnej interakcji! W tym wykładzie współzależności dwóch zmiennych

4 Przykład analizy danych o zarobkach W pewnej firmie pracownicy otrzymują 10 złotych za godzinę + premie uznaniowe Zapytano 10 losowo wybranych osób o zarobki oraz ich czas pracy

5 Przykład współzależności statystycznej (korelacyjnej) Wykonaj wykres rozrzutu XY Czas na interpretacje Zależność ściśle funkcyjna vs. korelacyjna

6 Funkcyjny związek deterministyczny Nie to samo co zależność korelacyjna Związek funkcyjny odznacza się tym, że każdej wartości jednej zmiennej niezależnej (będziemy ją oznaczać X) odpowiada tylko jedna, jednoznacznie określona wartość zmiennej zależnej (oznaczamy ją przez Y). Wiadomo na przykład, że pole kwadratu jest funkcją jego boku (P=a 2 ). Wynik można przewidzieć od razu

7 Mniej oczywisty przykład Ponownie zrób wykres XY Za Anna Raifuna SGGW

8 Wykres korelacyjny rozrzutu XY Inny rodzaj związku między wartościami zmiennych X i Y

9 Czego oczekujemy od związku między zmiennymi? Większość punktów tutaj Większość punktów tutaj Pozytywna (dodatnia) współzależność

10 Czego oczekujemy od związku między zmiennymi? Większość punktów tutaj Większość punktów tutaj Negatywna (ujemna) współzależność

11 Różne zależności między zmiennymi za Wieczorkowska

12 Pojęcie korelacji Związek w zakresie współzmienności między dwoma (lub większą) liczbą zmiennych liczbowych Pytanie badawcze czy ze wzrostem wartości jednej zmiennej rosną (lub maleją) wartości drugiej zmiennej np. czy średnio ze zwiększającą się wysokością osoby rośnie (lub maleje) jej waga Intuicyjnie, zależność dwóch zmiennych X i Y oznacza, że znając wartość jednej z nich, dałoby się przynajmniej w niektórych sytuacjach dokładniej przewidzieć wartość drugiej zmiennej, niż bez posiadania tej informacji Uwaga wyniku badania korelacyjnego nie wolno interpretować w terminach przyczynowo - skutkowych

13 Wykrywanie korelacji między zmiennymi W analizie korelacji zadaje się pytania: Czy istnieje związek współzależność między dwoma zmiennymi? Jaka jest skala tej zależności. Czy jest ona słaba czy silna? Czy istnieją możliwości wyrażenia tej zależności w postaci liczbowej?

14 Jaka korelacja Nas dziś interesuje? Jaki typ zależności między wartościami zmiennych? Zmienne liczbowe Statystyczna i monotoniczna Liniowa Czy istnieją inne możliwości wyrażenia zależności między zmiennymi? Związki nieliniowe Inne zmienne (porządkowe, nominalne) Będą (?) korelacja rangowa Spearmana, współczynnik tau-kendalla; statystka gamma, miary siły związku wykorzystujące test χ 2,

15 Korelacja między dwoma zmiennymi / cechami Korelacja związek dodatni, ujemny, Skala tej zależności - słaba lub silna

16 Brak korelacji między dwoma zmiennymi / cechami Zinterpretuj drugi wykres

17 Współczynnik korelacji liniowej Korelacja oznacza związek między zmiennymi a współczynnik korelacji r liczbową miarę tego związku Oczekiwania Dane (X,Y) przedstawione w postaci par liczb Jeśli nie ma związku, to wartość współ. r 0 Wartości odzwierciedlają związki proporcjonalne między wartościami zmiennych (pozytywne, negatywne) Dążenie do unormowanie wartości współczynnika korelacji i interpretacji jako siły związku

18 Od kowariancji do korelacji liniowej Pomiar jak ZMANY wartość jednej zmiennej wpływa średnio na ZMIANY wartość drugiej zmiennej Inspiracja z analizy jednej zmiennej: Analiza zmienności (wariancji) zmiennej - Kwadraty odchyleń od średniej Prostsza interpretacja odchylanie standardowe

19 Ilustracyjny przykład rybaka Wyobraźmy sobie mały zestaw danych X,Y tj.: (1,1) (4,3) (7,5) (8,7) X,Y mogą być dowolnymi zmiennymi Tutaj: X czas łowienia, Y liczba złapanych ryb Przykład za COMP6053

20 Popatrzmy na zmienność pojedynczych zmiennych Policzmy średnie arytmetyczne dla każdej zmiennej Dla X = 5, dla Y =4

21 Od wariancji do kowariancji Dla jednej zmiennej policzyłbyś wariancje Lecz powiązanie dwóch zmiennej: Rachunek prawd. współzależność zmiennych losowych = kowariancja Cov(X,Y)=E[(X-µ X ) [(Y-µ Y )] Interesują Nas iloczyny odchyleń (xi od średniej X)(yi od średniej Y); sumuj iloczyny oraz podziel przez n liczbę par (ew. n-1)

22 Policzmy kowariancje -4 x -3 = 12-1 x -1 = 1 2 x 1 = 2 3 x 3 = 9 Razem 24 podzielone przez 4 obserwacje Kowariancja 8 ryb-godzin Interpretacja Może inaczej, jeśli wiemy że SDX=3.16 i SDY=2.58 Pearson linear correlation r=0.98

23 Korelacja liniowa miara kierunku i siły współzależności między dwiema zmiennymi X i Y. Współczynnik korelacji liniowej Pearsona: r xy = n i= 1( xi x) ( yi y) C( x, y) = n 2 n 2 S i xi x i yi y x S = 1( ) = 1( ) y gdzie x, y- średnie art. zmiennych X i Y, a Sx i S y ich odchylenia standardowe; kowariancja 1 n C( x, y) = i = 1 ( xi x)( yi y) n r xy [ 1, 1] Miarą siły liniowego związku między zmiennymi X i Y. Zakres stosowalności: zależność dwóch zmiennych ilościowych o charakterze liniowym.

24 Inne sformułowanie wzoru r XY n i = = 1 Z n Xi Z Yi Zi wynik standaryzowanego i-tego pomiaru zmiennej n liczba pomiarów

25 Własności współczynnika korelacji liniowej Pearsona 1. Miara symetryczna 2. Miara niemianowana i unormowaną Można porównywać korelacje dla różnych zestawów zmiennych 3. Pozwala na określenie nie tylko siły, ale i kierunku zależności między zmiennymi 4. Interpretacja wartości współczynnika korelacji: im 1 tym silniejsza korelacja. r xy 5. Ograniczenia Podatny na obserwacje skrajne (ang. outliers)

26 Współczynniki korelacji dla przykładowych zależności X i Y Wykres za A.Adrian AGH

27 Przykładowa interpretacja wartości jako siły związku Pamiętając o liczności próby interp. wartości bezwzględnych Lecz sprawdź inne źródła dziedzinowe

28 Korelacja Pearsona tylko liniowa za: Wiki Czy na pewno zero w ostatnim?

29 Korelacja a rozkłady prawdopodobieństwa Wykres za R.Gonzales

30 Korelacja a rozkłady prawdopodobieństwa

31 Wykresy korelacyjne dla różnych n Wykresy symulacyjne za R.Gonzales

32 Przykłady obliczania korelacji Zbadaj zależność dwóch zmiennych opisujących odpowiedzi respondentów w pewnej ankiecie X - liczba randek w ostatnim tygodniu Y ocena satysfakcji z życia na skali punktowej 1,2,3,..,5 X Y Dla każdego zestawu odpowiedzi narysuj wykres korelacyjny (każda para wartości odpowiedzi dla jednej osoby przedstawiona jest jako punkt na płaszczyźnie x,y)

33 Przykłady Grupa nastolatków X Y Wykres korelacyjny - nastolatki Korelacja = satysfakcja liczba randek

34 Przykłady 2 Grupa dwudziestoparo-latków X Y Korelacja =?? satysfakcja 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 Trzydziestolatki liczba randek

35 Przykłady 3 Grupa troszkę starszych-latków X Y Korelacja = Satysfakcja 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 troche pozniej liczba spotkań

36 Ocena współczynnika korelacji ρ w populacji r współczynnik korelacji w próbie czy może być użyty w odniesieniu do populacji? Estymator punktowy? Może być także użyty do testowania hipotezy o korelacji zmiennych w populacji. Założenia: zmienne (X,Y) populacji mają dwuwymiarowy rozkład normalny o nieznanym współczynniku korelacji ρ. Na podstawie n - elementowej próby wyznaczono r. Testowany układ hipotez: 0 : ρ = Statystyka testowa: test z = H 0 H : ρ 0 r xy 1 r 2 xy n 1 lub test = rxy t n r xy

37 Przykład testowania istotności współczynnika korelacji Współczynnik korelacji między liczbą randek w tygodniu a satysfakcją z życia wynosi r=0.493 (N = 16 par pomiarów). Czy możemy podjąć decyzję wobec populacji H0: ρ=0. Schemat postępowania: Testowany układ hipotez: 0 : ρ = 0 H1 : ρ Wybór statystyki testowej = rxy t n r Ma rozkład t - Studenta z n-2 stopni swobody (14) Poziom α=0.05 tkryt=2.145 t=2.11 H 0 Podjęcie decyzji xy

38 Test w Statsoft Statistica Przykład biostatystyczny

39 Ostrożność z testem ρ dla rozmiarów próby Dla dużych rozmiarów próby nawet małe korelacje (brak związku) mogą okazać się istotne wg. testu Lecz nie musi być to rzeczywisty związek

40

41 Wykresy kwartetu Anscombe'a

42 Problemy w interpretacji współczynnika korelacji Uwagi po analizie przykładu: Należy oglądać dane! Współczynnik służy do badania związku liniowego! Jeśli związek nie jest liniowy stosuj regresję krzywoliniową. Współczynnik korelacji jest nieistotny można stwierdzić wyłącznie brak związku liniowego. Ponadto pamiętaj: Wrażliwość na obserwacje skrajne i ograniczenie zakresy zmienności zmiennej niezależnej.

43 Związki przyczynowo-skutkowe Przyczynowość zainteresowanie od początku ludzkości (poznanie naukowe) Także fabuła opowieści, logika prawa (kary),.. Związek przyczynowo-skutkowy między danymi zjawiskami czy zdarzeniami zostało wykazane powiązanie. Innymi słowy, że A jest przyczyną B Pragnienie wypicie napoju Przyczyna Skutek

44 Związki przyczynowo-skutkowe ważne są Badanie przyczynowości jest próbą zrozumienia tego, jak działa świat. Co więcej, odkrycia w tej kwestii pozwalają nam na stawianie prognoz. Jeżeli znamy przyczynę - możemy próbować przewidzieć skutek. Bardziej formalnie możemy zdefiniować przyczynowość jako związek, który występuje pomiędzy dwoma zmiennymi losowymi, przy czym jedna ze zmiennych wyznacza wartość drugiej zmiennej.

45 Korelacja to nie zależność przyczynowo-skutkowa Częstym błędem jest przyjmowanie, że zmienne silnie nawet skorelowane są związane jakimś związkiem przyczynowo-skutkowym, tym mocniejszym, im korelacja większa Silna korelację pomiędzy zachorowaniem na raka a paleniem papierosów; palenie powoduje raka (czy tylko) Istnienie związku między zmiennymi NIE OZNACZA PRZYCZYNOWOŚCI!!

46 Korelacje nie są związkami przyczynowoskutkowymi Klasyczny przykład zegara dworcowego Dźwięk dworcowego zegara wybijającego godzinę pierwszą jest niezwykle silnie skorelowany z odjazdem pociągu o 1:00 ze stacji, Nie jest on jednak żadną przyczyną ruchu - i odwrotnie, odjazd pociągu nie jest przyczyną dźwięku Są to zjawiska tylko współ-występujące

47 Dziwne sytuacje Inny klasyczny przykład (bociany) wykryto istotną statystycznie dodatnią zależność pomiędzy liczbą bocianów przypadających na km2 w danym skupisku ludzkim, a przyrostem naturalnym na tym obszarze. Czy to nie dowodzi, że bociany przynoszą dzieci?

48 Koincydencja zdarzeń Jako pierwszy zdefiniował Arthur Schopenhauer w Űber den Willen in der Natur w 1836 r. Określił ją jako jednoczesne występowanie zdarzeń, które nie są związane ze sobą przyczynowo. Jednoczesne zdarzenia przebiegają w równoległych liniach. Jedno i to samo zdarzenie będące ogniwem w zupełnie różnych łańcuchach, występuje ponadto w kilku innych, tak że los jednostki spotyka się nieuchronnie z losem innej. Każdy z nas jest głównym aktorem we własnym dramacie, równocześnie zaś gra jakąś rolę w innym, obcym mu dramacie

49 Pozorne korelacje Zależność pozorna to związek, który istnieje pomiędzy zmiennymi, ale jest w rzeczywistości powodowany przez inną zmienną Lecz mogą być błędnie interpretowane Zwłaszcza w podejściu policzmy korelacje wszystkich zmiennych ze wszystkimi w naszych danych, a później zobaczymy co wyjdzie,.. Przykłady: Zarobki prezbiteriańskich pastorów w stanie Massachusetts a cena rumu w Hawanie są silnie skorelowane Z książki D.Haff: How to lie with statistics.

50 Strona WWW Spurious Correlations (pozorne korelacje) Korelacja między wydatkami na naukę, badania kosmiczne i technologię a ceną bananów w kolejnych latach (współczynnik korelacji 0,94) Zależność między wydatkami na utrzymanie zwierząt domowych a liczbą prawników w Kalifornii (współczynnik korelacji 0,998)

51 Inne przykłady silnych lecz złóżonychzwiązków między zmiennymi. Przykład nr. 1: Długość okresu pobierania nauki i wysokość zarobków są wysoce skorelowane Badania ankietowe w Anglii (F.Clegg str. 154). Pytanie czy poziom wykształcenia sam w sobie determinuje stanowisko i wysokość zarobków? Raczej związek nie jest tak prosty, lecz dość złożony! Inteligencja osoby, cechy osobowościowe, różne umiejętności, no i łut szczęścia, J Wysoka korelacja wyłącznie opisuje związek, który istnieje w danych pomiarowych pomiędzy obiema zmiennymi.

52 Dalej Przykład nr. 2: Oglądalność TV i wskaźnik urodzeń są negatywnie skorelowane Badania demograficzne w USA zaobserwowano wysoki wzrost wskaźnika urodzeń, które nastąpiło 9 miesięcy po awarii TV w pewnych rejonach USA. Podobnie wiele osób interpretując inne badania wierzy istnieje sprecyzowany związek pomiędzy pokazywaniem przemocy w TV a poziomem agresji! Związek przyczynowo-skutkowy nie jest tak prosty i bezpośredni, lecz dość złożony i wymaga uwzględniania innej wiedzy niż wyłącznie korelacja!

53 A co z naszymi bocianami? Badania Roberta Metthewsa (Stork deliver babys, Teaching Statistics, vol. 22, 2000) Dane także dostępne w książce P.Francuz, R.Mackiewicz: Liczby nie wiedzą skąd pochodzą. Wyd. KUL, 2007 patrz str Korelacja między liczbą rodzących się dzieci a liczbą bocianów w danych kraju r=0,62 Lecz badania obejmowały więcej cech krajów: Powierzchnia (tys km kw.) Ludność (mln) Liczba bocianów (l. par) Liczba urodzeń (w tys. na rok)

54 Macierze korelacji Zmienne Powierzchnia Liczba bocianów Liczba mieszkańców Liczba urodzeń Pow. 1 0,579 0,812 0,923 Bociany 0, ,354 0,620 Mieszkańcy 0,812 0, ,851 Urodzenia 0,923 0,620 0,851 1 Możliwe interpretacje złożonych powiązań (może być więcej): Liczba bocianów powiązana w dużą powierzchnią kraju, Powierzchnia kraju skorelowana z liczbą mieszkańców, Liczba mieszkańców silnie skorelowana z liczbą urodzeń, Pełniejsza analiza tzw. korelacje cząstkowe r(xy.z)=0,22

55 Gdzie jesteśmy w trakcie wykładu? 1. Wykrywanie zależności między zmiennymi 2. Współczynnik korelacji próbkowej (Pearsona). 3. Liniowa zależność między dwoma zmiennymi: Prosta regresja Metoda najmniejszych kwadratów Właściwości 4. Zastosowanie różnego oprogramowania

56 W stronę regresji Mat. Statistica + wykład A.Adrian AGH

57 Literatura Statystyka dla studentów kierunków technicznych i przyrodniczych, Koronacki Jacek, Mielniczuk Jan, WNT, Statystyka w zarządzaniu, A.Aczel, PWN Statystyka praktyczna. W.Starzyńska, Statystyka. Wprowadzenie do analizy danych sondażowych i eksperymentalnych. G.Wieczorkowska, Scholar, Przystępny kurs statystyki, Stanisz A., Tom 2 poświęcony wyłącznie analizie regresji! I wiele innych

58 Dziękuję za uwagę Czytaj także podręczniki!

Analiza zależności zmiennych ilościowych regresja

Analiza zależności zmiennych ilościowych regresja Analiza zależności zmiennych ilościowych regresja JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Wersja dla stud. niestacj 2010 / akt. 2017 Plan wykładu 1. Wykrywanie zależności między zmiennymi

Bardziej szczegółowo

Analiza współzależności zjawisk. dr Marta Kuc-Czarnecka

Analiza współzależności zjawisk. dr Marta Kuc-Czarnecka Analiza współzależności zjawisk dr Marta Kuc-Czarnecka Wprowadzenie Prawidłowości statystyczne mają swoje przyczyny, w związku z tym dla poznania całokształtu badanego zjawiska potrzebna jest analiza z

Bardziej szczegółowo

Weryfikacja hipotez statystycznych testy dla dwóch zbiorowości

Weryfikacja hipotez statystycznych testy dla dwóch zbiorowości Weryfikacja hipotez statystycznych testy dla dwóch zbiorowości Informatyka 007 009 aktualizacja dla 00 JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Plan wykładu. Przypomnienie testu dla

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego

Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Współczynnik korelacji opisuje siłę i kierunek związku. Jest miarą symetryczną. Im wyższa korelacja tym lepiej potrafimy

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

Korelacja krzywoliniowa i współzależność cech niemierzalnych

Korelacja krzywoliniowa i współzależność cech niemierzalnych Korelacja krzywoliniowa i współzależność cech niemierzalnych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Wykład 12 Testowanie hipotez dla współczynnika korelacji

Wykład 12 Testowanie hipotez dla współczynnika korelacji Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem

Bardziej szczegółowo

Wykład 12 Testowanie hipotez dla współczynnika korelacji

Wykład 12 Testowanie hipotez dla współczynnika korelacji Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem

Bardziej szczegółowo

Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35

Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35 Statystyka Wykład 7 Magdalena Alama-Bućko 16 kwietnia 2017 Magdalena Alama-Bućko Statystyka 16 kwietnia 2017 1 / 35 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x

ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x ZJAZD 4 KORELACJA, BADANIE NIEZALEŻNOŚCI, ANALIZA REGRESJI Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem zależności i związków pomiędzy rozkładami dwu lub więcej badanych

Bardziej szczegółowo

Analiza współzależności dwóch cech I

Analiza współzależności dwóch cech I Analiza współzależności dwóch cech I Współzależność dwóch cech W tym rozdziale pokażemy metody stosowane dla potrzeb wykrywania zależności lub współzależności między dwiema cechami. W celu wykrycia tych

Bardziej szczegółowo

ANALIZA KORELACJI Korelacja między zmiennymi X i Y jest miarą siły liniowego związku między tymi zmiennymi.

ANALIZA KORELACJI Korelacja między zmiennymi X i Y jest miarą siły liniowego związku między tymi zmiennymi. ANALIZA KORELACJI Większość zjawisk w otaczającym nas świecie występuje nie samotnie a w różnorodnych związkach. Odnosi się to również do zjawisk biologiczno-medycznych. O powiązaniach między nimi mówią

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9

X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9 Zadanie W celu sprawdzenia, czy pipeta jest obarczona błędem systematycznym stałym lub zmiennym wykonano szereg pomiarów przy różnych ustawieniach pipety. Wyznacz równanie regresji liniowej, które pozwoli

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Statystyka. Wykład 8. Magdalena Alama-Bućko. 23 kwietnia Magdalena Alama-Bućko Statystyka 23 kwietnia / 38

Statystyka. Wykład 8. Magdalena Alama-Bućko. 23 kwietnia Magdalena Alama-Bućko Statystyka 23 kwietnia / 38 Statystyka Wykład 8 Magdalena Alama-Bućko 23 kwietnia 2017 Magdalena Alama-Bućko Statystyka 23 kwietnia 2017 1 / 38 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31 Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss

Bardziej szczegółowo

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

R-PEARSONA Zależność liniowa

R-PEARSONA Zależność liniowa R-PEARSONA Zależność liniowa Interpretacja wyników: wraz ze wzrostem wartości jednej zmiennej (np. zarobków) liniowo rosną wartości drugiej zmiennej (np. kwoty przeznaczanej na wakacje) czyli np. im wyższe

Bardziej szczegółowo

Statystyka. Wykład 7. Magdalena Alama-Bućko. 3 kwietnia Magdalena Alama-Bućko Statystyka 3 kwietnia / 36

Statystyka. Wykład 7. Magdalena Alama-Bućko. 3 kwietnia Magdalena Alama-Bućko Statystyka 3 kwietnia / 36 Statystyka Wykład 7 Magdalena Alama-Bućko 3 kwietnia 2017 Magdalena Alama-Bućko Statystyka 3 kwietnia 2017 1 / 36 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Dwuczynnikowa analiza wariancji (2-way

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN

Bardziej szczegółowo

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP

STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 12 listopada 2017 1 Analiza współzależności dwóch cech 2 Jednostka zbiorowości - para (X,Y ). Przy badaniu korelacji nie ma znaczenia, która

Bardziej szczegółowo

ρ siła związku korelacyjnego brak słaba średnia silna bardzo silna

ρ siła związku korelacyjnego brak słaba średnia silna bardzo silna Ćwiczenie 4 ANALIZA KORELACJI, BADANIE NIEZALEŻNOŚCI Analiza korelacji jest działem statystyki zajmującym się badaniem zależności pomiędzy rozkładami dwu lub więcej badanych cech w populacji generalnej.

Bardziej szczegółowo

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15

X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15 X WYKŁAD STATYSTYKA 14/05/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 10 ANALIZA KORELACJI Korelacja 1. Współczynnik korelacji 2. Kowariancja 3. Współczynnik korelacji liniowej definicja 4. Estymacja współczynnika

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Zmienne zależne i niezależne

Zmienne zależne i niezależne Analiza kanoniczna Motywacja (1) 2 Często w badaniach spotykamy problemy badawcze, w których szukamy zakresu i kierunku zależności pomiędzy zbiorami zmiennych: { X i Jak oceniać takie 1, X 2,..., X p }

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa dwuwymiarowa i korelacja

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa dwuwymiarowa i korelacja WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Zmienna losowa dwuwymiarowa i korelacja Zmienna losowa dwuwymiarowa Definiujemy ją tak samo, jak zmienną losową jednowymiarową, z tym że poszczególnym zdarzeniom elementarnym

Bardziej szczegółowo

W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.

W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Plan wykładu: 1. Etapy wnioskowania statystycznego 2. Hipotezy statystyczne,

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

W1. Wprowadzenie. Statystyka opisowa

W1. Wprowadzenie. Statystyka opisowa W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład

Bardziej szczegółowo

Wykład 9 Wnioskowanie o średnich

Wykład 9 Wnioskowanie o średnich Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i

Bardziej szczegółowo

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( ) Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału

Bardziej szczegółowo

Analiza korelacji

Analiza korelacji Analiza korelacji Zakres szkolenia Wstęp Podstawowe pojęcia korelacji Współczynnik korelacji liniowej Pearsona Współczynnik korelacji rang Spearmana Test istotności Zadania 2 Wstęp Do czego służy korelacja:

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki

Bardziej szczegółowo

Regresja i Korelacja

Regresja i Korelacja Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności współczynnika korelacji

Bardziej szczegółowo

Weryfikacja hipotez statystycznych - testy dla wartości średniej cz. 2

Weryfikacja hipotez statystycznych - testy dla wartości średniej cz. 2 Weryfikacja hipotez statystycznych - testy dla wartości średniej cz. 2 JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Studia niestacjonarne Informatyka 2016/17 Plan wykładu 1. Test t-studeta

Bardziej szczegółowo

Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej,

Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej, Szacownie nieznanych wartości parametrów (średniej arytmetycznej, odchylenia standardowego, itd.) w populacji generalnej na postawie wartości tych miar otrzymanych w próbie (punktowa, przedziałowa) Weryfikacja

Bardziej szczegółowo

ĆWICZENIE 11 NIEPARAMETRYCZNE TESTY ISTOTNOŚCI

ĆWICZENIE 11 NIEPARAMETRYCZNE TESTY ISTOTNOŚCI ĆWICZENIE 11 NIEPARAMETRYCZNE TESTY ISTOTNOŚCI ANALIZA KORELACJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

Badanie zależności skala nominalna

Badanie zależności skala nominalna Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji Ćwiczenie: Wybrane zagadnienia z korelacji i regresji W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Stanisza r xy = 0 zmienne nie są skorelowane 0 < r xy 0,1

Bardziej szczegółowo

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) założenie: znany rozkład populacji (wykorzystuje się dystrybuantę)

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) założenie: znany rozkład populacji (wykorzystuje się dystrybuantę) PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Korelacja i regresja Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/30 Ostrożnie z interpretacją p wartości p wartości zależą od dwóch rzeczy

Bardziej szczegółowo

Statystyka. Wykład 6. Magdalena Alama-Bućko. 9 kwietnia Magdalena Alama-Bućko Statystyka 9 kwietnia / 36

Statystyka. Wykład 6. Magdalena Alama-Bućko. 9 kwietnia Magdalena Alama-Bućko Statystyka 9 kwietnia / 36 Statystyka Wykład 6 Magdalena Alama-Bućko 9 kwietnia 2018 Magdalena Alama-Bućko Statystyka 9 kwietnia 2018 1 / 36 Krzywa koncentracji Lorenza w ekonometrii, ekologii, geografii ludności itp. koncentrację

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22 Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach

Bardziej szczegółowo

Przykład 1. (A. Łomnicki)

Przykład 1. (A. Łomnicki) Plan wykładu: 1. Wariancje wewnątrz grup i między grupami do czego prowadzi ich ocena 2. Rozkład F 3. Analiza wariancji jako metoda badań założenia, etapy postępowania 4. Dwie klasyfikacje a dwa modele

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane

Bardziej szczegółowo

Wykład 4: Wnioskowanie statystyczne. Podstawowe informacje oraz implementacja przykładowego testu w programie STATISTICA

Wykład 4: Wnioskowanie statystyczne. Podstawowe informacje oraz implementacja przykładowego testu w programie STATISTICA Wykład 4: Wnioskowanie statystyczne Podstawowe informacje oraz implementacja przykładowego testu w programie STATISTICA Idea wnioskowania statystycznego Celem analizy statystycznej nie jest zwykle tylko

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34 Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji

Bardziej szczegółowo

Analiza Współzależności

Analiza Współzależności Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Statystyka. Wykład 9. Magdalena Alama-Bućko. 7 maja Magdalena Alama-Bućko Statystyka 7 maja / 40

Statystyka. Wykład 9. Magdalena Alama-Bućko. 7 maja Magdalena Alama-Bućko Statystyka 7 maja / 40 Statystyka Wykład 9 Magdalena Alama-Bućko 7 maja 2018 Magdalena Alama-Bućko Statystyka 7 maja 2018 1 / 40 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary

Bardziej szczegółowo

Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)

Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA MATEMATYCZNA (EiT stopień) Nazwa w języku angielskim Mathematical Statistics Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym.

REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. Zadanie 1 W celu ustalenia zależności między liczbą braków a wielkością produkcji części

Bardziej szczegółowo

Statystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt

Statystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt Statystyka matematyczna dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt Zasady zaliczenia przedmiotu: część wykładowa Maksymalna liczba punktów do zdobycia 40. Egzamin będzie

Bardziej szczegółowo

(x j x)(y j ȳ) r xy =

(x j x)(y j ȳ) r xy = KORELACJA. WSPÓŁCZYNNIKI KORELACJI Gdy w badaniu mamy kilka cech, często interesujemy się stopniem powiązania tych cech między sobą. Pod słowem korelacja rozumiemy współzależność. Mówimy np. o korelacji

Bardziej szczegółowo

Analiza zależności cech ilościowych regresja liniowa (Wykład 13)

Analiza zależności cech ilościowych regresja liniowa (Wykład 13) Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VIII: Przestrzenie statystyczne. Estymatory 1 grudnia 2014 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji r(x, Z) = 0, 986 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo