Dynamika namagnesowania warstwowych struktur magnetycznych i nanostruktur.
|
|
- Artur Janik
- 5 lat temu
- Przeglądów:
Transkrypt
1 Dynamika namagnesowania warstwowych struktur magnetycznych i nanostruktur. Hubert Głowiński, IFM PAN promotor: prof. Janusz Dubowik Praca była częściowo finansowana z grantu Polsko-Szwajcarskiego Nanospin PSPB-045/2010
2 Plan Wprowadzenie Układy z efektem exchangebias Układy z anizotropią prostopadłą Podwójne zawory spinowe Efekt wzmocnienia sygnału Antyrezonans ferromagnetyczny Podsumowanie cienka warstwa CPW
3 Dynamika namagnesowania Wektor namagnesowania precesuje w zewnętrznym polu magnetycznym H M H Równanie Landau- Lifszyc-Gilbert (LLG) M
4 VNA-FMR Zewnętrzne pole magnetyczne Linie pola magnetycznego Linie pola elektrycznego S 21 = Transmitted Incident Port 1 Port 2 Próbka Pole mikrofalowe Falowód koplanarny Zewnętrzne pole magnetyczne
5 Sprzężenie typu exchange bias FM T N <T<T C AFM FM T T N AFM FM T<T N Mathias Getzlaff, Fundamentals of Magnetism, Springer-Verlag Berlin Heidelberg 2008 AFM
6 Zależność pola rezonansowego od kąta w płaszczyźnie Korzystając ze wzoru Smita- Beljersa można z energii swobodnej przedstawionej powyżej wyprowadzić warunek dla rezonansu w układach z anizotropią jednozwrotową α kąt pomiędzy namagnesowaniem, a kierunkiem pola podczas chłodzenia H A pole anizotropii; H B pole przesunięcia exchange-bias; Mark Rubinstein, Peter Lubitz, and Shu-Fan Cheng J. Magn. Magn. Mater., 195: , 1999
7 Zależność pola rezonansowego od kąta w płaszczyźnie Na wykresie przedstawiono wielkości H a, H eb, H ra Energia anizotropii kształtu Energia anizotropii jednoosiowej Energie związane z AFM R. D. McMichael, M. D. Stiles, P. J. Chen, and W. F. Egelhoff, Jr., Phys. Rev. B 58, 8605 (1998) energia Zeemana
8 Warstwy NiFe/NiMn
9 Warstwy NiFe/NiMn Pole podczas chłodzenia przyłożone przeciwnie do pola H ex Wpływ ziaren AFM o różnym KV na pole H ex FM AFM
10 Warstwy NiFe/NiMn Pole podczas chłodzenia przyłożone zgodnie z polem H ex FM Namagnesowanie części ziaren AFM o KV<k B T uległo rotacji AFM
11 Warstwy NiFe/NiMn Chłodzenie bez pola, więc próbka nie była nasycona. FM AFM
12 Warstwy Co 2 FeSi/IrMn 5.0x10-4 magnetic moment (emu) x10-4 b m t Field (Oe) Ta IrMn t C o 2 FeSi IrMn m C o 2 FeSi IrMn b C o 2 FeSi IrMn Ta Si substrate Wynik pomiaru VNA-FMR Pętla histerezy Kolejne warstwy Co 2 FeSi mają coraz większe pole H 12 ex
13 Warstwy Co 2 FeSi/IrMn Porównanie wyników pomiarów VNA-FMR oraz pętli histerezy
14 Anizotropia prostopadła Zależność πM eff t od grubości t pozwala wyznaczyć parametry anizotropii prostopadłej 14
15 Warstwy Co/Au Wyznaczenie parametrów anizotropii prostopadłej układu Co/Au na podstawie lokalnych pomiarów VNA-FMR klina Co Au 10 Ti 4 Si Co M. Matczak, B. Szymański, M. Urbaniak, M. Nowicki, H. Głowiński, P. Kuświk, M. Schmidt, J. Aleksiejew, J. Dubowik and F. Stobiecki., J. Appl. Phys. 114, (2013)
16 Chropowatość powierzchni K. Kurzydłowski i M. Lewandowska "Nanomateriały inżynierskie konstrukcyjne i funkcjonalne" 16 Matczak et al., J. Appl. Phys. 114, (2013);
17 Podwójny zawór spinowy Au 5 Co 3 Au 2 Co 1.5 Au 2 Au 1 Co 0.8 Au 60 Ti 4 Si x3 Wyniki pomiarów podwójnego zaworu spinowego o niekolinearnym ustawieniu namagnesowania w warstwach kobaltowych
18 Warstwy CoFeB/MgO Porównanie wyników pomiarów uzyskanych przez przemiatanie polem i częstotliwością
19 Częstotliwośc [GHz] Częstotliwośc [GHz] Warstwy CoFeB w kontakcie z MgO cewki elektromagnes Trudny kierunek H u H z M W małych polach wektor namagnesowania nie jest równoległy do pola zewn W małych polach wektor namagnesowania jest równoległy do pola zewn. Pole [Oe] H z Łatwy kierunek H u M Pole [Oe]
20 Warstwy CoFeB w kontakcie z MgO Wyznaczenie pola anizotropii jednoosiowej w płaszczyźnie na podstawie pomiarów MOKE i VSM 20
21 Meff*d (Oe*cm) Warstwy CoFeB w kontakcie z MgO Meff*d Meffd (User) Fit of Meff*d Wyznaczenie parametrów anizotropii prostopadłej w warstwach CoFeB x x x10-7 Value d (cm) Standard Error K v [erg/cm 3 ] -1.37E+07 2E+06 K s [erg/cm 2 ] M [emu/cm 3 ] K p K d S K V
22 Tłumienie w warstwach CoFeB/MgO Si/bufor/MgO 1.28/CoFeB 1.5/Ta 5/Ru 5 (a) Ta 5/Ru 10/Ta 3 oraz (c) Ta 5/Ru 20/Ta 5 Wpływ buforu na tłumienie w warstwach CoFeB Marek Frankowski, Antoni Żywczak, Maciej Czapkiewicz, Sławomir Ziętek, Jaroslaw Kanak, Monika Banasik, Wieslaw Powroznik, Witold Skowronski, Jakub Chęciński, Jerzy Wrona, Hubert Głowiński, Janusz Dubowik, Jean-Philippe Ansermet, Tomasz Wlodzimierz Stobiecki et al. JAP 2015
23 Struktura wielowarstwowa dla STO: podwójny zawór spinowy Inna grubość antyferromagnetyka Cieńsza warstwa swobodna Nie używamy PEL Używamy Co/Au zamiast Co/Pt Pol/Cu4/Fe 20 Ni 80 3/Co0.5/Cu3/Co3/Ir 20 Mn 80 5, gdzie Au 5 IrMn 10 Co 3 Cu 2 Py 2 Cu 4 Au 1 Co 0.8 Au 60 Ti 4 Si x4 Pol=Pt20/(Co0.55/Pt0.25)5/(Co0.8/Cu0.3/Co0.8) D. Houssameddine et al., Nat. Mater. 6, 447 (2007)
24 Intesinty [a.u.] Moment [a.u] Moment [a.u] M [a.u.] Podwójny zawór spinowy VSM in-plane Magnetic field [Oe] Magnetic field [Oe] Pole przesunięcia pętli dla warstwy przyszpilonej wynosi 100 Oe Measured at 20 GHz Exchange-bias effect parallel to EB field antiparallel to EB field Magnetic field [koe] p - MOKE Magnetic field [Oe] 24 VNA-FMR
25 Podwójne zawory spinowe Wynik pomiaru VNA-FMR podwójnego zaworu spinowego
26 Podwójne zawory spinowe Pętle histerezy Magnetoopór
27 Zawór spinowy Zawór spinowy bez polaryzatora Wąskie pętle histerezy
28 Podwójny zawór spinowy Wyznaczenie parametrów opisujących dynamikę namagnesowania podwójnego zaworu spinowego
29 Zawór spinowy
30 Im S 21 (a.u.) Wygrzewanie w polu magnetycznym Wygrzewanie i chłodzenie w polu magnetycznym w celu wywołania efektu exchange-bias Zwiększenie pola rezonansowego o około 2-3 koe Mały wpływ na exchange-bias Si(Ti 4/Au 40/(Au1/Co0.7)x4/Cu4/Py3/Cu3/Co3/IrMn15/Au5) annealed at 250 C in magnetic field as deposited 15 min 30 min 60 min M/M s -1-2 Field (Oe) Magnetic field (Oe) min 30 min 60 min -4 as deposited F. J. A. den Broeder, D. Kuiper, A. P. van de Mosselaer, and W Hoving, Phys. Rev. Lett. 60, (1988)
31 Im S 21 (a.u.) Wygrzewanie w polu magnetycznym Struktura odwrócona Zwiększenie pola rezonansowego o około 2-3 koe Mały wpływ na exchange-bias Si(Ti 4/Au 40/IrMn10/Co3/Cu3/Co0.5/Py3/Cu4/(Co0.7/Au1)x4/Au5) annealed at 250 C in magnetic field as deposited 15 min 30 min 60 min M/M s Field (Oe) 15 min 30 min 60 min as deposited Magnetic field (Oe)
32 Im S 21 (a.u.) Wygrzewanie w polu magnetycznym Struktury bez polaryzatora Zwiększenie intesywności Brak wpływu na exchange-bias Si(Ti 4/Au 10/Cu4/Py3/Co0.5/Cu3/Co3/IrMn10/Au5) annealed at 250 C in magnetic field as deposited 15 min 30 min 60 min 1 0 M/M s Field (Oe) 15 min 30 min 60 min as deposited A
33 Wzmocnienie sygnału VNA-FMR
34 Im S 21 (a.u.) Im S 21 (a.u.) Re S 21 (a.u.) Co determinuje wielkość sygnału? Si(Ti 4/Au 40/IrMn10/Co3/Cu3/Co0.5/Py3/Cu4/(Co0.7/Au1)x4/Au5) (a) Re Im (b) F - F P - A - A + P H. T. NEMBACH et al. PHYSICAL REVIEW B 84, (2011) Magnetic field (Oe) B. Heinrich J.A.C. Bland (Eds.), Ultrathin Magnetic Structures II (1994) 34
35 M [a.u.] Im S 21 (a.u.) Wzmocnienie sygnału VNA-FMR VSM pomiar statyczny Si(Ti 4/Au 40/IrMn10/Co3/Cu3/Co0.5/Py3/Cu4/(Co0.7/Au1)x4/Au5) Si(Ti 4/Au 10/IrMn10/Co3/Cu3/Co0.5/Py3/Cu4/(Co0.7/Au1)x4/Au5) VNA-FMR pomiar dynamiczny Si(Ti 4/Au 40/IrMn10/Co3/Cu3/Co0.5/Py3/Cu4/(Co0.7/Au1)x4/Au5) Si(Ti 4/Au 10/IrMn10/Co3/Cu3/Co0.5/Py3/Cu4/(Co0.7/Au1)x4/Au5) Magnetic field [Oe] Field (Oe) Pętle histerezy obu struktur są bardzo podobne Natomiast intensywności sygnału VNA-FMR są zupełnie różne
36 Wzmocnienie sygnału VNA-FMR Au 5 Co 2,5 Au Ti 4 Si Au 5 Co 2,5 Au Ti 4 Si Zależność intensywności sygnału od przewodzącej warstwy buforowej
37 Absorption (arb.u.) Absorption (arb.u.) Absorption (arb.u.) Absorption (arb.u.) Wzmocnienie sygnału VNA-FMR 1.5x x10-3 Analyz Free Pol Au 5 IrMn 15 Co 3 Cu 3 Co 0.5 Py 3 Cu 4 Co 0.7 Au 1 Au 40 Ti 4 Si x4 2.0x x10-4 Analyz Free Au 5 IrMn 10 Co 3 Cu 3 Co 0.5 Py 3 Cu 4 Au 10 Ti 4 Si 5.0x x x10-3 Pol Free Analyz Au 5 Au 1 Co 0.7 Cu 4 Py 3 Co 0.5 Cu 3 Co 3 IrMn 10 Au 40 Ti 4 Si x x x10-4 Pol Free Analyz Au 5 Au 1 Co 0.7 Cu 4 Py 3 Co 0.5 Cu 3 Co 3 IrMn 10 Au 10 Ti 4 Si x4 5.0x Magnetic field (koe) Magnetic field (koe) Wpływ kolejności podukładów na rezultaty pomiarów VNA-FMR 37
38 Wzmocnienie sygnału VNA-FMR Wyjaśnienie różnic w stosunkach intensywności w zależności od kolejności podukładów
39 Absorption [a.u] Antyrezonans Taśma amorficzna NiFeMo Konfiguracja in-plane 32.5 GHz FMR FMAR N. Bloembergen, Phys. Rev. 78, (1950) Field [Oe]
40 Frequency [GHz] Antyrezonans FMR FMAR Field [koe] Taśma amorficzna NiFeMo 2 H H FMR H FMR 4 4 M FMAR M s Estimate Standard Error g 2,126 0,003 M [emu/cm 3 ] s
41 Podsumowanie VNA-FMR ze standardowym falowodem koplanarnym można wykorzystać do pomiarów zarówno grubych warstw (taśmy amorficzne o grubości rzędu mikrometrów), jak i ultracienkich warstw o grubości w zakresie pojedynczych nanometrów. W taśmie amorficznej występuje, oprócz rezonansu ferromagnetycznego, antyrezonans ferromagnetyczny. W cienkich warstwach obserwowane są zjawiska związane z powierzchnia, takie jak anizotropia powierzchniowa lub anizotropia jednozwrotowa związana z efektem exchange-bias. Warstwy metaliczne w sąsiedztwie warstw ferromagnetycznych wpływają na ich dynamikę namagnesowania
42 Dziękuję za uwagę!
43
44 Wzmocnienie sygnału VNA-FMR Symulacja Adam Krysztofik
45 Wzmocnienie sygnału VNA-FMR Ekranowanie pola elektromagnetycznego Symulacja Adam Krysztofik
46 Wzmocnienie sygnału VNA-FMR Ekranowanie pola elektromagnetycznego Symulacja Adam Krysztofik
47 Wzmocnienie sygnału VNA-FMR H y Długość wektora pola magnetycznego Symulacja Adam Krysztofik Ekranowanie pola elektromagnetycznego
48 Wzmocnienie sygnału VNA-FMR H y Długość wektora pola magnetycznego Symulacja Adam Krysztofik Ekranowanie pola elektromagnetycznego
49 Wzmocnienie sygnału VNA-FMR Symulacja Adam Krysztofik
Dynamika w magnetycznych złączach tunelowych
Dynamika w magnetycznych złączach tunelowych Witold Skowroński Katedra Elektroniki Wydział Informatyki Elektroniki i Telekomunikacji Witold Skowroński, Kraków 17.01.2014 1/43 Motywacja Badania magnetycznych
Bardziej szczegółowoMetody pomiarowe spinowego efektu Halla w nanourządzeniach elektroniki spinowej
Metody pomiarowe spinowego efektu Halla w nanourządzeniach elektroniki spinowej Monika Cecot, Witold Skowroński, Sławomir Ziętek, Tomasz Stobiecki Wisła, 13.09.2016 Plan prezentacji Spinowy efekt Halla
Bardziej szczegółowoMaciej Czapkiewicz Katedra Elektroniki, WIEiT, AGH
Model dyspersji barier energetycznych aktywowanego termicznie procesu przełączania magnetyzacji w układach cienkich warstw z magnetyczną anizotropią prostopadłą Maciej Czapkiewicz Katedra Elektroniki,
Bardziej szczegółowoBadania dyfrakcyjne cienkowarstwowych struktur pod kątem zastosowań w elektronice spinowej
Badania dyfrakcyjne cienkowarstwowych struktur pod kątem zastosowań w elektronice spinowej Jarosław Kanak Katedra Elektroniki, WIEiT AGH NCN grant DEC-2012/05/E/ST7/00240 Laboratorium Badań Strukturalnych
Bardziej szczegółowoBadanie uporządkowania magnetycznego w ultracienkich warstwach kobaltu w pobliżu reorientacji spinowej.
Tel.: +48-85 7457229, Fax: +48-85 7457223 Zakład Fizyki Magnetyków Uniwersytet w Białymstoku Ul.Lipowa 41, 15-424 Białystok E-mail: vstef@uwb.edu.pl http://physics.uwb.edu.pl/zfm Praca magisterska Badanie
Bardziej szczegółowoFerromagnetyczne materiały dla kontrolowanego pozycjonowania ścian domenowych
SEMINARIUM SPRAWOZDAWCZE z prac naukowych prowadzonych w IFM PAN w 2014 roku projekt badawczy: Ferromagnetyczne materiały dla kontrolowanego pozycjonowania ścian domenowych Umowa nr UMO-2013/08/M/ST3/00960
Bardziej szczegółowoPodstawy Mikroelektroniki
Akademia Górniczo-Hutnicza w Krakowie Wydział IEiT Katedra Elektroniki Podstawy Mikroelektroniki Temat ćwiczenia: Nr ćwiczenia 1 Pomiary charakterystyk magnetoelektrycznych elementów spintronicznych-wpływ
Bardziej szczegółowoIndukowana prądem dynamika momentu magnetycznego w złączach tunelowych
Indukowana prądem dynamika momentu magnetycznego w złączach tunelowych mgr inż. Piotr Ogrodnik Warszawa, 19-05-2015 Promotor: prof. dr hab. Renata Świrkowicz Plan wystąpienia Przedmiot badań i motywacja
Bardziej szczegółowoStanowisko do pomiaru magnetorezystancji elementu odczytowego głowicy dysku twardego
Stanowisko do pomiaru magnetorezystancji elementu odczytowego głowicy dysku twardego Opracował : Witold Skowroński Konsultacja: prof. Tomasz Stobiecki Dr Maciej Czapkiewicz Dr inż. Mirosław Żołądź 1. Opis
Bardziej szczegółowoUkłady cienkowarstwowe o prostopadłej anizotropii magnetycznej sterowalnej polem elektrycznym
Układy cienkowarstwowe o prostopadłej anizotropii magnetycznej sterowalnej polem elektrycznym A. Kozioł-Rachwał Wydział Fizyki i Informatyki Stosowanej AGH National Institute of Advanced Industrial Science
Bardziej szczegółowoPolitechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab.
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć Dr hab. Paweł Żukowski Materiały magnetyczne Właściwości podstawowych materiałów magnetycznych
Bardziej szczegółowoEfektywne symulacje mikromagnetyczne układów magnonicznych przy wykorzystaniu GPGPU.
Efektywne symulacje mikromagnetyczne układów magnonicznych przy wykorzystaniu GPGPU. Mateusz Zelent, Paweł Gruszecki, Michał Mruczkiewicz, Maciej Krawczyk Wydział Fizyki, Zakład Fizyki Nanomateriałów Fale
Bardziej szczegółowoProf. dr hab. Tomasz Stobiecki Kraków, Recenzja. pracy doktorskiej mgr inż. Kingi Aleksandry Lasek
Prof. dr hab. Tomasz Stobiecki Kraków, 24. 04. 2018 Wydział Fizyki i Informatyki Stosowanej AGH Katedra Fizyki Ciała Stałego e-mail:stobieck@agh.edu.pl Recenzja pracy doktorskiej mgr inż. Kingi Aleksandry
Bardziej szczegółowoKońcowe Sprawozdanie z Realizacji Projektu Krajowe Centrum Nanostruktur Magnetycznych do Zastosowań w Elektronice Spinowej - SPINLAB
Końcowe Sprawozdanie z Realizacji Projektu Krajowe Centrum Nanostruktur Magnetycznych do Zastosowań w Elektronice Spinowej - SPINLAB Tomasz Stobiecki Katedra Elektroniki AGH, Kraków Maciej Czapkiewicz,
Bardziej szczegółowoII.6 Atomy w zewnętrznym polu magnetycznym
II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu
Bardziej szczegółowoReplikacja domen magnetycznych w warstwach wielokrotnych
Replikacja domen magnetycznych w warstwach wielokrotnych Maciej Urbaniak, IFM PAN 16.03.2007 Poznań Replikacja domen magnetycznych w warstwach wielokrotnych Wprowadzenie Replikacja w układach z anizotropią
Bardziej szczegółowoBADANIA WARSTW FE NANOSZONYCH Z ELEKTROLITU NA BAZIE ACETONU
BADANIA WARSTW FE NANOSZONYCH Z ELEKTROLITU NA BAZIE ACETONU W. OLSZEWSKI 1, K. SZYMAŃSKI 1, D. SATUŁA 1, M. BIERNACKA 1, E. K. TALIK 2 1 Wydział Fizyki, Uniwersytet w Białymstoku, Lipowa 41, 15-424 Białystok,
Bardziej szczegółowoWłasności magnetyczne materii
Własności magnetyczne materii Dipole magnetyczne Najprostszą strukturą magnetyczną są magnetyczne dipole. Fe 3 O 4 Kompas, Chiny 220 p.n.e Kołowy obwód z prądem dipol magnetyczny! Wartość B w środku kołowego
Bardziej szczegółowoMateriały magnetycznie miękkie i ich zastosowanie w zmiennych polach magnetycznych. Jacek Mostowicz
Materiały magnetycznie miękkie i ich zastosowanie w zmiennych polach magnetycznych Jacek Mostowicz Plan seminarium Wstęp Materiały magnetycznie miękkie Podstawowe pojęcia Prądy wirowe Lepkość magnetyczna
Bardziej szczegółowo1 k. AFM: tryb bezkontaktowy
AFM: tryb bezkontaktowy Ramię igły wprowadzane w drgania o małej amplitudzie (rzędu 10 nm) Pomiar zmian amplitudy drgań pod wpływem sił (na ogół przyciągających) Zbliżanie igły do próbki aż do osiągnięcia
Bardziej szczegółowoPL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 02/18
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 229635 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 417862 (22) Data zgłoszenia: 06.07.2016 (51) Int.Cl. G01R 33/12 (2006.01)
Bardziej szczegółowoMaciej Czapkiewicz. Magnetic domain imaging
Maciej Czapkiewicz Magnetic domain imaging Phase diagram of the domain walls Kerr geometry MOKE (Kerr) Magnetometer MOKE signal hysteresis loops [Pt/ Co] 3 [Pt/Co] 3 /Pt(0.1 nm)/irmn 10 2 5 1 Rotation
Bardziej szczegółowoCzy warto jeszcze badad efekt magnetokaloryczny? O nowym kierunku prac nad magnetycznym chłodzeniem
Czy warto jeszcze badad efekt magnetokaloryczny? O nowym kierunku prac nad magnetycznym chłodzeniem Piotr Konieczny Zakład Materiałów Magnetycznych i Nanostruktur NZ34 Kraków 22.06.2017 Efekt magnetokaloryczny
Bardziej szczegółowoPL B1. UNIWERSYTET W BIAŁYMSTOKU, Białystok, PL BUP 23/14
PL 220183 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 220183 (13) B1 (21) Numer zgłoszenia: 403760 (51) Int.Cl. G01N 1/42 (2006.01) G01N 1/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
Bardziej szczegółowoMarcin Sikora. Temat 1: Obserwacja procesów przemagnesowania w tlenkowych nanostrukturach spintronicznych przy użyciu metod synchrotronowych
Prezentacja tematów na prace doktorskie, 28/5/2015 1 Marcin Sikora KFCS WFiIS & ACMiN Temat 1: Obserwacja procesów przemagnesowania w tlenkowych nanostrukturach spintronicznych przy użyciu metod synchrotronowych
Bardziej szczegółowoMagnetyczny Rezonans Jądrowy (NMR)
Magnetyczny Rezonans Jądrowy (NMR) obserwacja zachowania (precesji) jąder atomowych obdarzonych spinem w polu magnetycznym Magnetic Resonance Imaging (MRI) ( obrazowanie rezonansem magnetycznym potocznie
Bardziej szczegółowoWYBRANE MASYWNE AMORFICZNE I NANOKRYSTALICZNE STOPY NA BAZIE ŻELAZA - WYTWARZANIE, WŁAŚCIWOŚCI I ZASTOSOWANIE
WYBRANE MASYWNE AMORFICZNE I NANOKRYSTALICZNE STOPY NA BAZIE ŻELAZA - WYTWARZANIE, WŁAŚCIWOŚCI I ZASTOSOWANIE mgr inż. Marzena Tkaczyk Promotorzy: dr hab. inż. Jerzy Kaleta, prof. nadzw. PWr dr hab. Wanda
Bardziej szczegółowoLaureaci Nagrody Nobla z fizyki w 2007 r.
Witold Szmaja, Leszek Wojtczak Nagroda Nobla z fizyki w 2007 r. zjawisko gigantycznego magnetooporu i jego praktyczne wykorzystanie Łódź 2008 Laureaci Nagrody Nobla z fizyki w 2007 r. Peter Grünberg (Centrum
Bardziej szczegółowoν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1)
h S = I(I+) gdzie: I kwantowa liczba spinowa jądra I = 0, ½,, /,, 5/,... itd gdzie: = γ S γ współczynnik żyromagnetyczny moment magnetyczny brak spinu I = 0 spin sferyczny I = _ spin elipsoidalny I =,,,...
Bardziej szczegółowoNadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH
Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH Współpraca: Akademickie Centrum Materiałów i Nanotechnologii dr Michał Zegrodnik, prof. Józef Spałek
Bardziej szczegółowoInformatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe
Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac
Bardziej szczegółowoSpin jądra atomowego. Podstawy fizyki jądrowej - B.Kamys 1
Spin jądra atomowego Nukleony mają spin ½: Całkowity kręt nukleonu to: Spin jądra to suma krętów nukleonów: Dla jąder parzysto parzystych, tj. Z i N parzyste ( ee = even-even ) I=0 Dla jąder nieparzystych,
Bardziej szczegółowoSPEKTROSKOPIA NMR. No. 0
No. 0 Spektroskopia magnetycznego rezonansu jądrowego, spektroskopia MRJ, spektroskopia NMR jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie. Spektroskopia ta polega
Bardziej szczegółowoBadanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1)
Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1) 1. Wymagane zagadnienia - klasyfikacja rodzajów magnetyzmu - własności magnetyczne ciał stałych, wpływ temperatury - atomistyczna
Bardziej szczegółowoPOMIAR TEMPERATURY CURIE FERROMAGNETYKÓW
Ćwiczenie 65 POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW 65.1. Wiadomości ogólne Pole magnetyczne można opisać za pomocą wektora indukcji magnetycznej B lub natężenia pola magnetycznego H. W jednorodnym ośrodku
Bardziej szczegółowoMagdalena Fitta. Zakład Materiałów Magnetycznych i Nanostruktur NZ34
Magdalena Fitta Zakład Materiałów Magnetycznych i Nanostruktur NZ34 Wstęp Funkcjonalność magnetyków molekularnych Efekt magnetokaloryczny- definicja MCE w konwencjonalnych magnetykach MCE w magnetykach
Bardziej szczegółowoAFM. Mikroskopia sił atomowych
AFM Mikroskopia sił atomowych Siły van der Waalsa F(r) V ( r) = c 1 r 1 12 c 2 r 1 6 Siły van der Waalsa Mod kontaktowy Tryby pracy AFM związane z zależnością oddziaływania próbka ostrze od odległości
Bardziej szczegółowoPodstawowe własności fizyczne cienkich warstw magnetycznych
Podstawowe własności fizyczne cienkich warstw magnetycznych Badanie procesów przemagnesowania cienkich warstw przy pomocy histerezografu 1 Ferromagnetyzm 1.1 Namagnesowanie 1.2 Proces przemagnesowania
Bardziej szczegółowoAtomy mają moment pędu
Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny
Bardziej szczegółowoSpektroskopowe badania właściwości magnetycznych warstwowych związków RBa2Cu3O6+x i R2Cu2O5. Janusz Typek Instytut Fizyki
Spektroskopowe badania właściwości magnetycznych warstwowych związków RBa2Cu3O6+x i R2Cu2O5 Janusz Typek Instytut Fizyki Plan prezentacji Jakie materiały badałem? (Krótka prezentacja badanych materiałów)
Bardziej szczegółowoNMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,
Bardziej szczegółowoRÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
Bardziej szczegółowoCharakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk
Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk Promotor: dr hab. inż. Bogusława Adamowicz, prof. Pol. Śl. Zadania pracy Pomiary transmisji i odbicia optycznego
Bardziej szczegółowoSiła magnetyczna działająca na przewodnik
Siła magnetyczna działająca na przewodnik F 2 B b F 1 F 3 a F 4 I siła Lorentza: F B q v B IL B F B ILBsin a moment sił działający na ramkę: M' IabBsin a B F 2 b a S M moment sił działający cewkę o N zwojach
Bardziej szczegółowoMomentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:
1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika
Bardziej szczegółowoAtomy w zewnętrznym polu magnetycznym i elektrycznym
Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka
Bardziej szczegółowo( F ) I. Zagadnienia. II. Zadania
( F ) I. Zagadnienia 1. Pole magnetyczne: indukcja i strumień. 2. Pole magnetyczne Ziemi i magnesów trwałych. 3. Własności magnetyczne substancji: ferromagnetyki, paramagnetyki i diamagnetyki. 4. Prąd
Bardziej szczegółowoWyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający
Bardziej szczegółowoZastosowanie GMR w dyskach twardych HDD i pamięci MRAM
Część 3 Zastosowanie GMR w dyskach twardych HDD i pamięci MRAM wiadomości wstępne krótka historia dysków od czasu odkrycia GMR rozwój głowic MR i GMR odczyt danych, ogólna budowa głowicy budowa i działanie
Bardziej szczegółowoMOMENT MAGNETYCZNY W POLU MAGNETYCZNYM
Ćwiczenie nr 16 MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Aparatura Zasilacze regulowane, cewki Helmholtza, multimetry cyfrowe, dynamometr torsyjny oraz pętle próbne z przewodnika. X Y 1 2 Rys. 1 Układ pomiarowy
Bardziej szczegółowoMetody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy
Metody rezonansowe Magnetyczny rezonans jądrowy Magnetometr protonowy Co należy wiedzieć Efekt Zeemana, precesja Larmora Wektor magnetyzacji w podstawowym eksperymencie NMR Transformacja Fouriera Procesy
Bardziej szczegółowoMetoda prądów wirowych
Metoda prądów wirowych Idea Umieszczeniu obiektów, wykonanych z materiałów przewodzących prąd elektryczny, w obszarze oddziaływania zmiennego w czasie pola magnetycznego, wytwarzane przez przetworniki
Bardziej szczegółowo( L ) I. Zagadnienia. II. Zadania
( L ) I. Zagadnienia 1. Pole magnetyczne: indukcja i strumień. 2. Pole magnetyczne Ziemi i magnesów trwałych. 3. Własności magnetyczne substancji: ferromagnetyki, paramagnetyki i diamagnetyki. 4. Prąd
Bardziej szczegółowoBadanie czujników pola magnetycznego wykorzystujących zjawisko gigantycznego magnetooporu
Badanie czujników pola magnetycznego wykorzystujących zjawisko gigantycznego magnetooporu Uczestnicy: Łukasz Grabowski Barbara Latacz Kamil Mrzygłód Michał Papaj Opiekunowie naukowi: prof. dr hab. Jan
Bardziej szczegółowoAutoreferat. 2. Dyplomy i stopnie: magistra inżyniera, Akademia Górniczo-Hutnicza im. Stanisława 1998 Staszica w Krakowie
Załącznik 2 Autoreferat 1. Imię i Nazwisko: Piotr Wiśniowski 2. Dyplomy i stopnie: magistra inżyniera, Akademia Górniczo-Hutnicza im. Stanisława 1998 Staszica w Krakowie 2003 master of science, Uniwersytet
Bardziej szczegółowoMenu. Badające rozproszenie światła,
Menu Badające rozproszenie światła, Instrumenty badające pole magnetyczne Ziemi Pole magnetyczne Ziemi mierzy się za pomocą magnetometrów. Instrumenty badające pole magnetyczne Ziemi Rodzaje magnetometrów:»
Bardziej szczegółowoekranowanie lokx loky lokz
Odziaływania spin pole magnetyczne B 0 DE/h [Hz] bezpośrednie (zeemanowskie) 10 7-10 9 pośrednie (ekranowanie) 10 3-10 6 spin spin bezpośrednie (dipolowe) < 10 5 pośrednie (skalarne) < 10 3 spin moment
Bardziej szczegółowoPole magnetyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Pole magnetyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Pole magnetyczne Pole magnetyczne jest nierozerwalnie związane z polem elektrycznym. W zależności
Bardziej szczegółowo3. Materiały stosowane do budowy maszyn elektrycznych
3. Materiały stosowane do budowy maszyn elektrycznych 3.1. Materiały na rdzenie magnetyczne Wymagania w stosunku do materiałów magnetycznych miękkich: - duża indukcja nasycenia, - łatwa magnasowalność
Bardziej szczegółowoSpektroskopia magnetycznego rezonansu jądrowego - wprowadzenie
Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,
Bardziej szczegółowoPrawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład IX: Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada dynamiki Siły
Bardziej szczegółowoMody sprzężone plazmon-fonon w silnych polach magnetycznych
Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Bardziej szczegółowoPodstawy informatyki kwantowej
Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie
Bardziej szczegółowoWykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE
Bardziej szczegółowoInstrukcja obsługi spektrometru EPR
POLITECHNIKA CZĘSTOCHOWSKA WYDZIAŁINŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ INSTYTUT FIZYKI Instrukcja obsługi spektrometru EPR Rys. 1. Spektrometr EPR na pasmo X. Pomiary przy pomocy spektrometru
Bardziej szczegółowoWyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
Bardziej szczegółowoWłasności magnetyczne materii
Własności magnetyczne materii Ośrodek materialny wypełniający solenoid (lub cewkę) wpływa na wartość indukcji magnetycznej, strumienia, a także współczynnika indukcji własnej solenoidu. Trzy rodzaje materiałów:
Bardziej szczegółowoMody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Bardziej szczegółowoPole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.
Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,
Bardziej szczegółowoElektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.
Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................
Bardziej szczegółowoSpektroskopia modulacyjna
Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,
Bardziej szczegółowoFizyka silnie skorelowanych elektronów na przykładzie międzymetalicznych związków ceru
Fizyka silnie skorelowanych elektronów na przykładzie międzymetalicznych związków ceru Rafał Kurleto 4.3.216 ZFCS IF UJ Rafał Kurleto Sympozjum doktoranckie 4.3.216 1 / 15 Współpraca dr hab. P. Starowicz
Bardziej szczegółowoEfekt naskórkowy (skin effect)
Efekt naskórkowy (skin effect) Rozważmy cylindryczny przewód o promieniu a i o nieskończonej długości. Przez przewód płynie prąd I = I 0 cos ωt. Dla niezbyt dużych częstości ω możemy zaniedbać prąd przesunięcia,
Bardziej szczegółowoPodstawy fizyki sezon 2 4. Pole magnetyczne 1
Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego
Bardziej szczegółowoKatedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji
Bardziej szczegółowoWyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment
Bardziej szczegółowoMody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Klasyczny przykład pośredniego oddziaływania pola magnetycznego na wzbudzenia fononowe Schemat: pole magnetyczne (siła Lorentza) nośniki (oddziaływanie
Bardziej szczegółowoMAGNETO Sp. z o.o. Możliwości wykorzystania taśm nanokrystalicznych oraz amorficznych
MAGNETO Sp. z o.o. Możliwości wykorzystania taśm nanokrystalicznych oraz amorficznych na obwody magnetyczne 2012-03-09 MAGNETO Sp. z o.o. Jesteśmy producentem rdzeni magnetycznych oraz różnych komponentów
Bardziej szczegółowoWykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å
Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia
Bardziej szczegółowoPomiar indukcji pola magnetycznego w szczelinie elektromagnesu
Ćwiczenie E5 Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu E5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar siły elektrodynamicznej (przy pomocy wagi) działającej na odcinek przewodnika
Bardziej szczegółowoWytwarzanie i charakteryzacja cienkich warstw granatu itrowo-żelazowego Y 3 Fe 5 O 12
Wydział Fizyki Kierunek: Fizyka Nr albumu: 374273 Wytwarzanie i charakteryzacja cienkich warstw granatu itrowo-żelazowego Y 3 Fe 5 O 12 Growth and characterization of thin yttrium-iron garnet (Y3Fe5O12)
Bardziej szczegółowoElektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.....................
Bardziej szczegółowodr inż. Beata Brożek-Pluska SERS La boratorium La serowej
dr inż. Beata Brożek-Pluska La boratorium La serowej Spektroskopii Molekularnej PŁ Powierzchniowo wzmocniona sp ektroskopia Ramana (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych
Bardziej szczegółowoWykład FIZYKA II. 5. Magnetyzm
Wykład FIZYKA II 5. Magnetyzm Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html ELEKTRYCZNOŚĆ I MAGNETYZM q q magnetyczny???
Bardziej szczegółowoUporzadkowanie magnetyczne w niskowymiarowym magnetyku molekularnym
Uporzadkowanie magnetyczne w niskowymiarowym magnetyku molekularnym (tetrenh 5 ) 0.8 Cu 4 [W(CN) 8 ] 4 7.2H 2 O T. Wasiutyński Instytut Fizyki Jadrowej PAN 15 czerwca 2007 Zespół: M. Bałanda, R. Pełka,
Bardziej szczegółowoLekcja 59. Histereza magnetyczna
Lekcja 59. Histereza magnetyczna Histereza - opóźnienie w reakcji na czynnik zewnętrzny. Zjawisko odkrył i nazwał James Alfred Ewing w roku 1890. Najbardziej znane przypadki histerezy występują w materiałach
Bardziej szczegółowo30/01/2018. Wykład XII: Właściwości magnetyczne. Zachowanie materiału w polu magnetycznym znajduje zastosowanie w wielu materiałach funkcjonalnych
Wykład XII: Właściwości magnetyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wprowadzenie 2. Rodzaje magnetyzmu
Bardziej szczegółowoWykład FIZYKA II. 5. Magnetyzm. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 5. Magnetyzm Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html MAGNESY Pierwszymi poznanym magnesem był magnetyt
Bardziej szczegółowoWykład XIII: Właściwości magnetyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych
Wykład XIII: Właściwości magnetyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wprowadzenie 2. Rodzaje magnetyzmu
Bardziej szczegółowoWłaściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
Bardziej szczegółowoMAGNETYCZNY REZONANS JĄDROWY - podstawy
1 MAGNETYCZNY REZONANS JĄDROWY - podstawy 1. Wprowadzenie. Wstęp teoretyczny..1 Ruch magnetyzacji jądrowej, relaksacja. Liniowa i kołowa polaryzacja pola zmiennego (RF)..3 Metoda echa spinowego 1. Wprowadzenie
Bardziej szczegółowoEkscyton w morzu dziur
Ekscyton w morzu dziur P. Kossacki, P. Płochocka, W. Maślana, A. Golnik, C. Radzewicz and J.A. Gaj Institute of Experimental Physics, Warsaw University S. Tatarenko, J. Cibert Laboratoire de Spectrométrie
Bardziej szczegółowoBadanie histerezy magnetycznej
Badanie histerezy magnetycznej Cele ćwiczenia: Wyznaczenia przenikalności magnetycznej próżni µ 0 na podstawie wykresu B(H) dla cewek pomiarowych bez rdzenia ferromagnetycznego; wyznaczenie zależności
Bardziej szczegółowoPodstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19
Bardziej szczegółowoKsięgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra
Bardziej szczegółowoStruktura i właściwości magnetyczne układów warstwowych metal/izolator
Wydział Fizyki i Informatyki Stosowanej Rozprawa doktorska (z komentarzem) Anna Kozioł-Rachwał Struktura i właściwości magnetyczne układów warstwowych metal/izolator Promotor: Prof. dr hab. Józef Korecki
Bardziej szczegółowo43 edycja SIM Paulina Koszla
43 edycja SIM 2015 Paulina Koszla Plan prezentacji O konferencji Zaprezentowane artykuły Inne artykuły Do udziału w konferencji zaprasza się młodych doktorów, asystentów i doktorantów z kierunków: Inżynieria
Bardziej szczegółowo6 Podatność magnetyczna
Laboratorium Metod Badania Własności Fizycznych 6 Podatność magnetyczna Wydział: Kierunek: Rok: Zespół w składzie: Data wykonania: Data oddania: Ocena: Cel ćwiczenia Pomiar podatności magnetycznej i jej
Bardziej szczegółowoElementy teorii powierzchni metali
prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 2 v.16 Sieci płaskie i struktura powierzchni 1 Typy sieci dwuwymiarowych (płaskich) Przecinając monokryształ wzdłuż jednej z płaszczyzn
Bardziej szczegółowo