Rozciąganie i ściskanie prętów projektowanie 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozciąganie i ściskanie prętów projektowanie 3"

Transkrypt

1 Rozciąganie i ściskanie pętó pojektoanie 3 Sposób oziązyania pętó ozciąganych/ściskanych został omóiony ozziale. Zaania pojektoe spoazają się o okeślenia ymiaó pzekoju popzecznego pęta na postaie aunku nośności i/lub aunku użytkoania. Waunek nośności spazenie, czy napężenia pojektoanym elemencie nie pzekaczają napężeń opuszczalnych. W pzypaku pętó ozciąganych/ściskanych aunek nośności możemy zapisać postaci: gzie: σ max k (3.) σ max maksymalna atość napężeń nomalnych ozciągających/ściskających ozpatyanym elemencie, k napężenia opuszczalne na ozciąganie k lub ściskanie k c la pzyjętego mateiału. Waunek użytkoania spazenie, czy pzemieszczenia pojektoanego elementu nie pzekaczają pzemieszczeń opuszczalnych. W pzypaku pętó ozciąganych/ściskanych aunek użytkoania możemy zapisać postaci: gzie: λ λ (3.) max λ max maksymalne pzemieszczenie ozpatyanego elementu, λ op pzemieszczenie opuszczalne. op

2 3. Wytzymałość mateiałó Zaanie 3.. Zapojektoać pęt o pzekoju kołoym (ys. 3.) z aunku nośności i/lub aunku użytkoania. Dopuszczalne napężenia na ozciąganie są óne k 80 MPa, natomiast yłużenie pęta nie może pzekoczyć E MPa, l m. λ op mm. Dane: P 60000, Rys. 3. Roziązanie Siła osioa (ys. 3.) oolnym pzekoju pęta jest óna: P Rys. 3. apężenia nomalne okeślamy na postaie zależności (.3): σ gzie jest polem poiezchni pzekoju popzecznego pęta, ónym: π 4 Waunek nośności zapiszemy zatem postaci: 4 σ max π Wykonując kolejne pzekształcenia, yznaczamy minimalną śenicę pęta: 4 π k k π k Po postaieniu atości liczboych otzymujemy: ,60 mm π 80 Wyłużenie pęta po ziałaniem siły osioej opisuje zależność (.4): λ l

3 Rozciąganie i ściskanie pętó pojektoanie 3.3 Waunek użytkoania zapiszemy zatem postaci: λ max l 4 l E π Wykonując kolejne pzekształcenia, yznaczamy minimalną śenicę pęta: 4 l E π λ op λ op l E π λ op Po postaieniu atości liczboych otzymujemy: ,07 mm π Decyujący jest aunek nośności, latego należy pzyjąć minimalną śenicę pęta óną 0,6 mm. Waunek użytkoania bęzie spełniony, a yłużenie pęta bęzie óne: 4 l λ,7 mm < λ E π π (0,6) op

4 3.4 Wytzymałość mateiałó Zaanie 3.. Zapojektoać z aunku nośności pęt o pzekoju pieścienioym ( /, 5 ) obciążony siłą P (ys. 3.3). Dopuszczalne napężenia na ozciąganie ynoszą k 50 MPa. z Rys. 3.3 Roziązanie Siła osioa (ys. 3.4) oolnym pzekoju pęta jest óna: P Rys. 3.4 apężenia nomalne okeślamy na postaie zależności (.3): σ gzie jest polem poiezchni pzekoju popzecznego pęta, ónym: z π ( ) π [(,5 ) ] 0,35π 4 4 Waunek nośności zapiszemy zatem postaci: σ max 0,35π k Wykonując kolejne pzekształcenia, yznaczamy minimalną śenicę enętzną pęta: 0,35π k 0,35π k Po postaieniu atości liczboych otzymujemy: ,35 π 50 Śenica zenętzna pęta jest óna: z 0, 9 mm,5 30,8 mm

5 Rozciąganie i ściskanie pętó pojektoanie 3.5 Uzyskane yniki zaokąglamy o atości całkoitych śenicę enętzną ół o atości 0 mm, natomiast śenicę zenętzną góę o atości 3 mm. Dla tak zapojektoanego pęta napężenia nomalne są óne: z σ max 36, MPa < k π ( ) π (3 0 ) z

6 3.6 Wytzymałość mateiałó Zaanie 3.3. Zapojektoać z aunku użytkoania pęt o pzekoju postokątnym ( b / h 3 ) obciążony siłami jak na ys Wyłużenie całkoite pęta nie może pzekoczyć λ,5 mm. Dane: P 0000, E MPa, l 600 mm. op Rys. 3.5 Roziązanie Siły osioe (ys. 3.6) poszczególnych ocinkach pęta są óne: BC P CD P Rys. 3.6 Wyłużenie pęta po ziałaniem sił osioych jest zatem óne, zgonie z zależnością (.4): l λ CD l + P l P l + BC 3P l gzie jest polem poiezchni pzekoju popzecznego pęta, ónym: b bh b b 3 3 Waunek użytkoania zapiszemy zatem postaci: λ max 3P l 9P l λ E b Wykonując kolejne pzekształcenia, yznaczamy minimalną szeokość pęta: 9P l b E λ op op b 3 P l E λ op Po postaieniu atości liczboych otzymujemy: b 3 3,07 mm ,5 Po zaokągleniu o atości całkoitych, otzymujemy ymiay pzekoju popzecznego pęta óne: b 33 mm h mm

7 Rozciąganie i ściskanie pętó pojektoanie 3.7 Dla tak zapojektoanego pęta, yłużenie bęzie óne: 3P l λ max,4 mm < λ E bh op

8 3.8 Wytzymałość mateiałó Zaanie 3.4. Zapojektoać z aunku nośności pęt 3-stopnioy o pzekoju kołoym obciążony jak na ys Dopuszczalne napężenia na ozciąganie są óne k 80 MPa. Pzy stopnioaniu śenic ału pzyjąć założenie D /, oaz pzyjąć śenice upzyilejoane, g P-M-004. Dla zapojektoanego pęta obliczyć yłużenie całkoite. Dane: P 90000, E MPa, l 500 mm. Rys. 3.7 Roziązanie Siły osioe (ys. 3.8) poszczególnych ocinkach pęta są óne: 3P P P Rys. 3.8 ajbaziej obciążonym jest ocinek. pęta. apężenia nomalne tym ocinku okeślamy na postaie zależności (.3): σ gzie jest polem poiezchni pzekoju popzecznego pęta, ónym: π 4 Waunek nośności zapiszemy zatem postaci: 4 σ max π Wykonując kolejne pzekształcenia, yznaczamy minimalną śenicę pęta: 4 π k π k Po postaieniu atości liczboych otzymujemy: π 80 k 43,70 mm

9 Rozciąganie i ściskanie pętó pojektoanie 3.9 Dobieamy najbliższą, iększą o yznaczonej, śenicę upzyilejoaną. Zgonie z nomą pzyjmujemy 45 mm. Okeślamy śenice kolejnych stopni pęta. Dla ocinka. mamy:, 45,, 37,5 mm a postaie nomy pzyjmujemy Dla ocinka 3. otzymujemy: 3, 38 mm. 38,, 3 3,67 mm a postaie nomy pzyjmujemy 3 3 mm. Dla tak zapojektoanego pęta napężenia nomalne (ys. 3.9) są óne: σ 69,8 MPa < π π σ 58,7 MPa < π π σ 3,9 MPa < π π 3 3 Wyłużenie całkoite pęta (ys. 3.9) jest óne sumie yłużeń poszczególnych ocinkó: l 4 l λ 0,404 mm E π π 45 λ λ l 4 l π 38 E π l 4 l π E π 3 k k k 0,3779 mm 0,664 mm λ max λ + λ + λ3 0, , ,664,0485 mm Rys. 3.9

5.1 Połączenia gwintowe

5.1 Połączenia gwintowe 5.0 Połączenia Połączenia służą o pzenoszenia obciążeń mięzy elementami konstukcyjnymi uniemożliwiając ich wzajemne pzemieszczenia. POŁĄCZENIA NIEROZŁĄCZNE ROZŁĄCZNE PLASTYCZNE - nitowe - zawijane - zaginane

Bardziej szczegółowo

PROJEKT nr 2. Ściągacz dwuramienny do kół zębatych i łożysk tocznych.

PROJEKT nr 2. Ściągacz dwuramienny do kół zębatych i łożysk tocznych. PROJEKT n Ściąacz dwuamienny do kół zębatych i łożysk tocznych. Spoządził: Andzej Wölk PROJEKT n Zapojektować ściąacz dwuamienny do kół zębatych i łożysk tocznych. Maksymalna siła wzdłużna potzebna pzy

Bardziej szczegółowo

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,

Bardziej szczegółowo

Wytrzymałość śruby wysokość nakrętki

Wytrzymałość śruby wysokość nakrętki Wyzymałość śuby wysoość aęi Wpowazeie zej Wie Działająca w śubie siła osiowa jes pzeoszoa pzez zeń i zwoje gwiu. owouje ozciągaie lub ścisaie zeia śuby, zgiaie i ściaie zwojów gwiu oaz wywołuje acisi a

Bardziej szczegółowo

ÓŁ Ą Ś Ą Ł Ś Ó Ą Ł ź ź Ą ż ż ż ż ż Ę Ę ź Ą ż Ę Ń Ę ż ż ź ż ż Ń ż Ą ż ć ż ć ć ć ć ż ć ć ć ć ż Ł Ę Ą ć ć ć ć ć ć ć ć ć ź ć ź Ę ć ź ć ż ć ć ć ż ź ć ć ć ć ż ź ż ż ć ż ż ć ż Ę Ą ć Ł ź ż ż Ł Ó ÓŁ ć Ą ć Ą ż ż

Bardziej szczegółowo

ć ź ź Ł ź ź ź Ś ć ć Ę ÓŁ ź Ń ź ź ź ć ć Ń ć ć ć Ń ź Ę Ś Ń ć ć ć ź ć ć ć ć ć ć ź Ś Ę ź ź Ż ć ź ź ć ź Ń ź ć ć ć ź ź Ł Ń ć Ń Ń ź Ś Ń Ę Ę Ę ź ć ć Ę ź Ń Ł Ę ź ź Ń Ę Ę Ł Ł Ś Ś ć ć Ł ź ć ć Ł Ó Ż Ś Ł Ó ź Ę Ń

Bardziej szczegółowo

Ł ś Ł Ą ś Ź Ł ś Ł ś ź ś ę ÓŁ ÓŁ ź ź ś ś ę ę ź ć ś ś ę ć ę ś ę ś ź ę ś ę ś ś ś ę ę ć ę ś Ł ę ę ę Ę Ą ś ś ś Ł ś ę ś Ł Ń Ł Ń ę ś ś ę Ż Ż ś Ż ś ś Ż ś ź ś ś ź ś ę ś ę Ń ę ę ę ś ę ś ę ś ź ś Ł ś ś ś ś ę ś ś

Bardziej szczegółowo

Ą Ł Ł Ł Ś ż ź ź Ł Ś Ą Ł Ś Ś Ł Ó ż Ł Ś Ą ć ć ż ż Ą ż ć ż ż ć ć ć Ś ć ż Ś ż ż Ą ć ż ż ć ć ć ć ż ż Ś ć ż ż ÓŁ ż ż ż Ł Ł Ś Ó ć ż Ł ż ż ż ż ż Ć Ó Ó ż ż Ó Ł Ł ż Ą ż ż ż ż ż ż ż ż ż ć ż ż ć ż ż ż ć ż ż ż Ł ć

Bardziej szczegółowo

Ń ÓŁ Ł Ś Ł Ł Ś ÓŁ Ł Ś Ń ÓŁ Ł Ń Ź ę Ą ę ę ę ę ę ę Ź ę ć ć ę ę ę ę ę Ź ć ę ę ę ć ć ę ę ę Ł ę ę ę Ł Ł ę ę ę ę ę ź ę ę ę ę ź ę ć ę ć ć ę ę ź ź ę ć ę ę ź Ź ę ź ę ę ć Ź Ą ć ć ć ę ę ę ę ę Ź ź ę ć Ł ź ę ę Ź Ę

Bardziej szczegółowo

Ł ÓŁ Ł Ą Ś Ą Ą Ś Ś ć ć ć ć ć ć ć ć ć ć ć Ę ć ń ć ć ć ć ć ć ć ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ń ń ć Ś ń ć ń ć ń ć ć Ś ć Ż Ś Ś ń Ł Ń ń ć ć ć ć Ś ń

Bardziej szczegółowo

Ł Ń Ś ś ę ę ś ś ś ś ę ę ę ę ś ś ę ś ę ś ę ś ś ć Ą ś ę ś ś ę ś ę ś ś Ń ś ś ś ś ś ś ę ę ę ę ś ś ę ć ś ś ę ś ę ś ę ę ś ę ś Ą ę ś ę ś ś ś ś ę ś ś ę ę ś ś ę ś ś ś ę ę ę ś ś ś ę ś ę ś ę ć ś ś ę ś ę ę Ą ę ę ę

Bardziej szczegółowo

Ą Ą Ł Ś ÓŁ Ł ć ć ź ÓŁ ć ć Ś ć ć Ą ć ć ć ź ć ć ć ć ć Ą Ó ÓŁ ć ć Ł Ł ź Ś ć ć ć ć Ł Ł ć ć Ł Ł Ł ć Ó ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ź Ż ź Ł ć Ż Ć Ż Ś Ż ć ć ć ć Ł Ż Ś ć Ś ź ć ź ć ć ć ź ć Ś Ź ŚĆ ź ć ć Ś Ś

Bardziej szczegółowo

1. SZCZEGÓLNE PRZYPADKI ŁUKÓW.

1. SZCZEGÓLNE PRZYPADKI ŁUKÓW. Olga Kopacz, Aam Łoygowski, Kzysztof Tymbe, ichał Płotkowiak, Wojciech Pawłowski Konsultacje naukowe: pof. hab. Jezy Rakowski Poznań /. SZCZEGÓLNE PRZYPADKI ŁUKÓW.. Łuk jenopzegubowy kołowy. Dla łuku jak

Bardziej szczegółowo

Mechanika ogólna. Łuki, sklepienia. Zalety łuków (2) Zalety łuków (1) Geometria łuku (1) Geometria łuku (2) Kształt osi łuku (2) Kształt osi łuku (1)

Mechanika ogólna. Łuki, sklepienia. Zalety łuków (2) Zalety łuków (1) Geometria łuku (1) Geometria łuku (2) Kształt osi łuku (2) Kształt osi łuku (1) Łuki, sklepienia Mechanika ogólna Wykład n 12 Pęty o osi zakzywionej. Łuki. Łuk: pęt o osi zakzywionej (w stanie nieodkształconym) w płaszczyźnie działania sił i podpaty na końcach w taki sposób, że podpoy

Bardziej szczegółowo

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na

Bardziej szczegółowo

Wyznaczanie gęstości cieczy i ciał stałych za pomocą wagi hydrostatycznej FIZYKA. Ćwiczenie Nr 3 KATEDRA ZARZĄDZANIA PRODUKCJĄ

Wyznaczanie gęstości cieczy i ciał stałych za pomocą wagi hydrostatycznej FIZYKA. Ćwiczenie Nr 3 KATEDRA ZARZĄDZANIA PRODUKCJĄ POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja o zajęć laboratoryjnych z przemiotu: FIZYKA Ko przemiotu: KS07; KN07; LS07; LN07 Ćiczenie Nr Wyznaczanie gęstości cieczy i ciał stałych

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn

Podstawy Konstrukcji Maszyn Podstay Konstukcji Maszyn Wykład 8 Pzekładnie zębate część D inŝ. Jacek zanigoski Klasyfikacja pzekładni zębatych. Ze zględu na miejsce zazębienia O zazębieniu zenętznym O zazębieniu enętznym Klasyfikacja

Bardziej szczegółowo

1/k Obliczenia statyczne.

1/k Obliczenia statyczne. /k Obliczenia statyczne. 48,0 8,7 94, 94, 94, A 0,0,4 4,9 4,9 4,9 78,7 798, B,0 0 7, 8,8 00,0 680,0 00,0 9,0 DANE: Szkic wiązaa A 0,0,4 48,0 8,7 94, 94, 94, 4,9 4,9 4,9 78,7 798, 00,0 680,0 00,0 9,0 B,0

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

Badania nad kształtowaniem się wartości współczynnika podatności podłoża dla celów obliczeń statycznych obudowy tuneli

Badania nad kształtowaniem się wartości współczynnika podatności podłoża dla celów obliczeń statycznych obudowy tuneli AKADEMIA GÓRNICZO HUTNICZA im. Stanisława Staszica WYDZIAŁ GÓRNICTWA I GEOINŻYNIERII KATEDRA GEOMECHANIKI, BUDOWNICTWA I GEOTECHNIKI Rozpawa doktoska Badania nad kształtowaniem się watości współczynnika

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

Badanie kotła parowego

Badanie kotła parowego Badanie kotła aoego Instukcja do ćiczenia n 14 Badanie maszyn - laboatoium Oacoał: d inŝ. Andzej Tataek Zakład Mienicta i Ochony Atmosfey Wocła, gudzień 2006. 1. Cel i zakes ćiczenia Celem ćiczenia jest

Bardziej szczegółowo

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r. GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.

Bardziej szczegółowo

Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-03150

Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-03150 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-0350 Jerzy Bobiński Gdańsk, wersja 0.32 (204) Drewno parametry (wspólne) Dane wejściowe

Bardziej szczegółowo

Ł Ą Ą Ą ÓŁ Ą ć ć ń ń ń Ą ć ń ń ć ń Ę ń ń Ę ń ń ń ń ń ń Ą ń Ć ń ń ń ń ż ń ń ń ź Ś ń ń ń ż ż ż ń ń Ę ć Ś ć ć ż ń ń ń Ł ń ń ń ń ń ż Ł ÓŁ ÓŁ Ą Ś Ę Ą Ą Ą Ł Ł Ą Ą Ś ż ÓŁ ż Ł Ą Ę ć ż Ł ż Ż ż ń Ś Ó Ś Ś Ó ń Ą ż

Bardziej szczegółowo

ź ź Ż ź ź ź ć ć ÓŁ ź ćź ć ć ć ć Ó Ó ć ź ć ć ć ć ć ć ź ź ź Ś Ó ć ć ć Ć ć ź ć Ę ź Ś ć Ś ć Ź ć ć ź ź ć ć ć ć ć ć ć ź ź ć ć Ś ź Ś Ś ź ź Ś Ś Ś ć ć ć ć ć ć ć ć ć ć ź ć ź Ć ź Ś Ś Ś ź Ś Ż ć ź ź ź ź ć ć ź ź ć ć

Bardziej szczegółowo

Ł ÓŁ Ó Ó Ó ć Ź Ó Ą ć Ź Ó Ś ć Ś Ó Ó ć Ó Ź Ó Ś ć Ź ć Ę Ó Ó Ą Ł ć Ą Ą Ą Ó ć Ó Ó Ó ć Ó ć ć ć Ó Ą Ź Ó Ą ć Ś Ó Ą Ź Ó Ź Ś Ó Ó Ź Ó Ó Ź Ź Ó Ó ć Ó Ą Ć Ó Ó Ź Ź Ź Ę Ó ć ć Ł Ó Ó Ó ć ć Ó ź ć ć Ó Ś Ó ć ź Ź ź ć Ś Ó ć

Bardziej szczegółowo

ÓŁ Ł Ó ź Ł Ą Ł ń ń Ą ń ź Ą ń ż ć Ę Ę Ę ż ć ń ć ń ż ń ć ń Ę ż ć ź ć ź ć Ę ż ż Ę Ę Ą ż ź ń ź ź ż ć ż ń Ę ć ć ć ń Ę ń ć Ę ć ń ń ż ń ń ń ń ń ń ń ż Ę ń ń ń Ę ń ć ż Ż Ż ćę Ę Ę ż ć Ą ż Ę ż Ę ż Ę Ę ć Ę ć ż ż ć

Bardziej szczegółowo

Wytrzymałość drewna klasy C 20 f m,k, 20,0 MPa na zginanie f v,k, 2,2 MPa na ścinanie f c,k, 2,3 MPa na ściskanie

Wytrzymałość drewna klasy C 20 f m,k, 20,0 MPa na zginanie f v,k, 2,2 MPa na ścinanie f c,k, 2,3 MPa na ściskanie Obliczenia statyczno-wytrzymałościowe: Pomost z drewna sosnowego klasy C27 dla dyliny górnej i dolnej Poprzecznice z drewna klasy C35 lub stalowe Balustrada z drewna klasy C20 Grubość pokładu górnego g

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

Projekt belki zespolonej

Projekt belki zespolonej Pomoce dydaktyczne: - norma PN-EN 1994-1-1 Projektowanie zespolonych konstrukcji stalowo-betonowych. Reguły ogólne i reguły dla budynków. - norma PN-EN 199-1-1 Projektowanie konstrukcji z betonu. Reguły

Bardziej szczegółowo

Ą ć ź ć Ą ć Ą Ą Ł Ź Ą Ź ć ć Ź Ą Ą Ą ź Ł ć Ź Ą ć ź ć Ą Ź ć ź Ą Ą Ą Ł Ą Ł Ź ć Ś Ń ć Ł Ź Ó ć ć ć Ą ÓŁ ź Ą Ą Ź ć Ź Ź Ą Ł Ł ć ć ć ć ź ć ź ć Ą Ą Ź Ź Ą ć Ą Ź Ś Ą Ó Ź Ó Ą Ź Ą Ł Ł Ź ć Ś ć Ą Ą ć Ź Ó Ś Ś Ź ź ź Ś

Bardziej szczegółowo

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%: Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD KONSTRUKCJI ŻELBETOWYCH PROJEKT MONOLITYCZNEJ RAMY ŻELBETOWEJ

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD KONSTRUKCJI ŻELBETOWYCH PROJEKT MONOLITYCZNEJ RAMY ŻELBETOWEJ POITECHIK POZŃSK ISTYTUT KOSTRUKCJI BUDOWYCH ZKŁD KOSTRUKCJI ŻEBETOWYCH PROJEKT OOITYCZEJ RY ŻEBETOWEJ Opacował: SEBSTI JBROŻEK Ro IV Gupa IV Ro aaem. 4/5 Sebatian Jamboże g.iv Data Temat onultacji Popi

Bardziej szczegółowo

Ł ć ź ź Ą Ń ź ź ź Ę Ą Ń ć Ł Ł ć ć ć ć ć ć ć ć ć ź ź ć ć Ł ć ć ć Ł ć Ł ć ź Ś Ś ć ź ć ź ź ć Ł Ę Ę Ń ź ź ć ć Ł Ł Ą Ą ź Ą Ę ź ź Ś Ł ŚĆ ć ć ć Ń Ą Ę ź Ę Ł Ę Ą ź Ń ć ć ź ź Ą ź ź ć ć ŚĆ ć Ś Ś Ś ć Ę ć ć ć Ś

Bardziej szczegółowo

ś ŁĄ ŁĄ Ą Ą Ż Ą Ł ŁĄ Ł Ł Ą Ł Ą Ą Ó Ł Ó ś Ł Ł Ł Ą Ą ŁĄ Ą ŁĄ ÓŁ Ł ć Ż ś Ź ÓŁ Ą Ą ŁĄ Ą Ł Ź ć ź ś ś ś ŁĄ ÓŁ Ą Ć Ź Ź ś Ź ś Ź ś Ź ś ś Ł Ł Ą ś Ź ś ś ś Ł Ł Ą Ą Ź ś Ł Ł Ł Ą Ą ŁĄ Ź ś ś ś ść Ą Ł ź ść Ź ź ś Ł Ł ź

Bardziej szczegółowo

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO LABORATORIUM ELEKTRONIKI I ELEKTROTECHNIKI BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO Opacował: d inŝ. Aleksande Patyk 1.Cel i zakes ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową, właściwościami

Bardziej szczegółowo

Ą ÓŁ Ź ÓŹ Ó Ź Ź Ó Ź Ź Ś Ś Ó Ź Ó Ś Ó ć ć ć Ś Ó ć Ó Ó ź Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó ć Ó Ź Ź Ó Ó Ó Ź Ź ć Ó Ó Ó Ó Ó Ź Ź ć Ź Ó Ź ć Ó Ó Ó ć Ą Ś ć Ź Ś Ź ć Ó ź Ś Ł Ś Ś Ź Ś Ó Ź Ź Ź Ś Ś Ę Ź Ó Ś Ź Ó ć Ź Ź Ó ź Ó ć Ę Ó Ź ć

Bardziej szczegółowo

11.0. Zadania konstrukcyjne. 11.1. Wytyczne wykonania

11.0. Zadania konstrukcyjne. 11.1. Wytyczne wykonania ostay Konstukcji Masyn - pojektoanie.0. Zaania konstukcyjne estaione poniżej aania konstukcyjne osta Konstukcji Masyn mają a cel aponanie stuentó pebiegiem typoych obliceń elementó konstukcyjnych ykoystaniem

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad W niniejszym schemacie oceniania zadań otwatych są pezentowane pzykładowe popawne odpowiedzi. W tego typu ch należy

Bardziej szczegółowo

Ś Ę ź Ę Ą Ł Ż Ą ć Ł Ż ŁĄ Ł Ł Ż Ż ŁĄ Ś Ą ć Ś Ś Ó Ę ć ć ź ć Ś Ę ć ć Ę Ę Ę Ę ć Ę Ę Ę ć ć Ę ź Ę Ę Ę Ł Ł Ł Ę Ę Ó Ó Ń Ó Ę Ł Ę Ę Ł Ę Ę Ó Ż Ę Ę Ę Ó Ś Ż ź Ę ź ź Ę Ż Ś Ś Ś Ż ć ź Ę Ę Ę Ż Ą Ę Ś Ę Ę Ę ÓŁ Ę Ą ć Ę Ą

Bardziej szczegółowo

I. OBLICZENIA WIĘŹBY DACHOWEJ wg PN-B-03150:2000

I. OBLICZENIA WIĘŹBY DACHOWEJ wg PN-B-03150:2000 I. OBLICZENIA WIĘŹBY DACHOWEJ wg PN-B-050:000. ZałoŜenia o obliczeń.. Schemat geometrczn więźb achowej Więźba achowa płatwiowo-kleszczowa... Dane ogólne Lokalizacja bunku - Biłgoraj Strefa obciąŝenia śniegiem

Bardziej szczegółowo

Przykłady obliczeń jednolitych elementów drewnianych wg PN-EN-1995

Przykłady obliczeń jednolitych elementów drewnianych wg PN-EN-1995 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń jednolitych elementów drewnianych wg PN-EN-995 Jerzy Bobiński Gdańsk, wersja 0.32 (204) Drewno parametry (wspólne) Dane wejściowe

Bardziej szczegółowo

- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - ŻELBET

- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - ŻELBET - 1 - Kalkulator Elementów Żelbetowych 2.1 OBLICZENIA WYTRZYMAŁOŚCIOWE - ŻELBET Użytkownik: Biuro Inżynierskie SPECBUD 2001-2010 SPECBUD Gliwice Autor: mgr inż. Jan Kowalski Tytuł: Poz.4.1. Elementy żelbetowe

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA

INSTRUKCJA DO ĆWICZENIA NSTRKJA DO ĆWZENA Temat: Rezonans w obwodach elektycznych el ćwiczenia elem ćwiczenia jest doświadczalne spawdzenie podstawowych właściwości szeegowych i ównoległych ezonansowych obwodów elektycznych.

Bardziej szczegółowo

KOMINY MUROWANE. Przekroje trzonu wymiaruje się na stan graniczny użytkowania. Sprawdzenie należy wykonać:

KOMINY MUROWANE. Przekroje trzonu wymiaruje się na stan graniczny użytkowania. Sprawdzenie należy wykonać: KOMINY WYMIAROWANIE KOMINY MUROWANE Przekroje trzonu wymiaruje się na stan graniczny użytkowania. Sprawdzenie należy wykonać: w stadium realizacji; w stadium eksploatacji. KOMINY MUROWANE Obciążenia: Sprawdzenie

Bardziej szczegółowo

Tradycyjne mierniki ryzyka

Tradycyjne mierniki ryzyka Tadycyjne mieniki yzyka Pzykład 1. Ryzyko w pzypadku potfela inwestycyjnego Dwie inwestycje mają następujące stopy zwotu, zależne od sytuacji gospodaczej: Sytuacja Pawdopodobieństwo R R Recesja 0, 9,0%

Bardziej szczegółowo

Sprawdzenie stanów granicznych użytkowalności.

Sprawdzenie stanów granicznych użytkowalności. MARCIN BRAŚ SGU Sprawzenie stanów granicznych użytkowalności. Wymiary belki: szerokość przekroju poprzecznego: b w := 35cm wysokość przekroju poprzecznego: h:= 70cm rozpiętość obliczeniowa przęsła: :=

Bardziej szczegółowo

IV OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy część 2 ZADANIA 29 lutego 2012r.

IV OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy część 2 ZADANIA 29 lutego 2012r. V OGÓLNOPOLSK KONKS Z FZYK Fizyka się liczy część ZADANA 9 lutego 0.. Dwie planety obiegają Słooce po, w pzybliżeniu, kołowych obitach o pomieniach 50 0 km (Ziemia) i 080 km (Wenus). Znaleź stosunek ich

Bardziej szczegółowo

Kształty żłobków stojana

Kształty żłobków stojana Kztałty żłobów tojana Kztałty żłobów winia: a), b), c) lati olewane Al. ) - i) lati lutowane z pętów Cu Wymiay żłoba oplowego Kąt zbieżności ściane żłoba: Śenica mniejza: = π + h )in in ( b Śenica więza:

Bardziej szczegółowo

ĆWICZENIE 1 DWÓJNIK ŹRÓDŁOWY PRĄDU STAŁEGO

ĆWICZENIE 1 DWÓJNIK ŹRÓDŁOWY PRĄDU STAŁEGO ĆWCZENE DWÓJNK ŹÓDŁOWY ĄD STŁEGO Cel ćiczenia: spradzenie zasady rónażnści dla dójnika źródłeg (tierdzenie Thevenina, tierdzenie Nrtna), spradzenie arunku dpasania dbirnika d źródła... dstay teretyczne

Bardziej szczegółowo

Metodyka obliczenia natężenia przepływu za pomocą anemometru skrzydełkowego.

Metodyka obliczenia natężenia przepływu za pomocą anemometru skrzydełkowego. ZAŁĄCZNIK Metoyka obliczenia natężenia rzełyu za omocą anemometru skrzyełkoego. Prękość oietrza osi symetrii kanału oblicza się ze zoru: S max τ gzie: S roga rzebyta rzez gaz ciągu czasu trania omiaru

Bardziej szczegółowo

Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995

Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)

Bardziej szczegółowo

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej?

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej? ozwiazania zadań z zestawu n 7 Zadanie Okag o pomieniu jest na ladowany ze sta l a gestości a liniowa λ > 0 W śodku okegu umieszczono ladunek q < 0, któy może sie swobodnie pouszać Czy śodek okegu jest

Bardziej szczegółowo

Arkusze maturalne poziom podstawowy

Arkusze maturalne poziom podstawowy Akusze matualne poziom postawowy zaania zamknięte N zaania 5 7 8 9 0 Pawiłowa opowieź a c a b c b a Liczba punktów zaania otwate N zaania Pawiłowa opowieź Punkty Q mg 00 N Z III zasay ynamiki wynika, że

Bardziej szczegółowo

PODSTAWY MECHANIKI I WYTRZYMAŁOŚCI MATERIAŁÓW

PODSTAWY MECHANIKI I WYTRZYMAŁOŚCI MATERIAŁÓW ODSTAWY MECHANIKI I WYTRZYMAŁOŚCI MATERIAŁÓW MATERIAŁY DO WYKŁADU Opacował: d hab. inż. Zygmunt Lipnicki Instytut olitechniczny aństwowa Wyższa Szkoła Zawodowa W Głogowie.3.5 Liteatua wykozystana w opacowanych

Bardziej szczegółowo

OBLICZENIA SPRZ ENIA CIERNEGO

OBLICZENIA SPRZ ENIA CIERNEGO OBLICZENIA SPRZENIA CIERNEGO 1. Dane wejciowe do oblicze: Udwig nominalny: Masa kabiny, amy i ospztu: Masa pzeciwwagi: Q := P := P b := 450 kg 60 kg 855 kg Pdko nominalna: v := 1 m s Wysoko podnoszenia:

Bardziej szczegółowo

METEMATYCZNY MODEL OCENY

METEMATYCZNY MODEL OCENY I N S T Y T U T A N A L I Z R E I O N A L N Y C H w K i e l c a c h METEMATYCZNY MODEL OCENY EFEKTYNOŚCI NAUCZNIA NA SZCZEBLU IMNAZJALNYM I ODSTAOYM METODĄ STANDARYZACJI YNIKÓ OÓLNYCH Auto: D Bogdan Stępień

Bardziej szczegółowo

Notatki z II semestru ćwiczeń z elektroniki, prowadzonych do wykładu dr. Pawła Grybosia.

Notatki z II semestru ćwiczeń z elektroniki, prowadzonych do wykładu dr. Pawła Grybosia. Notatki z II semestu ćwiczeń z elektoniki, powadzonych do wykładu d. Pawła Gybosia. Wojciech Antosiewicz Wydział Fizyki i Techniki Jądowej AGH al.mickiewicza 30 30-059 Kaków email: wojanton@wp.pl 2 listopada

Bardziej szczegółowo

Obiegi termodynamiczne

Obiegi termodynamiczne Obiegi termo / Obiegi termoynamiczne. nformacje ogólne Obiegiem termoynamicznym nazyamy zespół kolejnych przemian termoynamicznych, yających się kłazie zamkniętym lb zespole maszyn (trbiny, sprężarki,

Bardziej szczegółowo

Rama płaska metoda elementów skończonych.

Rama płaska metoda elementów skończonych. Pzyład. Rama płasa metoda elementów sończonych. M p l A, EJ P p l A, EJ l A, EJ l l,5 l. Dysetyzacja Podział na elementy i węzły x st. sw. M 5 P Z X, M, V, H 7, M, H Y, V Element amy płasiej węzły, x stopni

Bardziej szczegółowo

Wyniki wymiarowania elementu żelbetowego wg PN-B-03264:2002

Wyniki wymiarowania elementu żelbetowego wg PN-B-03264:2002 Wyniki ymiaroania elementu żelbetoego g PN-B-0364:00 RM_Zelb v. 6.3 Cechy przekroju: zadanie Żelbet, pręt nr, przekrój: x a=,5 m, x b=3,75 m Wymiary przekroju [cm]: h=78,8, b =35,0, b e=00,0, h =0,0, skosy:

Bardziej szczegółowo

Schöck Isokorb typu D

Schöck Isokorb typu D Schöck Isokorb typu Schöck Isokorb typu Ilustr. 259: Schöck Isokorb typu Schöck Isokorb typu przeznaczony do połączeń w stropach ciągłych. Przenosi dodatnie i ujemne momenty zginające i siły poprzeczne

Bardziej szczegółowo

Dobór zmiennych objaśniających do liniowego modelu ekonometrycznego

Dobór zmiennych objaśniających do liniowego modelu ekonometrycznego Dobó zmiennych objaśniających do liniowego modelu ekonometycznego Wstępnym zadaniem pzy budowie modelu ekonometycznego jest okeślenie zmiennych objaśniających. Kyteium wybou powinna być meytoyczna znajomość

Bardziej szczegółowo

1. OBLICZENIA STATYCZNE I WYMIAROWANIE ELEMENTÓW KONSTRUKCYJNYCH ELEWACJI STALOWEJ.

1. OBLICZENIA STATYCZNE I WYMIAROWANIE ELEMENTÓW KONSTRUKCYJNYCH ELEWACJI STALOWEJ. 1. OBLICZENIA STATYCZNE I WYMIAROWANIE ELEMENTÓW KONSTRUKCYJNYCH ELEWACJI STALOWEJ. Zestawienie obciążeń. Kąt nachylenia połaci dachowych: Obciążenie śniegie. - dla połaci o kącie nachylenia 0 stopni Lokalizacja

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

ź ć Ń Ę Ś Ę ź Ś Ę ć ŚĆ Ó ÓŁ Ł ć ź ź ź ź Ń ć Ę Ę ź ć ć ź ć ć Ł ć Ę Ń ć Ę Ę ć Ł ć ź ź ć ź ć ć ć ź ć ź ź Ó Ń Ó Ż ź ć Ó ź ź ć ź ź Ś ć ć ź ć ć Ę Ł ź ź Ę Ę Ę Ę Ń Ę Ł Ę Ń Ń Ń ź Ń Ń ź ź Ń Ł ź ź ź Ę ź ź Ę Ń Ń

Bardziej szczegółowo

Ćwiczenie nr 4 Temat: BADANIE LUKSOMIERZA I POMIAR ROZKŁADU NATĘŻENIA OŚWIETLENIA

Ćwiczenie nr 4 Temat: BADANIE LUKSOMIERZA I POMIAR ROZKŁADU NATĘŻENIA OŚWIETLENIA ul.piotoo 3a Gupa: lektotechnika, sem 3., esja z dn. 14.10.011 Podstay Techniki Śietlnej Laboatoium Ćiczenie n 4 Temat: BADANI LUKSOMIRZA I POMIAR ROZKŁADU NATĘŻNIA OŚWITLNIA Opacoanie ykonano na podstaie:

Bardziej szczegółowo

Zakład Zastosowań Elektroniki i Elektrotechniki

Zakład Zastosowań Elektroniki i Elektrotechniki Zakład Zastosowań Elektroniki i Elektrotechniki Laboratorium ytwarzania energii elektrycznej Temat ćwiczenia: Badanie prądnicy synchronicznej 4.2. BN LBOTOYJNE 4.2.1. Próba biegu jałowego prądnicy synchronicznej

Bardziej szczegółowo

Kinematyka odwrotna:

Kinematyka odwrotna: Kinematka owotna: ozwiązanie zaania kinematki owotnej owaza ię o wznazenia maiez zekztałenia H otai H E Wznazenie tej maiez olega na znalezieni jenego bąź wztkih ozwiązań ównania: T T n n q... q gzie q...

Bardziej szczegółowo

Model klasyczny gospodarki otwartej

Model klasyczny gospodarki otwartej Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli

Bardziej szczegółowo

KONSTRUKCJE DREWNIANE I MUROWE

KONSTRUKCJE DREWNIANE I MUROWE POLITECHNIKA BIAŁOSTOCKA WBiIŚ KATEDRA KONSTRUKCJI BUDOWLANYCH ZAJĘCIA 5 KONSTRUKCJE DREWNIANE I MUROWE Mgr inż. Julita Krassowska 1 CHARAKTERYSTYKI MATERIAŁOWE drewno lite sosnowe klasy C35: - f m,k =

Bardziej szczegółowo

WYNIKI OBLICZEN MASZT KRATOWY MK-6.0/CT. Wysokość = 6.0 m

WYNIKI OBLICZEN MASZT KRATOWY MK-6.0/CT. Wysokość = 6.0 m WYNIKI OBLICZEN MASZT KRATOWY MK-6.0/CT Wysokość = 6.0 m PROJEKT TYPOWY Autor : mgr inż. Piotr A. Kopczynski OBLICZENIA STATYCZNE KRATOWEGO SŁUPA ALUMINIOWEGO - o wysokości 6 m - zlokalizowanego w I strefie

Bardziej szczegółowo

Budownictwo hydrotechniczne. Badania hydrogeologiczne. 1.3.4. Depresja rzeczywista w studni lub otworze

Budownictwo hydrotechniczne. Badania hydrogeologiczne. 1.3.4. Depresja rzeczywista w studni lub otworze UKD j51.48 NOMA BANŻOWA BN-71 8950-04 Budownictwo hydotechniczne BUDOWNICTW-e Badania hydogeologiczne GOSPODAKI Okeślenie współczynnika iiltaji na pod- Zamiast WODNEJ stawie póbnych pompowań oaz wydatku

Bardziej szczegółowo

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie

Bardziej szczegółowo

LISTA OBECNOŚCI EGZAMINY USTNE JĘZYK WŁOSKI B2/C1 9.03.2015 R. PWP Kształcenie zawodowe na neofilologiach KUL na potrzeby rynku pracy

LISTA OBECNOŚCI EGZAMINY USTNE JĘZYK WŁOSKI B2/C1 9.03.2015 R. PWP Kształcenie zawodowe na neofilologiach KUL na potrzeby rynku pracy JĘZYK WŁOSKI B2/C1 9.03.2015 R. 8 14.00-14.50 9 14.30-15.20 10 15.00-15.50 JĘZYK WŁOSKI B2/C1 10.03.2015 R. 8 14.00-14.50 9 14.30-15.20 10 15.00-15.50 JĘZYK WŁOSKI B2/C1 14.03.2015 R. 1 8.30-9.20 2 9.00-9.50

Bardziej szczegółowo

= ± Ne N - liczba całkowita.

= ± Ne N - liczba całkowita. POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9

Bardziej szczegółowo

Zadania z badań operacyjnych Przygotowanie do kolokwium pisemnego

Zadania z badań operacyjnych Przygotowanie do kolokwium pisemnego Zaania z baań operacyjnych Przygotowanie o kolokwium pisemnego 1..21 Zaanie 1.1. Dane jest zaanie programowania liniowego: 4x 1 + 3x 2 max 2x 1 + 2x 2 1 x 1 + 2x 2 4 4x 2 8 x 1, x 2 Sprowazić zaanie o

Bardziej szczegółowo

Schöck Isokorb typu S

Schöck Isokorb typu S chöck Isokorb typu 273: chöck Isokorb typu chöck Isokorb typu przeznaczony do połączeń wspornikowych belek żelbetowych. Przenosi ujemne momenty i dodatnie siły poprzeczne. 215 Przykłady ułożenia elementów

Bardziej szczegółowo

23 PRĄD STAŁY. CZĘŚĆ 2

23 PRĄD STAŁY. CZĘŚĆ 2 Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu

Bardziej szczegółowo

2.0. Dach drewniany, płatwiowo-kleszczowy.

2.0. Dach drewniany, płatwiowo-kleszczowy. .0. Dach drewniany, płatwiowo-kleszczowy..1. Szkic.. Charakterystyki przekrojów Własności techniczne drewna: Czas działania obciążeń: ormalny. Klasa warunków wilgotnościowych: 1 - Wilg. 60% (

Bardziej szczegółowo

Poziom I-II Bieg schodowy 6 SZKIC SCHODÓW GEOMETRIA SCHODÓW

Poziom I-II Bieg schodowy 6 SZKIC SCHODÓW GEOMETRIA SCHODÓW Poziom I-II ieg schodowy SZKIC SCHODÓW 23 0 175 1,5 175 32 29,2 17,5 10x 17,5/29,2 1,5 GEOMETRI SCHODÓW 30 130 413 24 Wymiary schodów : Długość dolnego spocznika l s,d = 1,50 m Grubość płyty spocznika

Bardziej szczegółowo

EKSPERTYZA TECHNICZNA-KONSTRUKCYJNA stanu konstrukcji i elementów budynku

EKSPERTYZA TECHNICZNA-KONSTRUKCYJNA stanu konstrukcji i elementów budynku EKSPERTYZA TECHNICZNA-KONSTRUKCYJNA stanu konstrukcji i elementów budynku TEMAT MODERNIZACJA POMIESZCZENIA RTG INWESTOR JEDNOSTKA PROJEKTOWA SAMODZIELNY PUBLICZNY ZESPÓŁ OPIEKI ZDROWOTNEJ 32-100 PROSZOWICE,

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym 1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci

Bardziej szczegółowo

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI.

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. Modelowanie pzepływu cieczy pzez ośodki poowate Wykład VII ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. 7. Pzepływ pzez goblę z uwzględnieniem zasilania wodami infiltacyjnymi.

Bardziej szczegółowo

Przykład 4.2. Sprawdzenie naprężeń normalnych

Przykład 4.2. Sprawdzenie naprężeń normalnych Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m

Bardziej szczegółowo