Studencka Konferencja Fizyki Teoretycznej i Matematycznej SKFiz UW. 5-6 maja 2017 r.
|
|
- Maria Chmiel
- 7 lat temu
- Przeglądów:
Transkrypt
1 Studencka Konferencja Fizyki Teoretycznej i Matematycznej SKFiz UW 5-6 maja 2017 r.
2 Rada Naukowa: dr Javier de Lucas Araujo, KMMF FUW dr hab. Katarzyna Grabowska, KMMF FUW dr hab. Piotr Sołtan, KMMF FUW dr hab. Piotr Sułkowski, IFT FUW dr hab. Adam Szereszewski, IFT FUW Komitet Organizacyjny: Sebastian Dawid, Paweł Smoliński, Mariusz Tobolski, Daniel Wysocki, Kontakt alarmowy: Sebastian Dawid, tel.: Strona internetowa: 1
3 Program Piątek, :00 Rozpoczęcie Konferencji 16:00-17:00 Wykład inauguracyjny: Prof. J. Kijowski, Istota grawitacji 17:15-18:15 (FM) M. Tobolski, Pogoda, fraktale i piąty problem Hilberta 18:15-19:15 (FT) K. Gietka, Kwantowa Metrologia z Kwantowego Chaosu Sobota, :00-11:00 (FM) P. Smoliński, Topologiczna teoria strun i kwantowe niezmienniki węzłów (FT) P. Zieliński, Złożone układy kwantowe jako klasyczne urządzenia pomiarowe 11:00-12:00 (FM) J. Krajczok, Grupy topologiczne i miara Haara (FT) M. Kolanowski, Zerowe obserwable obserwatora i zdeformowana symetria Poincarego 12:00-13:30 Przerwa obiadowa 13:30-14:30 (FM) A. Środa, Geometryczny opis układów dynamicznych z więzami hamiltonowskimi (FT) S. M. Dawid, Hamiltonowskie podejście do modelu t Hoofta 14:30-15:30 (FM) W. Fabjańczuk, Od geometrii do supergeometrii i superfizyki (FT) K. Serafin, Energia i pęd ciała rozciągłego w Szczególnej Teorii Względności 15:45-16:00 Rozdanie nagród i zakończenie Konferencji Piątkowa sesja plenarna odbędzie się w sali Sobotnia sesja fizyki matematycznej (FM) odbędzie się w sali Sobotnia sesja fizyki teoretycznej (FT) odbędzie się w sali Rozdanie nagród i zakończenie Konferencji odbędzie się w sali
4 Abstrakty Sebastian Dawid Hamiltonowskie podejście do modelu t Hoofta Problem związania kwarków jest jedną z największych zagadek współczesnej fizyki oddziaływań silnych, której rozwiązanie poszukiwane jest od blisko 50 lat. Model t Hoofta [1, 2] jest dwywumiarową teorią Yanga-Millsa w przybliżeniu dużej liczby kolorów, w której udowodniono brak występowania kwarków w zbiorze stanów fizycznych. W ramach swojej pracy wykorzystałem podejście hamiltonowskie do kwantyzacji teorii i uzyskania równania t Hoofta opisującego spektrum mezonów. Opiszę kroki swojego rozumowania, skupiając się na rozbieżnościach podczerwonych teorii. Literatura: [1] G. t Hooft, A planar diagram theory for strong interactions, Nuclear Physics B72 (1974) , [2] G. t Hooft, A two-dimensional model for mesons, Nuclear Physics B75 (1974) Wojciech Fabjańczuk Od geometrii do supergeometrii i superfizyki Supergeometria jest uogólnieniem geometrii różniczkowej. Wprowadza różniczkowanie i całkowanie na tzw. zmiennych grassmannowskich, które stosuje się w kwantyzacji teorii Yanga-Millsa metodą całek po trajektoriach. Analiza z dodatkiem takich zmiennych wymaga m. in. uogólnienia jakobianu, co pociąga za sobą potrzebę uogólnienia całej algebry liniowej. W swoim referacie opowiem o tych uogólnieniach, w szczególności o superalgebrze liniowej i superrozmaitościach. Wspomnę również o formalizmie superlagranżowskim. 3
5 Karol Gietka Kwantowa Metrologia z Kwantowego Chaosu Rozważam układ hybrydowy składający się z kondensatu Bosego-Einsteina w podwójnej studni potencjału i wnęki optycznej [1]. Oddziaływanie w tym układzie prowadzi do subtelnej dynamiki, która jest niezwykle wrażliwa na zmianę parametrów układu, a tym samym do kwantowego chaosu [2]. Transfer informacji między atomami i fotonami w tym układzie pozwala traktować go jako nieliniowy interferometr, w którym mała zmiana długości jednego ramienia skutkuje diametralną zmianę stanu wyjściowego lub, innymi słowy, ogromną informacją Fishera [3]. Przedstawię dwa modele opisujące układ, kwantowy i klasyczny, oraz zaproponuję protokół interferometryczny pozwalający na dokładny pomiar nieznanego parametru. Literatura: [1] G. Szirmai, G. Mazzarella, L. Salasnich, Tunneling dynamics of bosonic Josephson junctions assisted by a cavity field, Physical Review A 91(2), (2015), [2] F. Haake, Quantum Signatures of Chaos, Springer Science & Business Media (2013), [3] R. A. Fisher, Theory of statistical estimation, Mathematical Proceedings of the Cambridge Philosophical Society 22(5), (1925) Prof. Jerzy Kijowski Istota grawitacji W prosty sposób przedstawię aparat matematyczny potrzebny do opisu zjawiska grawitacji oraz pokażę, iż cała ta struktura matematyczna jednoznacznie wynika z własności fizycznych zjawiska. 4
6 Maciej Kolanowski Zerowe obserwable obserwatora i zdeformowana symetria Poincarego Gdy rozważa się teorie z cechowaniem na końcu interesują nas zawsze tylko fizyczne (to znaczy mierzalne) wielkości na przykład pole elektromagnetyczne, a nie jego potencjał. Takie podejście w ogólnej teorii względności wymusza badanie wielkości, które są dyfeomorficznie niezmiennicze. Postulujemy inne podejście, w którym obserwator dokonujący pomiaru jest integralną częścią czasoprzestrzeni wyróżniając fizyczne układy współrzędnych. Pokażemy kiedy taka konstrukcja jest możliwa. Przeprowadzimy też analizę transformacji pomiędzy różnymi obserwatorami, która prowadzi do ciekawej struktury matematycznej zaanonsowanej w temacie referatu. Jacek Krajczok Grupy topologiczne i miara Haara Dowolnej grupie topologicznej, której topologia jest lokalnie zwarta i spełnia aksjomat Hausdorffa, można przypisać w sposób (odpowiednio) jednoznaczny miarę która jest zgodna zarówno ze strukturą topologiczną jak i grupową - miara ta jest regularna oraz lewo niezmiennicza. Istnienie takiej miary w szczególnych przypadkach np. grup dyskretnych lub Liego wiadome było już wcześniej, natomiast twierdzenie to w ogólnej sytuacji zostało udowodnione przez Alfréda Haara w 1933 roku. W trakcie wykładu przedstawię przykłady grup topologicznych oraz odpowiadające im miary Haara. Postaram się przedstawić zarys dowodu istnienia i jedyności miary Haara w przypadku grup zwartych, Hausdorffa. W pozostałej części referatu opowiem o funkcji modularnej która łączy lewą i prawą miarę Haara grupy lokalnie zwartej. 5
7 Kamil Serafin Energia i pęd ciała rozciągłego w Szczególnej Teorii Względności Przedstawię elementarny przykład ciała rozciągłego: dwa masywne punkty połączone nieważką i cienką struną. Całość obraca się jednostajnie w układzie środka masy. Okazuje się, że nawet nieważka struna musi dawać wkład do energii i pędu całości jeśli chcemy aby nasz opis układu był zgodny ze Szczególną Teorią Względności. Co więcej, energia i pęd struny wyglądają zupełnie inaczej niż podpowiada nam nierelatywistyczna intuicja. Przykład ten ilustruje relatywistyczny opis ciał rozciągłych oraz konieczność poprawnego uwzględnienia mechanizmu wiążącego składniki ciała. Paweł Smoliński Topologiczna teoria strun i kwantowe niezmienniki węzłów Opowiem o pewnej klasie wielomianów, które są niezmiennikami węzłów oraz ich interpretacji w teorii strun oraz trójwymiarowych teoriach z cechowaniem. Aleksandra Środa Geometryczny opis układów dynamicznych z więzami hamiltonowskimi W Ogólnej Teorii Względności opis układów, w których hamiltonian generuje transformacje cechowania, wymaga dodatkowej struktury poza tą zagwarantowaną przez standardową teorię. Celem referatu jest przedstawienie tej dodatkowej struktury oraz użycie jej do analizy wybranych problemów fizycznych. Za pomocą tego opisu przeanalizuję dwa przypadki: cząstki swobodnej w czasoprzestrzeni Minkowskiego (w układzie inercjalnym i nieinercjalnym) oraz w czasoprzestrzeni de Sittera (dwuwymiarowej i trójwymiarowej). 6
8 Mariusz Tobolski Pogoda, fraktale i piąty problem Hilberta Pogodowa wersja twierdzenia Borsuka-Ulama mówi, że zawsze istnieją dwa antypodalne miejsca na Ziemi o tej samej temperaturze i ciśnieniu powietrza. Pewien szczególny fraktal, tj. kompakt Mengera, stanowi pomost pomiędzy tym twierdzeniem a piątym problemem Hilberta, czyli następującym pytaniem: Czy na podstawie topologii grupy jesteśmy w stanie stwierdzić, że jest to grupa Liego? W trakcie swojego referatu postaram się przybliżyć tło historyczne oraz najważniejsze pojęcia związane z powyższymi problemami. Przemysław Zieliński Złożone układy kwantowe jako klasyczne urzadzenia pomiarowe Rozważmy układ n-kubitów: system plus otoczenie, gdzie badamy proces dekoherencji splątania i łamania nierównosci Bella. Układ początkowo rozpatrujemy dla 2 kubitów nieoddziałujących w podukładzie otoczenia i jednego kubitu w podukładzie systemu. Pomiędzy układami wprowadzamy oddziaływanie kwantowe. Dodatkowo celem badań jest sprawdzenie tezy efektywnego przenoszenia. Układ rozszerzamy na znaczną ilość kubitów. 7
MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu
MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/8 Cele kursu Podstawowe
MECHANIKA STOSOWANA Cele kursu
MECHANIKA STOSOWANA Cele kursu Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl 9 października 2014 Karol Kołodziej Mechanika stosowana 1/6 Cele kursu Podstawowe cele zaprezentowanego
MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu dla studentów geofizyki
MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu dla studentów geofizyki Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna
Oddziaływania fundamentalne
Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.
Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14
Spis treści Przedmowa xi I PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI 1 1 Grawitacja 3 2 Geometria jako fizyka 14 2.1 Grawitacja to geometria 14 2.2 Geometria a doświadczenie
CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013) ZADANIA
CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie II ( marzec/kwiecień, 2013) ZADANIA Nierelatywistyczne Relatywistyczne Masa M = m 1 + m 2 M = m 1 + m 2 Zachowana? zawsze tylko w zderzeniach
Wstęp do Modelu Standardowego
Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej
Struktury Geometryczne Mechaniki
Struktury Geometryczne Mechaniki Paweł Urbański u rb a n ski@fuw.ed u.p l Kat edra Met od Mat ematycznych Fizyki Uniwersyt et Warszawski Sympozjum IFT, 08.12.2007 p. 1/23 MOTYWACJE Dlaczego mechanika (analityczna)?
Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu rubidowego
Prof. dr hab. Jan Mostowski Instytut Fizyki PAN Warszawa Warszawa, 15 listopada 2010 r. Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu
LHC i po co nam On. Piotr Traczyk CERN
LHC i po co nam On Piotr Traczyk CERN LHC: po co nam On Piotr Traczyk CERN Detektory przy LHC Planowane są 4(+2) eksperymenty na LHC ATLAS ALICE CMS LHCb 5 Program fizyczny LHC 6 Program fizyczny LHC
Symetrie w matematyce i fizyce
w matematyce i fizyce Katedra Metod Matematycznych Fizyki Wydział Fizyki, Uniwersytet Warszawski Konwersatorium Wydziału Matematyki Warszawa, 27.02.2009 w matematyce to automorfizmy struktury Zbiór
FIZYKA specjalność modelowanie matematyczne i komputerowe procesów fizycznych 2-letnie studia II stopnia (magisterskie)
FIZYKA specjalność modelowanie matematyczne i komputerowe procesów fizycznych 2-letnie studia II stopnia (magisterskie) 1. OGÓLNA CHARAKTERYSTYKA STUDIÓW Studia w ramach specjalności modelowanie matematyczne
Wykład Ćwiczenia Laboratorium Projekt Seminarium 30 30
Zał. nr do ZW 33/01 WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim Podstawy fizyki kwantowej Nazwa w języku angielskim Fundamental of Quantum Physics Kierunek studiów (jeśli
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44
Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły
Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7.
Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 2 tomu I O Richardzie P. Feynmanie
Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski
Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu
Zasady dynamiki Newtona. dr inż. Romuald Kędzierski
Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski
TEORIA CHAOSU. Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska
TEORIA CHAOSU Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska Wydział MiNI Politechnika Warszawska Rok akademicki 2015/2016 Semestr letni Krótki kurs historii matematyki DEFINICJA
Ramowy Program Specjalizacji MODELOWANIE MATEMATYCZNE i KOMPUTEROWE PROCESÓW FIZYCZNYCH Studia Specjalistyczne (III etap)
Ramowy Program Specjalizacji MODELOWANIE MATEMATYCZNE i KOMPUTEROWE PROCESÓW FIZYCZNYCH Studia Specjalistyczne (III etap) Z uwagi na ogólno wydziałowy charakter specjalizacji i możliwość wykonywania prac
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
FIZYKA specjalność fotonika 2-letnie studia II stopnia (magisterskie)
FIZYKA specjalność fotonika 2-letnie studia II stopnia (magisterskie) 1. OGÓLNA CHARAKTERYSTYKA STUDIÓW Celem specjalności Fotonika jest kształcenie fizyków w dziedzinie optyki kryształów fotonicznych,
TEORIA WĘZŁÓW. Natalia Grzechnik 10B2
TEORIA WĘZŁÓW Natalia Grzechnik 10B2 Słowem wstępu zastosowanie teorii węzłów Biologiczna rola węzłów w białkach Wyznaczanie topologii białek Kryptografia Biofizyka Opis struktur DNA, RNA, białek DNA a
SPIS TREŚCI PRZEDMOWA... 13
SPIS TREŚCI PRZEDMOWA... 13 CZĘŚĆ I. ALGEBRA ZBIORÓW... 15 ROZDZIAŁ 1. ZBIORY... 15 1.1. Oznaczenia i określenia... 15 1.2. Działania na zbiorach... 17 1.3. Klasa zbiorów. Iloczyn kartezjański zbiorów...
Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału
Fizyka 2 Wykład 4 1 Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Niezależne od czasu równanie Schödingera ma postać: 2 d ( x)
Geometria Struny Kosmicznej
Spis treści 1 Wstęp 2 Struny kosmiczne geneza 3 Czasoprzestrzeń struny kosmicznej 4 Metryka czasoprzestrzeni struny kosmicznej 5 Wyznaczanie geodezyjnych 6 Wykresy geodezyjnych 7 Wnioski 8 Pytania Wstęp
Grawitacja po feynmanowsku. Lesław Rachwał (IFT UW) Wykład SKFiz
Grawitacja po feynmanowsku Lesław Rachwał (IFT UW) rachwal@fuw.edu.pl 11.05.009 Wykład SKFiz Czym jest grawitacja? - jedno z oddziaływań fundamentalnych - niepodobne do innych znanych, ale nie jest wyjątkowe
WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego
WYKŁAD 15 Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego 1 Statystyka nieoddziaływujących gazów Bosego i Fermiego Bosony
Nieoczekiwane własności nawiasu Diraca w kontekście AdS/CFT
Nieoczekiwane własności nawiasu Diraca w kontekście AdS/CFT Jędrzej Świeżewski FUW we współpracy z Norbertem Bodendorferem, Pawłem Duchem, Wojciechem Kamińskim oraz Jerzym Lewandowskim Kraków, 4 marca
Podstawy mechaniki kwantowej / Stanisław Szpikowski. - wyd. 2. Lublin, Spis treści
Podstawy mechaniki kwantowej / Stanisław Szpikowski. - wyd. 2. Lublin, 2011 Spis treści Przedmowa 15 Przedmowa do wydania drugiego 19 I. PODSTAWY I POSTULATY 1. Doświadczalne podłoŝe mechaniki kwantowej
Cząstki elementarne i ich oddziaływania III
Cząstki elementarne i ich oddziaływania III 1. Przekrój czynny. 2. Strumień cząstek. 3. Prawdopodobieństwo procesu. 4. Szybkość reakcji. 5. Złota Reguła Fermiego 1 Oddziaływania w eksperymencie Oddziaływania
Podstawy fizyki: Budowa materii. Podstawy fizyki: Mechanika MS. Podstawy fizyki: Mechanika MT. Podstawy astronomii. Analiza matematyczna I, II MT
Zajęcia wyrównawcze z matematyki Zajęcia wyrównawcze z fizyki Analiza matematyczna I, II MS Analiza matematyczna I, II MT Podstawy fizyki: Budowa materii Podstawy fizyki: Mechanika MS Podstawy fizyki:
Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii
Fizyka Wydział Zarządzania i Ekonomii Kontakt z prowadzącym zajęcia dr Paweł Możejko 1e GG Konsultacje poniedziałek 9:00-10:00 paw@mif.pg.gda.pl Rok akademicki 2013/2014 Program Wykładu Mechanika Kinematyka
Seminarium: Efekty kwantowe w informatyce
Seminarium: Efekty kwantowe w informatyce Aleksander Mądry Sprawy organizacyjne Spotykamy się w piątki o 12:15 w sali 105. Sprawy organizacyjne Spotykamy się w piątki o 12:15 w sali 105. Każdy kto będzie
Kwantowa kooperacja. Robert Nowotniak. Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka
Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 17 maja 2007 Materiały źródłowe Prezentacja oparta jest na publikacjach: Johann Summhammer,
Compact Muon Solenoid
Compact Muon Solenoid (po co i jak) Piotr Traczyk CERN Compact ATLAS CMS 2 Muon Detektor CMS był projektowany pod kątem optymalnej detekcji mionów Miony stanowią stosunkowo czysty sygnał Pojawiają się
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Fizyka Nazwa w języku angielskim : Physics Kierunek studiów : Informatyka Specjalność (jeśli dotyczy) :
Elektrodynamika #
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Nazwa przedmiotu Elektrodynamika Nazwa jednostki prowadzącej przedmiot Kod ECTS 13.2.0052 Instytut Fizyki Teoretycznej
LHC: program fizyczny
LHC: program fizyczny Piotr Traczyk CERN Detektory przy LHC Planowane są 4(+2) eksperymenty na LHC ATLAS ALICE CMS LHCb 2 Program fizyczny LHC Model Standardowy i Cząstka Higgsa Poza Model Standardowy:
Splątanie a przesyłanie informacji
Splątanie a przesyłanie informacji Jarosław A. Miszczak 21 marca 2003 roku Plan referatu Stany splątane Co to jest splątanie? Gęste kodowanie Teleportacja Przeprowadzone eksperymenty Możliwości wykorzystania
Fizyka współczesna. 4 października 2017
Fizyka współczesna 4 października 2017 Fizyka współczesna Fizyka (za Encyclopeadia Britannica): Nauka badajaca strukturę materii oraz oddziaływania między podstawowymi elementami obserwowalnego Wszechświata.
FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.
DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka
Materiał jest podany zwięźle, konsekwentnie stosuje się w całej książce rachunek wektorowy.
W pierwszej części są przedstawione podstawowe wiadomości z mechaniki, nauki o cieple, elektryczności i magnetyzmu oraz optyki. Podano także przykłady zjawisk relatywistycznych, a na końcu książki zamieszczono
FIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 9 Janusz Andrzejewski Albert Einstein ur. 14 marca 1879 w Ulm, Niemcy, zm. 18 kwietnia 1955 w Princeton, USA) niemiecki fizyk żydowskiego pochodzenia, jeden z największych fizyków-teoretyków
Postulaty interpretacyjne mechaniki kwantowej Wykład 6
Postulaty interpretacyjne mechaniki kwantowej Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl 19 września 2014 Karol Kołodziej Postulaty interpretacyjne mechaniki
CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013)
CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie II ( marzec/kwiecień, 013) u Masa w szczególnej teorii względności u Określenie relatywistycznego pędu u Wyprowadzenie wzoru Einsteina
Zasady względności w fizyce
Zasady względności w fizyce Mechanika nierelatywistyczna: Transformacja Galileusza: Siły: Zasada względności Galileusza: Równania mechaniki Newtona, określające zmianę stanu ruchu układów mechanicznych,
ANALIZA MATEMATYCZNA DLA FIZYKÓW
Lech Górniewicz Roman Stanisław Ingarden ANALIZA MATEMATYCZNA DLA FIZYKÓW Wydanie piąte Toruń 2012 SPIS TREŚCI WSPOMNIENIE O PROFESORZE ROMANIE STANISŁAWIE INGARDENIE (Miłosz Michalski)... ix PRZEDMOWA
Elementy fizyki relatywistycznej
Elementy fizyki relatywistycznej Transformacje Galileusza i ich konsekwencje Transformacje Lorentz'a skracanie przedmiotów w kierunku ruchu dylatacja czasu nowe składanie prędkości Szczególna teoria względności
ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.
ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją
Symetrie i prawa zachowania Wykład 6
Symetrie i prawa zachowania Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/29 Rola symetrii Największym
Postulaty mechaniki kwantowej
3.10.2004 11. Postulaty mechaniki kwantowej 120 Rozdział 11 Postulaty mechaniki kwantowej Mechanika kwantowa, jak zresztą każda teoria fizyczna, bazuje na kilku postulatach, które przyjmujemy "na wiarę".
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Fizyka Nazwa w języku angielskim : Physics Kierunek studiów : Informatyka Specjalność (jeśli dotyczy) :
Dynamika relatywistyczna
Dynamika relatywistyczna Fizyka I (B+C) Wykład XVIII: Energia relatywistyczna Transformacja Lorenza energii i pędu Masa niezmiennicza Energia relatywistyczna Dla ruchu ciała pod wpływem stałej siły otrzymaliśmy:
VIII. TELEPORTACJA KWANTOWA Janusz Adamowski
VIII. TELEPORTACJA KWANTOWA Janusz Adamowski 1 1 Wprowadzenie Teleportacja kwantowa polega na przesyłaniu stanów cząstek kwantowych na odległość od nadawcy do odbiorcy. Przesyłane stany nie są znane nadawcy
Mechanika. Wykład 2. Paweł Staszel
Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu
Modele i teorie w kosmologii współczesnej przykładem efektywnego wyjaśniania w nauce
Modele i teorie w kosmologii współczesnej przykładem efektywnego wyjaśniania w nauce ks. Paweł Tambor Wydział Filozofii, Katedra Fizyki Teoretycznej Katolicki Uniwersytet Lubelski Jana Pawła II Przyrodoznawstwo
Szczegółowy program właściwy dla standardowej ścieżki kształcenia na kierunku astronomia. Semestr I. 60 120 14 Egzamin. 45 75 9 Egzamin 75 2.
B3. Program studiów liczba punktów konieczna dla uzyskania kwalifikacji (tytułu zawodowego) określonej dla rozpatrywanego programu kształcenia - 180 łączna liczba punktów, którą student musi uzyskać na
V.6 Pęd i energia przy prędkościach bliskich c
r. akad. 005/ 006 V.6 Pęd i energia przy prędkościach bliskich c 1. Relatywistyczny pęd. Relatywistyczne równanie ruchu. Relatywistyczna energia kinetyczna 3. Relatywistyczna energia całkowita i energia
Wstęp do chromodynamiki kwantowej
Wstęp do chromodynamiki kwantowej Wykład 1 przez 2 tygodnie wykład następnie wykład/ćwiczenia/konsultacje/lab proszę pamiętać o konieczności posiadania kąta gdy będziemy korzystać z labolatorium (Mathematica
Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika
Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,
Pole elektromagnetyczne. Równania Maxwella
Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i
Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Fizyka matematyczna
Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Fizyka matematyczna 1. CHARAKTERYSTYKA STUDIÓW Specjalność Fizyka matematyczna ma charakter interdyscyplinarny. Obejmuje wiedzę
Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski
Cząstki elementarne wprowadzenie Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Historia badania struktury materii XVII w.: ruch gwiazd i planet, zasady dynamiki, teoria grawitacji, masa jako
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Wiedza z zakresu analizy I i algebry I
WYDZIAŁ MECHANICZNY (w j. angielskim) Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim FIZYKA OGÓLNA Nazwa w języku angielskim GENERAL PHYSICS Kierunek studiów (jeśli dotyczy) MiBM Specjalność
półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski
Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki
Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego
Plan wynikowy z fizyki dla klasy pierwszej liceum profilowanego Kurs podstawowy z elementami kursu rozszerzonego koniecznymi do podjęcia studiów technicznych i przyrodniczych do programu DKOS-5002-38/04
Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.
3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X
Efekt motyla i dziwne atraktory
O układzie Lorenza Wydział Matematyki i Informatyki Uniwersytet Mikołaja kopernika Toruń, 3 grudnia 2009 Spis treści 1 Wprowadzenie Wyjaśnienie pojęć 2 O dziwnych atraktorach 3 Wyjaśnienie pojęć Dowolny
Katedra Metod Matematycznych Fizyki
Katedra Metod Matematycznych Fizyki 1. Własności stanów podstawowych kwantowego modelu Heisenberga Początek pracy to zapoznanie sie z kwantowym modelem Heisenberga i zasadniczymi znanymi faktami na jego
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Podstawy elektrodynamiki Nazwa w języku angielskim: Introduction to Electrodynamics Kierunek studiów (jeśli
Astrofizyka teoretyczna II. Równanie stanu materii gęstej
Astrofizyka teoretyczna II Równanie stanu materii gęstej 1 Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects by Stuart L. Shapiro, Saul A. Teukolsky " Rozdziały 2, 3 i 8 2 Odkrycie
Szczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności
Temat XXXIII. Szczególna Teoria Względności
Temat XXXIII Szczególna Teoria Względności Metoda radiolokacyjna Niech w K znajduje się urządzenie nadawcze o okresie T, mierzonym w układzie K Niech K oddala się od K z prędkością v wzdłuż osi x i rejestruje
KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Geometria analityczna (GAN010) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30
Co to jest promieniowanie grawitacyjne? Szymon Charzyński KMMF UW
Co to jest promieniowanie grawitacyjne? Szymon Charzyński KMMF UW Ogólna teoria względności Ogólna Teoria Względności Ogólna Teoria Względności opisuje grawitację jako zakrzywienie czasoprzestrzeni. 1915
Podróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN
Podróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN mgr inż. Małgorzata Janik - majanik@cern.ch mgr inż. Łukasz Graczykowski - lgraczyk@cern.ch Zakład Fizyki Jądrowej, Wydział
Protokół teleportacji kwantowej
Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 9 stycznia 008 Teleportacja kwantowa 1993 Propozycja teoretyczna protokołu teleportacji
Miary splątania kwantowego
kwantowego Michał Kotowski michal.kotowski1@gmail.com K MISMaP, Uniwersystet Warszawski Studenckie Koło Fizyki UW (SKFiz UW) 24 kwietnia 2010 kwantowego Spis treści 1 2 Stany czyste i mieszane Matematyczny
ISBN Redaktor merytoryczny: Jadwiga Salach. Redaktor inicjujący: Anna Warchoł, Barbara Sagnowska
Kraków 2011 Redaktor merytoryczny: Jadwiga Salach Redaktor inicjujący: Anna Warchoł, Barbara Sagnowska Korekta językowa: Agnieszka Kochanowska-Sabljak Redakcja techniczna: Anna Miśkowiec, Tomasz Strutyński
Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19
Spis treści Tom 1 Przedmowa do wydania polskiego 13 Przedmowa 15 1 Wstęp 19 1.1. Istota fizyki.......... 1 9 1.2. Jednostki........... 2 1 1.3. Analiza wymiarowa......... 2 3 1.4. Dokładność w fizyce.........
FRAKTALE I SAMOPODOBIEŃSTWO
FRAKTALE I SAMOPODOBIEŃSTWO Mariusz Gromada marzec 2003 mariusz.gromada@wp.pl http://multifraktal.net 1 Wstęp Fraktalem nazywamy każdy zbiór, dla którego wymiar Hausdorffa-Besicovitcha (tzw. wymiar fraktalny)
STUDIA I STOPNIA NA KIERUNKU FIZYKA UW
STUDIA I STOPNIA NA KIERUNKU FIZYKA UW 1. CHARAKTERYSTYKA STUDIÓW Studia pierwszego stopnia na kierunku fizyka UW trwają trzy lata i kończą się nadaniem tytułu licencjata (licencjat akademicki). 2. SYLWETKA
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka w informatyce Rocznik: 2013/2014 Język wykładowy: Polski
Układy dynamiczne. proseminarium dla studentów III roku matematyki. Michał Krych i Anna Zdunik. rok akad. 2014/15
Układy dynamiczne proseminarium dla studentów III roku matematyki Michał Krych i Anna Zdunik rok akad. 2014/15 Układy dynamiczne Układy dynamiczne Układy dynamiczne, i związana z nimi Teoria ergodyczna
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Wielcy rewolucjoniści nauki
Isaak Newton Wilhelm Roentgen Albert Einstein Max Planck Wielcy rewolucjoniści nauki Erwin Schrödinger Werner Heisenberg Niels Bohr dr inż. Romuald Kędzierski W swoim słynnym dziele Matematyczne podstawy
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2013/2014 Język wykładowy: Polski
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2013/2014 Język wykładowy: Polski Semestr
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Atomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
Fizyka - opis przedmiotu
Fizyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Fizyka Kod przedmiotu 13.2-WI-INFP-F Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Informatyka / Sieciowe systemy informatyczne
Sierpiński Carpet Project. W ZSTiL Zespół Szkół Technicznych i Licealnych
Sierpiński Carpet Project W ZSTiL Zespół Szkół Technicznych i Licealnych Co to jest fraktal? Fraktale są obiektami matematycznymi, których podstawowa struktura powtarza się przy różnych powiększeniach.
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba
Kierunek: Matematyka w technice
Kierunek: Matematyka w technice Wykaz modułów kształcenia z podziałem na semestry Forma zajęć: W wykład C ćwiczenia L laboratorium P projekt S searium E egza Semestr 1 Analiza matematyczna I Algebra liniowa
Streszczenie Wymagania Plan szczegółowy
Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2017/2018 1100-1B01 Streszczenie Wykład przedstawia podstawowe zagadnienia mechaniki klasycznej od kinematyki punktu materialnego, przez prawa
Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności
Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Fizyka wykład 2 dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska 15 października 2007r.
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki