Nieoczekiwane własności nawiasu Diraca w kontekście AdS/CFT

Wielkość: px
Rozpocząć pokaz od strony:

Download "Nieoczekiwane własności nawiasu Diraca w kontekście AdS/CFT"

Transkrypt

1 Nieoczekiwane własności nawiasu Diraca w kontekście AdS/CFT Jędrzej Świeżewski FUW we współpracy z Norbertem Bodendorferem, Pawłem Duchem, Wojciechem Kamińskim oraz Jerzym Lewandowskim Kraków, 4 marca 216

2 Plan wystąpienia opowiastka tytułem wstępu kilka słów o kanonicznej Ogólnej Teorii Względności cechowanie radialne w kontekście korespondencji AdS/CFT Pętlowa Grawitacja Kwantowa 2

3 Opowiastka układ fizyczny 3

4 Opowiastka układ fizyczny obiekt fizyczny stopień swobody stopień swobody 3

5 Opowiastka układ fizyczny obiekt fizyczny stopień swobody 3

6 kanoniczna Ogólna Teoria Względności Równania Einsteina R µ 1 2 g µ R = T µ 4

7 kanoniczna Ogólna Teoria Względności Równania Einsteina R µ 1 2 g µ R = T µ formalizm ADM składniki: hiperpowierzchnia przestrzenna 4

8 kanoniczna Ogólna Teoria Względności Równania Einsteina R µ 1 2 g µ R = T µ formalizm ADM składniki: hiperpowierzchnia przestrzenna jej geometria wewnętrzna q ab 4

9 kanoniczna Ogólna Teoria Względności Równania Einsteina R µ 1 2 g µ R = T µ formalizm ADM składniki: hiperpowierzchnia przestrzenna jej geometria wewnętrzna q ab jej geometria zewnętrzna K ab P ab 4

10 kanoniczna Ogólna Teoria Względności Równania Einsteina R µ 1 2 g µ R = T µ formalizm ADM składniki: hiperpowierzchnia przestrzenna jej geometria wewnętrzna q ab jej geometria zewnętrzna K ab P ab dynamika: Hamiltonian H = H[N]+C[ N] ~ nawiasy Poissona, np. q ab = {q ab, H} 4

11 kanoniczna Ogólna Teoria Względności Równania Einsteina R µ 1 2 g µ R = T µ formalizm ADM składniki: hiperpowierzchnia przestrzenna jej geometria wewnętrzna q ab jej geometria zewnętrzna K ab P ab dynamika: Hamiltonian H = H[N]+C[ N] ~ nawiasy Poissona, np. q ab = {q ab, H} więzy swoboda wyboru cechowania 4

12 cechowanie radialne w AdS/CFT aby powiązać teorię na brzegu z teorią we wnętrzu wybieramy cechowanie AdS C F T 5

13 cechowanie radialne w AdS/CFT aby powiązać teorię na brzegu z teorią we wnętrzu wybieramy cechowanie radialne (vel aksjalne, Feffermana-Grahama, holograficzne) 5

14 cechowanie radialne w AdS/CFT aby powiązać teorię na brzegu z teorią we wnętrzu wybieramy cechowanie radialne (vel aksjalne, Feffermana-Grahama, holograficzne) zadane przez warunki: q rr =1, q ra =, K rr = 5

15 cechowanie radialne w AdS/CFT aby powiązać teorię na brzegu z teorią we wnętrzu wybieramy cechowanie radialne (vel aksjalne, Feffermana-Grahama, holograficzne) zadane przez warunki: q rr =1, q ra =, K rr = czy pola materii tworzą prostą algebrę? 5

16 cechowanie radialne w AdS/CFT aby powiązać teorię na brzegu z teorią we wnętrzu wybieramy cechowanie radialne (vel aksjalne, Feffermana-Grahama, holograficzne) zadane przez warunki: q rr =1, q ra =, K rr = czysto geometryczne! czy pola materii tworzą prostą algebrę? 1 Kabat, Lifschytz, Phys.Rev. D89 (214) Donnelly, Giddings, Phys.Rev. D93 (216) 2, 243 wi!c,,tak,, chyba raczej,,nie,, 5

17 cechowanie radialne w AdS/CFT aby powiązać teorię na brzegu z teorią we wnętrzu wybieramy cechowanie radialne (vel aksjalne, Feffermana-Grahama, holograficzne) zadane przez warunki: q rr =1, q ra =, K rr = czy pola materii tworzą prostą algebrę? 1 Kabat, Lifschytz, Phys.Rev. D89 (214) 661 b"!dny argument 2 Donnelly, Giddings, Phys.Rev. D93 (216) 2, 243 1szy rz#d rach. zaburze$ 3 Bodendorfer, Duch, Lewandowski, Świeżewski, JHEP 161 (216) 47 pe"na, negatywna odpowied% 5

18 Pętlowa Grawitacja Kwantowa (LQG) Ogólna Teoria Względności kwantyzacja pętlowa Pętlowa Grawitacja Kwantowa redukcja ze względu na symetrię redukcja ze względu na symetrię uproszczone modele typu midisuperspace kwantyzacja pętlowa kwantowe modele sferycznie symetryczne 6

19 Pętlowa Grawitacja Kwantowa (LQG) wybór cechowania radialnego kwantyzacja pętlowa Ogólna Teoria Względności kwantyzacja pętlowa Pętlowa Grawitacja Kwantowa redukcja ze względu na symetrię redukcja ze względu na symetrię redukcja ze względu na symetrię uproszczone modele typu midisuprespace kwantyzacja pętlowa kwantowe modele sferycznie symetryczne Bodendorfer, Lewandowski, Świeżewski, Phys.Lett. B747 (215)

20 Podsumowanie i bibliografia obserwable Duch, Kamiński, Lewandowski, Świeżewki JHEP 5 (214) 77, JHEP 4 (215) 75 cechowanie radialne Bodendorfer, Lewandowski, Świeżewski Phys.Rev. D92 (215) 8, 8441 kontekst AdS/CFT Bodendorfer, Duch, Lewandowski, Świeżewski JHEP 161 (216) 47 sferyczna symetria w LQG Bodendorfer, Lewandowski, Świeżewski Phys.Lett. B747 (215) dziękuję za uwagę 7

21 slajdy rachunkowe cz. 1 cechowanie radialne (4) trr = 1 N K rr (4) arr = N a N K rr qab (2q rb,r q rr,b ) (3) arr = 1 2 qab (2q rb,r q rr,b ) nawias Diraca {O 1, O 2 } D = {O 1, O 2 } 8X, =1 {O 1, C }(M 1 ) {C, O 2 2 r N +( R (3) rr +2K Ar K Ar t matt )N +2K ra N A = M { (r 1, 1 ), (r 2, 2 )} D = Z drd 2 N[{ r apple (r 1, 1 ), C }](r, ) Z drd 2 N [{ (r1, 1 ), C }](r, ) 2@ r N r B N B = M r N A +2@ r (K ra N)=M A p det q(r, ) N [{C, (r 2, 2 )}](r, ) apple p N[{C r det q(r, ), (r 2, 2 )}](r, ) 8

22 slajdy rachunkowe cz. 2 nawias Diraca cd H[N ] = ( (3) Rrr Ar 2KAr K + t 2@r KrB 3 2@r p det q Z N FT F G 1 = (F 1 T ) GF F qab 7 7= T F F G (F 1 )T teoria w cechowaniu radialnym! p (3) 1 p G q R q G = 12 (pr r )2 + 2q AB pr A pr B qab pab pr r + (qac qbd 12 qab qcd )pab pcd (3) R = (2)R q AB qab,rr 34 q AB,r qab,r 14 (q AB qab,r )2! Z r Z r Z r Z r 1 r B r p A= DB p A p r= pab qab,r + DA q AB D C pc B 2 9

23 slajdy rachunkowe cz. 3 kwantyzacja q AB, P AB q AB, p AB Ei A, A i A Z h e (A) =P exp A Ai i dx A e Z E (S) = i AB drdx B S E A i 1

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/8 Cele kursu Podstawowe

Bardziej szczegółowo

Uniwersytet Warszawski Wydział Fizyki. Kwantowy model bezmasowego pola Kleina Gordona sprzężonego z polem grawitacyjnym.

Uniwersytet Warszawski Wydział Fizyki. Kwantowy model bezmasowego pola Kleina Gordona sprzężonego z polem grawitacyjnym. Uniwersytet Warszawski Wydział Fizyki Rozprawa doktorska pt. Kwantowy model bezmasowego pola Kleina Gordona sprzężonego z polem grawitacyjnym. Marcin Grzegorz Domagała Promotor: prof. Jerzy Lewandowski

Bardziej szczegółowo

Studencka Konferencja Fizyki Teoretycznej i Matematycznej SKFiz UW. 5-6 maja 2017 r.

Studencka Konferencja Fizyki Teoretycznej i Matematycznej SKFiz UW. 5-6 maja 2017 r. Studencka Konferencja Fizyki Teoretycznej i Matematycznej SKFiz UW 5-6 maja 2017 r. Rada Naukowa: dr Javier de Lucas Araujo, KMMF FUW dr hab. Katarzyna Grabowska, KMMF FUW dr hab. Piotr Sołtan, KMMF FUW

Bardziej szczegółowo

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace

Bardziej szczegółowo

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11 Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19

Bardziej szczegółowo

Holograficzna kosmologia

Holograficzna kosmologia Holograficzna kosmologia Adam Bzowski praca pod kierunkiem prof. Kostasa Skenderisa we współpracy z dr. Paulem McFaddenem Motywacje AdS ds 2 = +dr 2 + e 2r/α dx 2 ds 2 = dt 2 + e 2Ht dx 2 kosmologiczne

Bardziej szczegółowo

Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki

Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię

Bardziej szczegółowo

MECHANIKA STOSOWANA Cele kursu

MECHANIKA STOSOWANA Cele kursu MECHANIKA STOSOWANA Cele kursu Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl 9 października 2014 Karol Kołodziej Mechanika stosowana 1/6 Cele kursu Podstawowe cele zaprezentowanego

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

Wstęp do Modelu Standardowego

Wstęp do Modelu Standardowego Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

Czy umiemy mnożyć wektory?

Czy umiemy mnożyć wektory? Czy umiemy mnożyć wektory? wprowadzenie do algebry geometrycznej Jacek Grela 1 UJ 2010 Plan działania Motywacja Wprowadzenie do algebry geometrycznej Algebra 2D, 3D Przykład fizyczny Algebra czasoprzestrzeni

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Wielki rozkład kanoniczny

Wielki rozkład kanoniczny , granica termodynamiczna i przejścia fazowe Instytut Fizyki 2015 Podukład otwarty Podukład otwarty S opisywany układ + rezerwuar R Podukład otwarty S opisywany układ + rezerwuar R układ S + R jest izolowany

Bardziej szczegółowo

Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Fizyka matematyczna

Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Fizyka matematyczna Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Fizyka matematyczna 1. CHARAKTERYSTYKA STUDIÓW Specjalność Fizyka matematyczna ma charakter interdyscyplinarny. Obejmuje wiedzę

Bardziej szczegółowo

Wstęp do chromodynamiki kwantowej

Wstęp do chromodynamiki kwantowej Wstęp do chromodynamiki kwantowej Wykład 1 przez 2 tygodnie wykład następnie wykład/ćwiczenia/konsultacje/lab proszę pamiętać o konieczności posiadania kąta gdy będziemy korzystać z labolatorium (Mathematica

Bardziej szczegółowo

Kierunek: Fizyka, rok I, specjalność: Akustyka i realizacja dźwięku

Kierunek: Fizyka, rok I, specjalność: Akustyka i realizacja dźwięku Kierunek: Fizyka, rok I, specjalność: ustyka i realizacja dźwięku 1 Filozofia przyrody F 1 30 30 5 x 2 Analiza matematyczna F 1 15 30 3 3 Algebra liniowa z geometrią F 1 30 30 5 x 4 Mechanika klasyczna

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

Podstawy mechaniki kwantowej / Stanisław Szpikowski. - wyd. 2. Lublin, Spis treści

Podstawy mechaniki kwantowej / Stanisław Szpikowski. - wyd. 2. Lublin, Spis treści Podstawy mechaniki kwantowej / Stanisław Szpikowski. - wyd. 2. Lublin, 2011 Spis treści Przedmowa 15 Przedmowa do wydania drugiego 19 I. PODSTAWY I POSTULATY 1. Doświadczalne podłoŝe mechaniki kwantowej

Bardziej szczegółowo

Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14

Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14 Spis treści Przedmowa xi I PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI 1 1 Grawitacja 3 2 Geometria jako fizyka 14 2.1 Grawitacja to geometria 14 2.2 Geometria a doświadczenie

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Fizyka Nazwa w języku angielskim : Physics Kierunek studiów : Informatyka Specjalność (jeśli dotyczy) :

Bardziej szczegółowo

Rzadkie gazy bozonów

Rzadkie gazy bozonów Rzadkie gazy bozonów Tomasz Sowiński Proseminarium Fizyki Teoretycznej 15 listopada 2004 Rzadkie gazy bozonów p.1/25 Bardzo medialne zdjęcie Rok 1995. Pierwsza kondensacja. Zaobserwowana w przestrzeni

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7.

Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 2 tomu I O Richardzie P. Feynmanie

Bardziej szczegółowo

KLASA III LO Poziom podstawowy (wrzesień/październik)

KLASA III LO Poziom podstawowy (wrzesień/październik) KLASA III LO (wrzesień/październik) ZAKRES PODSTAWOWY. Funkcje. Uczeń: ) określa funkcje za pomocą wzoru, tabeli, wykresu, opisu słownego; ) oblicza ze wzoru wartość funkcji dla danego argumentu. Posługuje

Bardziej szczegółowo

ver teoria względności

ver teoria względności ver-7.11.11 teoria względności interferometr Michelsona eter? Albert Michelson 1852 Strzelno, Kujawy 1931 Pasadena, Kalifornia Nobel - 1907 http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/mmexpt6.htm

Bardziej szczegółowo

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac

Bardziej szczegółowo

Elektrodynamika #

Elektrodynamika # Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Nazwa przedmiotu Elektrodynamika Nazwa jednostki prowadzącej przedmiot Kod ECTS 13.2.0052 Instytut Fizyki Teoretycznej

Bardziej szczegółowo

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy

Bardziej szczegółowo

Rodzaj zajęć dydaktycznych * O/F ** Forma

Rodzaj zajęć dydaktycznych * O/F ** Forma 5a. 5b. Zajęcia wyrównawcze z matematyki Załącznik nr 3 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. Plan studiów na kierunku studiów wyższych: astronomia, studia pierwszego stopnia profil ogólnoakademicki

Bardziej szczegółowo

Kierunek: Fizyka, rok I, specjalność: Akustyka i realizacja dźwięku

Kierunek: Fizyka, rok I, specjalność: Akustyka i realizacja dźwięku Kierunek: Fizyka, rok I, specjalność: ustyka i realizacja dźwięku Filozofia przyrody F 1 30 30 5 x Analiza matematyczna F 1 15 30 3 Algebra liniowa z geometrią F 1 30 30 5 x Mechanika klasyczna F 1 30

Bardziej szczegółowo

Czarna dziura Schwarzschilda

Czarna dziura Schwarzschilda Czarna dziura Schwarzschilda Mateusz Szczygieł Wydział Fizyki Uniwersytet Warszawski 19 listopada 2018 1 / 32 Plan prezentacji 1. Sferycznie symetryczne, statyczne rozwiązanie równań Einsteina. 2. Przesunięcie

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5) . Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny

Bardziej szczegółowo

Mechanika kwantowa S XX

Mechanika kwantowa S XX kierunek studiów: FIZYKA specjalność: FIZYKA s II WYDZIAŁ FIZYKI UwB KOD USOS: 0900 FS1 Karta przedmiotu Przedmiot grupa ECTS Mechanika kwantowa S XX Formy zajęć wykład konwersatorium seminarium laboratorium

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Fizyka Nazwa w języku angielskim : Physics Kierunek studiów : Informatyka Specjalność (jeśli dotyczy) :

Bardziej szczegółowo

Rodzaj zajęć zaliczenia *** O

Rodzaj zajęć zaliczenia *** O Załącznik nr 3 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. Plan studiów na kierunku studiów wyższych: astronomia, studia pierwszego stopnia profil ogólnoakademicki I RK STUDIÓW: 3a. 3b. 5a. 5b.

Bardziej szczegółowo

GODZINY ZAJĘĆ sem. zimowy FORMA ZAL. ECTS. sem. letni ćwicz. KOD. razem wyk. labor. inne. labor. inne. ćwicz. NAZWA PRZEDMIOTU. wyk.

GODZINY ZAJĘĆ sem. zimowy FORMA ZAL. ECTS. sem. letni ćwicz. KOD. razem wyk. labor. inne. labor. inne. ćwicz. NAZWA PRZEDMIOTU. wyk. AS Fiz 1 - mechanika 70 30 40 E 6 Fiz 2 - elektryczność i magnetyzm 70 30 40 E 6 Fiz 3 - fizyka falowa i optyka 40 20 20 E 4 Fiz 4 - fizyka materii 40 20 20 E 4 Astronomia klasyczna 60 30 30 E 5 Astronomia

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Elementy mechaniki kwantowej S XX

Elementy mechaniki kwantowej S XX kierunek studiów: FIZYKA specjalność: FIZYKA s I WYDZIAŁ FIZYKI UwB KOD USOS: 0900 FS1 Karta przedmiotu Przedmiot grupa ECTS Elementy mechaniki kwantowej S XX Formy zajęć wykład konwersatorium seminarium

Bardziej szczegółowo

Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia

Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia Nazwa Przedmiotu: Mechanika klasyczna i relatywistyczna Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: rok studiów,

Bardziej szczegółowo

Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś

Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś Elektrodynamika Część 9 Potencjały i pola źródeł zmiennych w czasie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 10 Potencjały i pola źródeł zmiennych w

Bardziej szczegółowo

Rozkład materiału KLASA I

Rozkład materiału KLASA I I. Liczby (20 godz.) Rozkład materiału Wg podręczników serii Prosto do matury. Zakres podstawowy KLASA I 1. Zapis dziesiętny liczby rzeczywistej 1 1.1 2. Wzory skróconego mnoŝenia 3 2.1 3. Nierówności

Bardziej szczegółowo

Ę Ć Ę Ó Ą ź Ó Ń Ń Ć Ó Ó Ł Ź Ł Ą Ł ć Ł ć Ź Ź ź Ń Ń Ź ć ć Ó Ą ź ć ć Ż ć ć Ź ć Ą ź Ł Ł Ę ć ć Ł Ś ć Ź ć Ł ć ć ć Ż Ó Ś Ł ć ź ć Ć ć ź ć Ź Ź Ł ć ć ć ź ź Ż Ą ź Ł ć ć ć Ó Ś Ć Ń ć Ń ć ć ź ć ć ć ć Ą Ł Ń ć Ł ć Ę Ą

Bardziej szczegółowo

Ć ń ń Ę Ó ń Ę ć ć ź Ę ć Ź ć ń ń ń ń ć ń ń ń Ę ć Ą Ę Ź ć ć ń Ą ź Ó ź ń Ę ć ć ń Ó Ą Ą ź ź Ę Ć Ę ć Ó ź Ą ć ć Ę ź ć Ź ć Ę ć Ź Ź ć ć ć ć Ł Ę ć Ć Ę Ź ć Ż Ę ń Ź Ę ć ń ć ń Ź Ź ń Ę ń ć Ó Ó Ź ć ń Ź ń Ż ć ź ź Ą Ć

Bardziej szczegółowo

Ą Ą ć Ż ć ć ź ć ć ć ć ć ć ć ć ć Ą ć ć Ą ć ć Ó Ź ć Ą ć ć ć ć ć Ą ć ć Ą Ź ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć Ą Ż ć Ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć Ż ć ć ć ć ć Ą ź ć Ę ć ć ć ć Ź ć ć ź ć ć ć

Bardziej szczegółowo

Ą Ą Ą ń ż Ę Ż ż ń ż ć ż ż ć Ń Ż ż ż Ź Ą ń Ż Ę Ń ż Ą ń ż ć Ź ć ć ż ć ż ć ż Ż ż ż ż ć ż ń ż ć ń ż ż ż ć ć ń ń ż ć ż ćż ż ż ń ż ń ż ż Ę ż Ę Ą ż ż Ęć ż ż Ę ż ć ć ć ż ń ź ń ń Ź ż Ę Ę ń Ź Ź ć Ż ć ź ż ż ż ź Ę

Bardziej szczegółowo

Ę Ę Ń ć Ź ć Ź Ń Ę Ó Ź Ę Ź Ń Ń ć Ź ź Ą Ź ć Ę Ą Ę Ź Ź Ź Ę Ź Ą Ź Ź Ą Ó Ó Ź Ą ć Ń Ą ć ć ć Ż Ą Ą Ż Ą Ą Ą ć Ź Ź Ę Ą Ą Ę Ź Ń ź Ś ź Ż Ż Ż Ą ć Ś Ą ć Ą Ż Ń Ż Ą Ź Ź ć Ń Ś Ń Ź Ź Ą Ź Ż Ą ź ć ć Ę Ź Ź Ź ź Ę ź Ę Ń Ź Ę

Bardziej szczegółowo

Ł Ł Ś Ł Ń Ń Ł Ę ć ć Ż ć Ż Ę ć ć ć Ę Ę ć Ż ź Ż ć Ż Ą Ę Ę Ż Ę ź Ś ć ć Ę ź Ą ć Ł Ę Ę ź Ż ć ć Ę Ę Ż Ż ć Ż Ę ć Ę Ę ć ź Ą ć ć ć Ę ć ć ź ć ć ź ć Ś Ż ć ć Ż ć Ż ć Ż ć ź Ż Ż Ę Ę ź Ę ć Ż Ż Ę Ż Ę Ż Ą ć ć ć Ż ź Ż ć

Bardziej szczegółowo

ć ź ć ź ć ć Ź ć ć ć ć ź ć ć ź ć ć Ź Ł ć ć ć Ż ć Ż ć ć Ź ź Ć Ą Ź Ż Ż Ź Ż Ć Ł Ł Ź Ź ź Ą ź Ą Ć Ź Ł Ź ć Ź ćź Ź Ź Ą Ź ć Ź ć Ł ć Ł ć ć Ł ć Ą ć ć ć ź ź ć ć ć ć ź ć ć ć ź ć ć ć ć ć ć ć ć Ł Ź ć ź ć Ą ć ć Ą Ć

Bardziej szczegółowo

Ł Ł Ń Ń Ś Ń Ń ź Ń Ą Ż Ł Ę Ł Ś Ą Ą Ś Ł Ń Ś Ą Ń ć Ą Ą Ą Ą Ł Ś Ę Ś Ń Ż Ż Ś Ć Ź ć Ę Ś Ą Ź Ś Ś Ś Ś Ż Ś Ź Ą Ż Ć Ą Ś Ź Ż Ź Ź Ź Ś Ą ć Ś Ść Ś Ść Ż Ź Ź ć Ź Ź Ź Ż Ż Ź Ś Ś Ż Ż ć Ź Ż Ż ć Ś Ś Ą Ź ć Ś ć ć Ś Ś ć Ż Ż Ą

Bardziej szczegółowo

Co to jest promieniowanie grawitacyjne? Szymon Charzyński KMMF UW

Co to jest promieniowanie grawitacyjne? Szymon Charzyński KMMF UW Co to jest promieniowanie grawitacyjne? Szymon Charzyński KMMF UW Ogólna teoria względności Ogólna Teoria Względności Ogólna Teoria Względności opisuje grawitację jako zakrzywienie czasoprzestrzeni. 1915

Bardziej szczegółowo

PROGRAM STUDIÓW I STOPNIA ENERGETYKA I CHEMIA JĄDROWA

PROGRAM STUDIÓW I STOPNIA ENERGETYKA I CHEMIA JĄDROWA PROGRAM STUDIÓW I STOPNIA na kierunku ENERGETYKA I CHEMIA JĄDROWA prowadzonych na Wydziałach Chemii i Fizyki Uniwersytetu Warszawskiego Wakacyjne zajęcia przygotowawcze (wrzesień) Matematyka Fizyka 25

Bardziej szczegółowo

LHC i po co nam On. Piotr Traczyk CERN

LHC i po co nam On. Piotr Traczyk CERN LHC i po co nam On Piotr Traczyk CERN LHC: po co nam On Piotr Traczyk CERN Detektory przy LHC Planowane są 4(+2) eksperymenty na LHC ATLAS ALICE CMS LHCb 5 Program fizyczny LHC 6 Program fizyczny LHC

Bardziej szczegółowo

y + p(t)y + q(t)y = 0. (1) Z rozwiązywaniem równań przez szeregi potęgowe związane są pewne definicje.

y + p(t)y + q(t)y = 0. (1) Z rozwiązywaniem równań przez szeregi potęgowe związane są pewne definicje. 1 Szeregi potęgowe Poszukiwanie rozwiązań równań różniczkowych zwyczajnych w postaci szeregów potęgowych, zwane metodą Frobeniusa, jest bardzo ogólną metodą. Rozważmy równanie y + p(t)y + q(t)y = 0. (1)

Bardziej szczegółowo

Podstawy fizyki: Budowa materii. Podstawy fizyki: Mechanika MS. Podstawy fizyki: Mechanika MT. Podstawy astronomii. Analiza matematyczna I, II MT

Podstawy fizyki: Budowa materii. Podstawy fizyki: Mechanika MS. Podstawy fizyki: Mechanika MT. Podstawy astronomii. Analiza matematyczna I, II MT Zajęcia wyrównawcze z matematyki Zajęcia wyrównawcze z fizyki Analiza matematyczna I, II MS Analiza matematyczna I, II MT Podstawy fizyki: Budowa materii Podstawy fizyki: Mechanika MS Podstawy fizyki:

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

Kierunek: Fizyka, rok I, specjalność: Akustyka i realizacja dźwięku Rok akademicki 2017/2018

Kierunek: Fizyka, rok I, specjalność: Akustyka i realizacja dźwięku Rok akademicki 2017/2018 Kierunek: Fizyka, rok I, specjalność: ustyka i realizacja dźwięku Rok akademicki 2017/2018 Filozofia przyrody F 1 30 30 5 x Metody uczenia się i studiowania F 1 15 1 Technologia informacyjna F 1 30 2 Analiza

Bardziej szczegółowo

Kwantowa teoria wzgl dno±ci

Kwantowa teoria wzgl dno±ci Instytut Fizyki Teoretycznej Uniwersytetu Warszawskiego Festiwal Nauki, 16 wrze±nia 2006 Plan wykªadu Grawitacja i geometria 1 Grawitacja i geometria 2 3 Grawitacja Grawitacja i geometria wedªug Newtona:

Bardziej szczegółowo

Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony

Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY

Bardziej szczegółowo

Zginanie proste belek

Zginanie proste belek Zginanie belki występuje w przypadku obciążenia działającego prostopadle do osi belki Zginanie proste występuje w przypadku obciążenia działającego w płaszczyźnie głównej zx Siły przekrojowe w belkach

Bardziej szczegółowo

Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 7

Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 7 Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 7 Lang: Pole powierzchni kuli Nierówność dla objętości skorupki: (pow. małej kuli) h objętość skorupki

Bardziej szczegółowo

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Wiedza z zakresu analizy I i algebry I

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Wiedza z zakresu analizy I i algebry I WYDZIAŁ MECHANICZNY (w j. angielskim) Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim FIZYKA OGÓLNA Nazwa w języku angielskim GENERAL PHYSICS Kierunek studiów (jeśli dotyczy) MiBM Specjalność

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24 SPIS TREŚCI WYRAŻENIA ALGEBRAICZNE RÓWNANIA I NIERÓWNOŚCI ALGEBRAICZNE 7 Wyrażenia algebraiczne 0 Równania i nierówności algebraiczne LICZBY RZECZYWISTE 4 Własności liczb całkowitych 8 Liczby rzeczywiste

Bardziej szczegółowo

MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO

MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO 2016-09-01 MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO SZKOŁY BENEDYKTA Ramowy rozkład materiału Klasa II I. Trójmian kwadratowy II. Wielomiany III. Funkcja wymierna IV. Funkcje dowolnego argumentu V.

Bardziej szczegółowo

Przeszłość i perspektywy protofizyki

Przeszłość i perspektywy protofizyki Jan Czerniawski Przeszłość i perspektywy protofizyki Koncepcje protofizyki: dział protonauki (przednaukowa refleksja poprzedzająca powstanie dojrzałej postaci fizyki lub teorii fizykalnej) 2 Koncepcje

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA

REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA Opis układu cząsteczek w mechanice kwantowej: 1. Funkcja falowa, 2. Wektora stanu ψ. TRANSFORMACJE UKŁADU CZĄSTEK: 1.

Bardziej szczegółowo

Czego oczekujemy od LHC? Piotr Traczyk. IPJ Warszawa

Czego oczekujemy od LHC? Piotr Traczyk. IPJ Warszawa Czego oczekujemy od LHC? Piotr Traczyk IPJ Warszawa Plan 1)Dwa słowa o LHC 2)Eksperymenty i program fizyczny 3)Kilka wybranych tematów - szczegółowo 2 LHC Large Hadron Collider UWAGA! Start jeszcze w tym

Bardziej szczegółowo

Geometria. Rodzaje i własności figur geometrycznych:

Geometria. Rodzaje i własności figur geometrycznych: Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni

Bardziej szczegółowo

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu dla studentów geofizyki

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu dla studentów geofizyki MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu dla studentów geofizyki Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna

Bardziej szczegółowo

3. Model Kosmosu A. Einsteina

3. Model Kosmosu A. Einsteina 19 3. Model Kosmosu A. Einsteina Pierwszym rozwiązaniem równań pola grawitacyjnego w 1917 r. było równanie hiperpowierzchni kuli czterowymiarowej, przy założeniu, że materia kosmiczna tzw. substrat jest

Bardziej szczegółowo

Załącznik nr 3 do zarządzenia nr 118 Rektora UJ z 19 grudnia 2016 r.

Załącznik nr 3 do zarządzenia nr 118 Rektora UJ z 19 grudnia 2016 r. Załącznik nr 3 do zarządzenia nr 118 Rektora UJ z 19 grudnia 2016 r. Plan studiów na kierunku studiów wyższych: astronomia, studia pierwszego stopnia profil ogólnoakademicki Rekomendacje dla studentów.

Bardziej szczegółowo

Kierunek: Fizyka, rok I, specjalność: Akustyka i realizacja dźwięku Rok akademicki 2018/2019

Kierunek: Fizyka, rok I, specjalność: Akustyka i realizacja dźwięku Rok akademicki 2018/2019 Kierunek: Fizyka, rok I, specjalność: Akustyka i realizacja dźwięku Rok akademicki 018/019 Filozofia przyrody F 1 Metody uczenia się i studiowania F 1 Technologia informacyjna F 1 Analiza matematyczna

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Ł Ł Ś Ó ć ć ć Ą Ć ć ć Ł Ś Ą Ó Ń Ą ź ź ź Ń ć ć Ł ć Ł Ł Ł Ś Ó Ń ć ć Ł ć Ł ć ć Ś Ł ć Ą Ą ź ź ź ć ć ć Ńć ć Ś Ś Ś Ń Ą ć ć ć ć ć Ń Ą Ł ź ź Ą ź ź ć ć ź ć Ą ć ć ć ź ź ź Ą ź ź ź ź ź ź ć ć ć ć ć ć ć Ą ć ć ź ć ć

Bardziej szczegółowo

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,

Bardziej szczegółowo

Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski

Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Cząstki elementarne wprowadzenie Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Historia badania struktury materii XVII w.: ruch gwiazd i planet, zasady dynamiki, teoria grawitacji, masa jako

Bardziej szczegółowo

Analiza wyników matury 2017 z matematyki. Mieczysław Fałat OKE we Wrocławiu

Analiza wyników matury 2017 z matematyki. Mieczysław Fałat OKE we Wrocławiu Analiza wyników matury 2017 z matematyki Mieczysław Fałat OKE we Wrocławiu Poziom podstawowy egzaminu, maj 2017 Arkusz dla poziomu podstawowego (nowa formuła) 25 zadań zamkniętych WW1 (0-1) 9 zadań otwartych

Bardziej szczegółowo

Analiza matematyczna / Witold Kołodziej. wyd Warszawa, Spis treści

Analiza matematyczna / Witold Kołodziej. wyd Warszawa, Spis treści Analiza matematyczna / Witold Kołodziej. wyd. 5. - Warszawa, 2010 Spis treści Wstęp 1. Podstawowe pojęcia mnogościowe 13 1. Zbiory 13 2. Działania na zbiorach 14 3. Produkty kartezjańskie 15 4. Relacje

Bardziej szczegółowo

Matematyka Szkoła podstawowa

Matematyka Szkoła podstawowa Matematyka Szkoła podstawowa Podstawowe założenia, filozofia zmiany i kierunki działania Autorzy: Maciej Borodzik, Regina Pruszyńska Założenia Dostosowanie treści nauczania do rozwoju dziecka. Zachowanie

Bardziej szczegółowo

Cząstki elementarne i ich oddziaływania III

Cząstki elementarne i ich oddziaływania III Cząstki elementarne i ich oddziaływania III 1. Przekrój czynny. 2. Strumień cząstek. 3. Prawdopodobieństwo procesu. 4. Szybkość reakcji. 5. Złota Reguła Fermiego 1 Oddziaływania w eksperymencie Oddziaływania

Bardziej szczegółowo

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów

Bardziej szczegółowo

EiT_S_I_F1. Elektronika I Telekomunikacja I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

EiT_S_I_F1. Elektronika I Telekomunikacja I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu EiT_S_I_F1 Nazwa modułu FIZYKA 1 Nazwa modułu w języku angielskim Physics 1 Obowiązuje od roku akademickiego 01/013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo

Szczegółowy program właściwy dla standardowej ścieżki kształcenia na kierunku astronomia. Semestr I. 60 120 14 Egzamin. 45 75 9 Egzamin 75 2.

Szczegółowy program właściwy dla standardowej ścieżki kształcenia na kierunku astronomia. Semestr I. 60 120 14 Egzamin. 45 75 9 Egzamin 75 2. B3. Program studiów liczba punktów konieczna dla uzyskania kwalifikacji (tytułu zawodowego) określonej dla rozpatrywanego programu kształcenia - 180 łączna liczba punktów, którą student musi uzyskać na

Bardziej szczegółowo

VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)

VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3) VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)

Bardziej szczegółowo

Modele i teorie w kosmologii współczesnej przykładem efektywnego wyjaśniania w nauce

Modele i teorie w kosmologii współczesnej przykładem efektywnego wyjaśniania w nauce Modele i teorie w kosmologii współczesnej przykładem efektywnego wyjaśniania w nauce ks. Paweł Tambor Wydział Filozofii, Katedra Fizyki Teoretycznej Katolicki Uniwersytet Lubelski Jana Pawła II Przyrodoznawstwo

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era

Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era Kryteria Znajomość pojęć, definicji, własności oraz

Bardziej szczegółowo

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia: Informacje ogólne Fizyka 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych, Zakład

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ

ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z

Bardziej szczegółowo

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem..1. Całka podwójna po prostokącie.. CAŁKA POWÓJNA.. Całka podwójna po obszarach normalnych..3. Całka podwójna po obszarach regularnych..4.

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium 30 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium 30 30 Zał. nr do ZW 33/01 WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim Podstawy fizyki kwantowej Nazwa w języku angielskim Fundamental of Quantum Physics Kierunek studiów (jeśli

Bardziej szczegółowo

Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii

Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii Fizyka Wydział Zarządzania i Ekonomii Kontakt z prowadzącym zajęcia dr Paweł Możejko 1e GG Konsultacje poniedziałek 9:00-10:00 paw@mif.pg.gda.pl Rok akademicki 2013/2014 Program Wykładu Mechanika Kinematyka

Bardziej szczegółowo