Rekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)!
|
|
- Joanna Stefańska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Pseudokod: silnia(n): jeżeli n == 0 silnia = 1 w przeciwnym wypadku silnia = n * silnia(n-1) 1
2 Realizacja w C++ #include <iostream> using namespace std; double silnia(int n){ // funkcja typu double, aby zwiększyć zakres wyniku if (n == 0) return 1; else return n * silnia(n-1); } int main(){ int n; cin >> n; cout << silnia(n); } 2
3 Metoda dziel i zwyciężaj Dzielimy problem na kilka mniejszych podproblemów podobnych do problemu wyjściowego i rozwiązujemy je rekurencyjnie. Na koniec rozwiązania są łączone w celu utworzenia rozwiązania całego problemu. Dziel: Dzielimy problem na podproblemy. Zwyciężaj: Rozwiązujemy podproblemy rekurencyjnie, o ile nie są zbyt małego rozmiaru. W takim przypadku używamy metod bezpośrednich. Połącz: Łączymy rozwiązania podproblemów, aby otrzymać rozwiązanie całego problemu. 3
4 Metoda dziel i zwyciężaj dla sortowania przez scalanie: Dziel: Dzielimy n-elementowy ciąg na dwa podciągi, po n/2 elementów każdy. Zwyciężaj: Sortujemy otrzymane podciągi, używając rekurencyjnie sortowania przez scalanie. Połącz: Łączymy posortowane podciągi w jeden posortowany ciąg. 4
5 Procedura scalania Mamy dwa posortowane podciągi, chcemy je połączyć w jeden posortowany ciąg. W tym celu cyklicznie bierzemy mniejszą z liczb znajdujących się na początku obu podciągów i wstawiamy ją do ciągu posortowanego. Operacja ta odbywa się w czasie Θ(n). Pseudokod mergesort(t,d,g): // T-tablica, d,g - przedział jeżeli d<g s = (d+g) div 2 // dzielenie całkowite mergesort(t,d,s) mergesort(t,s+1,g) merge(t,d,s,g) Początkowe wywołanie procedury: mergesort(t,1,n) 5
6 Analiza algorytmu Dla tablicy jednoelementowej sortowanie działa oczywiście w czasie stałym Θ(1). Załóżmy, że n>1. Niech F(n) będzie czasem potrzebnym na rozwiązanie problemu o rozmiarze n. Dla sortowania przez scalanie: F(n) = Θ(1) + 2 F(n/2) + Θ(n) = 2 F(n/2) + Θ(n) = Θ(n log 2 n) (dziel) (zwyciężaj) (połącz) Przypomnienie: sortowanie przez wstawianie działa w czasie Θ(n 2 ). 6
7 Sortowanie szybkie quicksort Aby posortować tablicę, dzielimy ją na dwie części ze względu na wybrany element tablicy tak, żeby wszystkie elementy mniejsze od tego wybranego znalazły się po lewej stronie a większe po prawej. Następnie sortujemy rekurencyjnie każdą z części. Rekurencja kończy się, gdy przedział ma mniej niż 2 elementy. Szkielet kodu procedury sortującej: qsort(d,g): jeżeli fragment tablicy składa się z co najmniej 2 elementów, to: podziel elementy tablicy np. ze względu na wartość T[d] // w wyniku podziału wartość T[d] powinna znaleźć się // na właściwym miejscu s wewnątrz tablicy // oraz powinien spełniony być warunek: // T[d]... T[s-1] < T[s] <= T[s+1]... T[g] qsort(d, s-1) // posortuj dolną część tablicy qsort(s+1, g) // posortuj górną część tablicy Złożoność obliczeniowa: O(n log 2 n) 7
8 Przykładowy szkielet kodu rozdzielającego elementy tablicy: element_graniczny = T[d] // rozdzielamy względem pierwszego elementu srodek = d pętla od i = d+1 do i = g jeżeli element T[i] < element_graniczny srodek = srodek+1 zamień T[srodek] z T[i] zamień T[d] z T[srodek] Optymalizacja 1. Udoskonalenie metody znajdowania elementu środkowego, według którego rozdzielane są elementy tablicy (pytanie: kiedy przyjęta wyżej metoda rozdzielania względem pierwszego elementu tablicy jest mało efektywna?); 2. Poszukanie efektywniejszych metod rozdzielania elementów tablicy lub usprawnienie zaproponowanej powyżej; 3. Zoptymalizowanie kodu programu (np. rozwijanie kodu funkcji wewnątrz pętli zamiast jej wywołań); 4. Zastosowanie sortowania przez wstawianie dla wstępnie posortowanych metodą szybką małych fragmentów tablic. 8
9 Sortowanie przez kopcowanie (sortowanie stogowe) Kopiec (stóg, sterta), ang. heap Struktura danych reprezentacja zbioru elementów (np. liczb), mająca postać tzw. drzewa binarnego. Zastosowania: sortowanie przez kopcowanie porządkuje n-elementową tablicę w czasie Θ(n log n), kolejki priorytetowe: określanie operacji w zbiorze, służących do dodawania nowego elementu oraz usuwania elementu najmniejszego w czasie O(log n). Przykład kopca: 9
10 Własności kopca: 1. Uporządkowanie. Wartość każdego wierzchołka (ojca) jest nie większa niż wartości jego synów. Wniosek: najmniejszy element zbioru znajduje się w korzeniu drzewa. Nic jednak nie wiemy o wzajemnym uporządkowaniu lewego i prawego syna. 2. Kształt Synowie znajdują się na jednym lub więcej poziomach, a te na najniższym poziomie (liście) są przesunięte jak najbardziej w lewo. Wniosek: jeżeli drzewo zawiera n wierzchołków, to żaden z nich nie jest bardziej oddalony od korzenia niż o (log n) węzłów. Własności 1 i 2 są warunkami na tyle silnymi, żeby umożliwić szybkie odnalezienie elementu najmniejszego w zbiorze a jednocześnie umożliwiają szybką reorganizację struktury kopca po dodaniu lub usunięciu z niego elementu. 10
11 Realizacja kopca za pomocą tablicy: korzeń = 1 wartość(i) = x[i] lewysyn(i) = 2*i prawysyn(i) = 2*i+1 ojciec(i) = i div 2 Tablica x={12,20,15,29,23,17,22,35,40,26,51,19} Uwaga: w C/C++ tablice indeksujemy od zera a nie od jedynki! Ściśle: Tablica x[1...n] jest kopcem, jeżeli 2 i n x[i div 2] x[i]. Mówimy, że zachodzi kopiec(1,n). Fragment tablicy x[d...g] jest kopcem (czyli zachodzi kopiec(d,g)), jeżeli 2d i g x[i div 2] x[i]. 11
12 Procedury porządkowania kopca 1. Załóżmy, że x[1...n-1] jest kopcem i dodajmy nowy element x[n]. Prawdopodobnie x[1...n] nie jest już kopcem. Procedura przywracania własności kopca dla tablicy x[1...n]: Procedura dogóry(n): Przemieszczamy nowy element w górę drzewa tak daleko, jak powinien dotrzeć, zamieniając go po drodze z ojcem. Kończymy, gdy przemieszczany element stanie się większy lub równy ojcu. Uwaga: droga w górę drzewa to malejące indeksy w tablicy. Koszt operacji: O(log n). 12
13 2. Jeżeli w kopcu x[1...n] na pozycji x[1] przypiszemy nową wartość, to warunek kopiec(2,n) pozostanie prawdziwy. Procedura przywracania własności kopiec(1,n): Procedura nadół(n): Przemieszczamy element x[1] w dół drzewa (indeksy rosną!), zamieniając go po drodze z mniejszym synem, aż do chwili kiedy nie ma on już żadnych synów albo jest od nich mniejszy lub równy. Koszt operacji: O(log n). 13
14 Kolejki priorytetowe Kolejka umożliwia operację dodania i usunięcia elementu z pewnej ich sekwencji, w naszym przypadku struktury kopca. Początkowo kolejkę stanowi pusty zbiór S. Procedura wstaw(t) wstawia do kolejki nowy element t: wstaw(t): S = S {t} n++ dogóry(n) 14
15 Procedura usunmin() usuwa najmniejszy element zbioru: usunmin(): S = S \ {t} i t = min(s) S[1] = S[n] n-- nadół(n) Ostateczna postać algorytmu sortowania przez kopcowanie: pętla od i=1 do n wstaw(x[i]) // Utworzenie kopca pętla od i=1 do n usunmin() // Zdejmowanie z kopca el. najmn. Pesymistyczny i średni koszt operacji: Θ(n log n). 15
16 Sortowanie za pomocą porównań Porządek wyjściowy jest wyznaczany jedynie na podstawie wyników porównań między elementami. sortowanie przez wstawianie sortowanie przez scalanie sortowanie przez kopcowanie sortowanie szybkie (quicksort) Dolne ograniczenie sortowania za pomocą porównań Twierdzenie: Dolne ograniczenie sortowania n elementów za pomocą porównań, wynosi Ω(n log n). Wniosek: Sortowanie przez kopcowanie, scalanie oraz quicksort są asymptotycznie optymalnymi algorytmami sortującymi za pomocą porównań. 16
17 Sortowanie przez zliczanie Założenie: każdy z n sortowanych elementów jest liczbą całkowitą z przedziału od 1 do k dla pewnego ustalonego k. Idea: dla każdego elementu wejściowego x należy wyznaczyć, ile elementów jest mniejszych od x. Znając te liczbę, znamy jednocześnie dokładną pozycję liczby x w ciągu posortowanym. Przykład: jeżeli od x jest mniejszych 17 elementów, to x powinien się znaleźć na miejscu 18 w ciągu posortowanym (przy założeniu, że elementy nie mogą się powtarzać). 17
18 Implementacja Tablica A elementy wejściowe; B elementy wyjściowe (posortowane); C dane pomocnicze Counting-Sort(A, B, k): pętla od i=1 do k C[i]=0 pętla od j=1 do n C[A[j]] = C[A[j]]+1 // C[i] zawiera teraz liczbę elementów równych i pętla od i=2 do k C[i] = C[i] + C[i-1] // C[i] zawiera liczbę elementów mniejszych lub równych i pętla od i=n do 1 B[C[A[i]]] = A[i] C[A[i]] = C[A[i]]-1 Pętla 1: inicjalizacja. Pętla 2: zliczenie elementów równych indeksowi tablicy. Pętla 3: zliczenie elementów mniejszych lub równych indeksowi tablicy. Pętla 4: zapisanie wyników do wyjściowej tablicy; zmniejszenie zawartości tablicy C w celu uniknięcia konfliktu przy powtarzających się liczbach. 18
19 Ilustracja działania procedury a) stan po wykonaniu drugiej pętli, b) stan po wykonaniu 3 pętli, c) d) e) stan po wykonaniu odpowiednio 1, 2, 3 iteracji w czwartej pętli, f) ostateczna zawartość tablicy wyjściowej. 19
20 Czas działania W algorytmie nie występują porównania elementów, zatem nie ma tu zastosowania twierdzenie dotyczące dolnego ograniczenia dla metod sortowania przez porównanie. Pierwsza pętla: Druga pętla: Trzecia pętla: Czwarta pętla: k wykonań, n wykonań, k wykonań, n wykonań, Razem liczba operacji: O(n+k). W praktyce najczęściej k=o(n), zatem czas działania procedury wynosi w takim przypadku O(n) mniej niż czas Ω(n log n). Algorytm jest stabilny (nie zmienia kolejności takich samych liczb w tablicy wynikowej). 20
21 Sortowanie pozycyjne polega na sortowaniu liczby według najmniej znaczącej cyfry, proces jest powtarzany dla wszystkich cyfr dla pewnych długości elementów do posortowania oraz ich liczby, algorytm działa w czasie liniowym (oczywiście przy odpowiednim wyborze algorytmu sortującego wg kolejnej cyfry najczęściej stosuje się zliczanie) 21
22 Sortowanie kubełkowe polega na utworzeniu kubełków pojemników, w których są przechowywane liczby przeznaczone do posortowania kubełki tworzymy poprzez podzielenie przedziału, do jakiego należą sortowane liczby na szereg podprzedziałów liczby wrzucamy do odpowiedniego kubełka, sortujemy w każdym z nich i wypisujemy od kubełka pierwszego do ostatniego a) tablica do posortowania b) 10 kubełków i liczby, które do nich należą; liczby (po posortowaniu np. przez wstawianie) są wyświetlane od kubełka o najniższym numerze (B[0]) do tego o najwyższym. Operacja ta wykonywana jest w czasie liniowym O(n). 22
Efektywna metoda sortowania sortowanie przez scalanie
Efektywna metoda sortowania sortowanie przez scalanie Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Metoda dziel i zwycięŝaj Dzielimy
Bardziej szczegółowoMożliwości i ograniczenia komputerów
Możliwości i ograniczenia komputerów Komputer potrafi przeanalizować ogromną ilość danych pochodzących np. z wielu zdjęć rentgenowskich ludzkiego mózgu wykonanych pod stopniowo zwiększanym kątem, tworząc
Bardziej szczegółowoStrategia "dziel i zwyciężaj"
Strategia "dziel i zwyciężaj" W tej metodzie problem dzielony jest na kilka mniejszych podproblemów podobnych do początkowego problemu. Problemy te rozwiązywane są rekurencyjnie, a następnie rozwiązania
Bardziej szczegółowoSortowanie przez scalanie
Sortowanie przez scalanie Wykład 2 12 marca 2019 (Wykład 2) Sortowanie przez scalanie 12 marca 2019 1 / 17 Outline 1 Metoda dziel i zwyciężaj 2 Scalanie Niezmiennik pętli - poprawność algorytmu 3 Sortowanie
Bardziej szczegółowoAlgorytmy i Struktury Danych
Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu
Bardziej szczegółowoSortowanie w czasie liniowym
Sortowanie w czasie liniowym 1 Sortowanie - zadanie Definicja (dla liczb): wejście: ciąg n liczb A = (a 1, a 2,, a n ) wyjście: permutacja (a 1,, a n ) taka, że a 1 a n Po co sortować? Podstawowy problem
Bardziej szczegółowoSortowanie bąbelkowe
1/98 Sortowanie bąbelkowe (Bubble sort) prosty i nieefektywny algorytm sortowania wielokrotnie przeglądamy listę elementów, porównując dwa sąsiadujące i zamieniając je miejscami, jeśli znajdują się w złym
Bardziej szczegółowoAnaliza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
Bardziej szczegółowoDefinicja. Ciąg wejściowy: Funkcja uporządkowująca: Sortowanie polega na: a 1, a 2,, a n-1, a n. f(a 1 ) f(a 2 ) f(a n )
SORTOWANIE 1 SORTOWANIE Proces ustawiania zbioru elementów w określonym porządku. Stosuje się w celu ułatwienia późniejszego wyszukiwania elementów sortowanego zbioru. 2 Definicja Ciąg wejściowy: a 1,
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Metoda Dziel i zwyciężaj. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy
Bardziej szczegółowoSortowanie - wybrane algorytmy
Sortowanie - wybrane algorytmy Aleksandra Wilkowska Wydział Matematyki - Katedra Matematyki Stosowanej Politechika Wrocławska 2 maja 2018 1 / 39 Plan prezentacji Złożoność obliczeniowa Sortowanie bąbelkowe
Bardziej szczegółowoWykład 5. Sortowanie w czasie liniowologarytmicznym
Wykład 5 Sortowanie w czasie liniowologarytmicznym 1 Sortowanie - zadanie Definicja (dla liczb): wejście: ciąg n liczb A = (a 1, a 2,, a n ) wyjście: permutacja (a 1,, a n ) taka, że a 1 a n 2 Zestawienie
Bardziej szczegółowoSortowanie danych. Jolanta Bachan. Podstawy programowania
Sortowanie danych Podstawy programowania 2013-06-06 Sortowanie przez wybieranie 9 9 9 9 9 9 10 7 7 7 7 7 10 9 1 3 3 4 10 7 7 10 10 10 10 4 4 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 3 1 1 1 1 1 1 Gurbiel et al. 2000
Bardziej szczegółowoPodstawy algorytmiki i programowania - wykład 6 Sortowanie- algorytmy
1 Podstawy algorytmiki i programowania - wykład 6 Sortowanie- algorytmy Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com
Bardziej szczegółowoKolejka priorytetowa. Często rozważa się kolejki priorytetowe, w których poszukuje się elementu minimalnego zamiast maksymalnego.
Kolejki Kolejka priorytetowa Kolejka priorytetowa (ang. priority queue) to struktura danych pozwalająca efektywnie realizować następujące operacje na zbiorze dynamicznym, którego elementy pochodzą z określonego
Bardziej szczegółowoTeoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 4a: Rozwiązywanie rekurencji http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Czas działania programu Dla konkretnych
Bardziej szczegółowoALGORYTMY I STRUKTURY DANYCH
ALGORYTMY I STRUKTURY DANYCH Temat : Drzewa zrównoważone, sortowanie drzewiaste Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/
Bardziej szczegółowoRekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:
Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n
Bardziej szczegółowoProgramowanie w VB Proste algorytmy sortowania
Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich
Bardziej szczegółowoSortowanie. Bartman Jacek Algorytmy i struktury
Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39
Bardziej szczegółowoAlgorytm selekcji Hoare a. Łukasz Miemus
Algorytm selekcji Hoare a Łukasz Miemus 1 lutego 2006 Rozdział 1 O algorytmie 1.1 Problem Mamy tablicę A[N] różnych elementów i zmienną int K, takie że 1 K N. Oczekiwane rozwiązanie to określenie K-tego
Bardziej szczegółowoAlgorytmy i struktury danych Sortowanie IS/IO, WIMiIP
Algorytmy i struktury danych Sortowanie IS/IO, WIMiIP Danuta Szeliga AGH Kraków Spis treści I 1 Wstęp 2 Metody proste 3 Szybkie metody sortowania 4 Algorytmy hybrydowe Sortowanie hybrydowe Sortowanie introspektywne
Bardziej szczegółowoKOPCE KOLEJKI PRIORYTETOWE - PRZYPOMNIENIE KOPCE WYSOKOŚĆ KOPCA KOPCE I KOLEJKI PRIORYTETOWE PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI
PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI KOPCE, ALGORYTMY SORTOWANIA KOPCE Wykład dr inż. Łukasz Jeleń Na podstawie wykładów dr. T. Fevensa KOLEJKI PRIORYTETOWE - PRZYPOMNIENIE Możemy wykorzystać
Bardziej szczegółowoPodstawy Informatyki. Sprawność algorytmów
Podstawy Informatyki Sprawność algorytmów Sprawność algorytmów Kryteria oceny oszczędności Miara złożoności rozmiaru pamięci (złożoność pamięciowa): Liczba zmiennych + liczba i rozmiar struktur danych
Bardziej szczegółowoPodstawowe algorytmy i ich implementacje w C. Wykład 9
Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny
Bardziej szczegółowoZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.
POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie
Bardziej szczegółowoAlgorytmy i Struktury Danych, 2. ćwiczenia
Algorytmy i Struktury Danych, 2. ćwiczenia 2017-10-13 Spis treści 1 Optymalne sortowanie 5 ciu elementów 1 2 Sortowanie metodą Shella 2 3 Przesunięcie cykliczne tablicy 3 4 Scalanie w miejscu dla ciągów
Bardziej szczegółowoZadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.
Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy
Bardziej szczegółowoMatematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce
Bardziej szczegółowoLaboratoria nr 1. Sortowanie
Laboratoria nr 1 Sortowanie 1. Sortowanie bąbelkowe (BbS) 2. Sortowanie przez wstawianie (IS) 3. Sortowanie przez wybieranie (SS) 4. Sortowanie przez zliczanie (CS) 5. Sortowanie kubełkowe (BS) 6. Sortowanie
Bardziej szczegółowoTEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie
Bardziej szczegółowoAlgorytmy sortujące 1
Algorytmy sortujące 1 Sortowanie Jeden z najczęściej występujących, rozwiązywanych i stosowanych problemów. Ułożyć elementy listy (przyjmujemy: tablicy) w rosnącym porządku Sortowanie może być oparte na
Bardziej szczegółowoAlgorytmy sortujące i wyszukujące
Algorytmy sortujące i wyszukujące Zadaniem algorytmów sortujących jest ułożenie elementów danego zbioru w ściśle określonej kolejności. Najczęściej wykorzystywany jest porządek numeryczny lub leksykograficzny.
Bardziej szczegółowoWykład 2. Poprawność algorytmów
Wykład 2 Poprawność algorytmów 1 Przegląd Ø Poprawność algorytmów Ø Podstawy matematyczne: Przyrost funkcji i notacje asymptotyczne Sumowanie szeregów Indukcja matematyczna 2 Poprawność algorytmów Ø Algorytm
Bardziej szczegółowoLaboratoria nr 1. Sortowanie
Laboratoria nr 1 Sortowanie 1. Sortowanie bąbelkowe (BbS) 2. Sortowanie przez wstawianie (IS) 3. Sortowanie przez wybieranie (SS) 4. Sortowanie przez zliczanie (CS) 5. Sortowanie kubełkowe (BS) 6. Sortowanie
Bardziej szczegółowoAlgorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
Bardziej szczegółowoEGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
Bardziej szczegółowoProgramowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni. Wykład 3. Karol Tarnowski A-1 p.
Programowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni Wykład 3 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Co to jest algorytm? Zapis algorytmów Algorytmy
Bardziej szczegółowoZadanie projektowe 1: Struktury danych i złożoność obliczeniowa
Łukasz Przywarty 171018 Data utworzenia: 24.03.2010r. Mariusz Kacała 171058 Prowadzący: prof. dr hab. inż. Adam Janiak oraz dr inż. Tomiasz Krysiak Zadanie projektowe 1: Struktury danych i złożoność obliczeniowa
Bardziej szczegółowoWstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy. Wykład 9. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy Wykład 9 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji Zasada dziel i zwyciężaj Przykłady znajdowanie
Bardziej szczegółowoTeoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 6a Model danych oparty na drzewach 1 Model danych oparty na drzewach Istnieje wiele sytuacji w których przetwarzane informacje mają strukturę hierarchiczną lub zagnieżdżoną,
Bardziej szczegółowoZaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)
Bardziej szczegółowoprowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325
PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj
Bardziej szczegółowoWstęp do programowania
Wstęp do programowania Rekurencja, metoda dziel i zwyciężaj Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. VIII Jesień 2014 1 / 27 Rekurencja Recursion See Recursion. P. Daniluk(Wydział
Bardziej szczegółowoAnaliza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe 15 stycznia 2019 Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r P Jaka wartość zostanie zwrócona
Bardziej szczegółowoREKURENCJA W JĘZYKU HASKELL. Autor: Walczak Michał
REKURENCJA W JĘZYKU HASKELL Autor: Walczak Michał CZYM JEST REKURENCJA? Rekurencja zwana rekursją, polega na wywołaniu przez funkcję samej siebie. Algorytmy rekurencyjne zastępują w pewnym sensie iteracje.
Bardziej szczegółowoWykład 3. Metoda dziel i zwyciężaj
Wykład 3 Metoda dziel i zwyciężaj 1 Wprowadzenie Technika konstrukcji algorytmów dziel i zwyciężaj. przykładowe problemy: Wypełnianie planszy Poszukiwanie (binarne) Sortowanie (sortowanie przez łączenie
Bardziej szczegółowoINFORMATYKA SORTOWANIE DANYCH.
INFORMATYKA SORTOWANIE DANYCH http://www.infoceram.agh.edu.pl SORTOWANIE Jest to proces ustawiania zbioru obiektów w określonym porządku. Sortowanie stosowane jest w celu ułatwienia późniejszego wyszukania
Bardziej szczegółowoWykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy
Wykład 3 Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Dynamiczne struktury danych Lista jest to liniowo uporządkowany zbiór elementów, z których dowolny element
Bardziej szczegółowoJeszcze o algorytmach
Jeszcze o algorytmach Przykłady różnych, podstawowych algorytmów 11.01.2018 M. Rad Plan Powtórka Znajdowanie najmniejszego elementu Segregowanie Poszukiwanie przez połowienie Wstawianie Inne algorytmy
Bardziej szczegółowoKODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F
KODY SYMBOLI Kod Shannona-Fano KODOWANIE DANYCH, A.Przelaskowski Metoda S-F Kod Huffmana Adaptacyjne drzewo Huffmana Problemy implementacji Kod Golomba Podsumowanie Kod drzewa binarnego Na wejściu rozkład:
Bardziej szczegółowoSortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania:
Sortowanie Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: podać strukturę danych dla elementów dynamicznego skończonego multi-zbioru S, względem którego są wykonywane następujące
Bardziej szczegółowoWstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline Zasada dziel i rządź i analiza złożoności 1 Zasada dziel i rządź i analiza złożoności Definition : Zbiór wartości: nieograniczonej
Bardziej szczegółowoPorównanie czasów działania algorytmów sortowania przez wstawianie i scalanie
Więcej o sprawności algorytmów Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Załóżmy, że możemy wykonać dane zadanie przy użyciu dwóch algorytmów: jednego o złożoności czasowej
Bardziej szczegółowoSortowanie. LABORKA Piotr Ciskowski
Sortowanie LABORKA Piotr Ciskowski main Zaimplementuj metody sortowania przedstawione w następnych zadaniach Dla każdej metody osobna funkcja Nagłówek funkcji wg uznania ale wszystkie razem powinny być
Bardziej szczegółowoAlgorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
Bardziej szczegółowoProgramowanie Proceduralne
Programowanie Proceduralne Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 1 / 59 Cel wykładów z programowania
Bardziej szczegółowoPodyplomowe Studium Programowania i Systemów Baz Danych
Podyplomowe Studium Programowania i Systemów Baz Danych Algorytmy, struktury danych i techniki programowania 15 godz. wykładu / 15 godz. laboratorium dr inż. Paweł Syty, 413GB, sylas@mif.pg.gda.pl, http://sylas.info
Bardziej szczegółowoProblemy porządkowe zadania
Problemy porządkowe Problemy porządkowe zadania Problemy porządkowe to zbiór różnych zadań obliczeniowych związanych z porządkowaniem zbioru danych i wyszukiwaniem informacji na takim zbiorze. Rodzaje
Bardziej szczegółowoTeoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 6b: Model danych oparty na drzewach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na drzewach
Bardziej szczegółowoliniowa - elementy następują jeden za drugim. Graficznie możemy przedstawić to tak:
Sortowanie stogowe Drzewo binarne Binary Tree Dotychczas operowaliśmy na prostych strukturach danych, takich jak tablice. W tablicy elementy ułożone są zgodnie z ich numeracją, czyli indeksami. Jeśli za
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Organizacja wykładu. Problem Sortowania. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury
Bardziej szczegółowoWyszukiwanie. Wyszukiwanie binarne
Wyszukiwanie Wejście: posortowana, n-elementowa tablica liczbowa T oraz liczba p. Wyjście: liczba naturalna, określająca pozycję elementu p w tablicy T, bądź 1, jeŝeli element w tablicy nie występuje.
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład
Bardziej szczegółowoWstęp do programowania
Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie
Bardziej szczegółowoRekurencja. Przygotowała: Agnieszka Reiter
Rekurencja Przygotowała: Agnieszka Reiter Definicja Charakterystyczną cechą funkcji (procedury) rekurencyjnej jest to, że wywołuje ona samą siebie. Drugą cechą rekursji jest jej dziedzina, którą mogą być
Bardziej szczegółowoAlgorytmy i struktury danych
Algorytmy i struktury danych Zaawansowane algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Sortowanie za pomocą malejących przyrostów metoda Shella Metoda jest rozwinięciem metody sortowania
Bardziej szczegółowoAlgorytmy i Struktury Danych. (c) Marcin Sydow. Introduction. QuickSort. Sortowanie 2. Limit. CountSort. RadixSort. Summary
Sortowanie 2 Zawartość wykładu: Własność stabilności algorytmów sortujących algorytm sortowania szybkiego () czy można sortować szybciej niż ze złożonością Θ(n log(n))? algorytm sortowania przez zliczanie
Bardziej szczegółowoStruktury danych: stos, kolejka, lista, drzewo
Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja
Bardziej szczegółowo5. Podstawowe algorytmy i ich cechy.
23 5. Podstawowe algorytmy i ich cechy. 5.1. Wyszukiwanie liniowe i binarne 5.1.1. Wyszukiwanie liniowe Wyszukiwanie jest jedną z najczęściej wykonywanych operacji na strukturach danych i dotyczy wszystkich,
Bardziej szczegółowoStruktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Metody konstrukcji algorytmów: Siłowa (ang. brute force), Dziel i zwyciężaj (ang. divide-and-conquer), Zachłanna (ang.
Bardziej szczegółowoWYKŁAD 9. Algorytmy sortowania elementów zbioru (tablic) Programy: c4_1.c... c4_3.c. Tomasz Zieliński
WYKŁAD 9 Algorytmy sortowania elementów zbioru (tablic) Programy: c4_1.c... c4_3.c Tomasz Zieliński /* Przyklad 4.1 - SORTOWANIE TABLIC - metoda najprostsza */ #include #define ROZMIAR 11 void
Bardziej szczegółowoLaboratorium nr 7 Sortowanie
Laboratorium nr 7 Sortowanie 1. Sortowanie bąbelkowe (BbS) 2. Sortowanie przez wstawianie (IS) 3. Sortowanie przez wybieranie (SS) Materiały Wyróżniamy następujące metody sortowania: 1. Przez prostą zamianę
Bardziej szczegółowoZłożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to
Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to wprowadzili J. Hartmanis i R. Stearns. Najczęściej przez zasób rozumie się czas oraz pamięć dlatego
Bardziej szczegółowoStruktury Danych i Złożoność Obliczeniowa
Struktury Danych i Złożoność Obliczeniowa Zajęcia 2 Algorytmy wyszukiwania, sortowania i selekcji Sortowanie bąbelkowe Jedna z prostszych metod sortowania, sortowanie w miejscu? Sortowanie bąbelkowe Pierwsze
Bardziej szczegółowoSortowanie zewnętrzne
Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Sortowanie zewnętrzne 1 Wstęp Bardzo często
Bardziej szczegółowoPodyplomowe Studium Informatyki
Podyplomowe Studium Informatyki Wstęp do informatyki 30 godz. wykładu dr inż. Paweł Syty, 413GB, sylas@mif.pg.gda.pl, http://sylas.info Literatura D. Harel, Rzecz o istocie informatyki. Algorytmika, WNT
Bardziej szczegółowoUwaga: Funkcja zamień(a[j],a[j+s]) zamienia miejscami wartości A[j] oraz A[j+s].
Zadanie 1. Wiązka zadań Od szczegółu do ogółu Rozważmy następujący algorytm: Dane: Algorytm 1: k liczba naturalna, A[1...2 k ] tablica liczb całkowitych. n 1 dla i=1,2,,k wykonuj n 2n s 1 dopóki s
Bardziej szczegółowoPorządek symetryczny: right(x)
Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)
Bardziej szczegółowoAlgorytmy i struktury danych Matematyka III sem.
Algorytmy i struktury danych Matematyka III sem. 30 godz. wykł. / 15 godz. ćw. / 15 godz. projekt dr inŝ. Paweł Syty, 413GB, sylas@mif.pg.gda.pl, http://sylas.info Literatura T.H. Cormen i inni, Wprowadzenie
Bardziej szczegółowoSortowanie przez wstawianie Insertion Sort
Sortowanie przez wstawianie Insertion Sort Algorytm sortowania przez wstawianie można porównać do sposobu układania kart pobieranych z talii. Najpierw bierzemy pierwszą kartę. Następnie pobieramy kolejne,
Bardziej szczegółowoUniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium Nr 4
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Nr 4 Algorytmy sortowania zewnętrznego 1 Wstęp Bardzo często przy rozwiązywaniu praktycznych
Bardziej szczegółowo5. Rekurencja. Przykłady
5. Rekurencja Uwaga! W tym rozdziale nie są omówione żadne nowe konstrukcje języka C++. Omówiona jest za to technika wykorzystująca funkcje, która pozwala na rozwiązanie pewnych nowych rodzajów zadań.
Bardziej szczegółowoZasady analizy algorytmów
Zasady analizy algorytmów A więc dziś w programie: - Kilka ważnych definicji i opisów formalnych - Złożoność: czasowa i pamięciowa - Kategorie problemów - Jakieś przykłady Problem: Zadanie możliwe do rozwiązania
Bardziej szczegółowowstęp do informatyki i programowania część testowa (25 pyt. / 60 min.)
egzamin podstawowy 7 lutego 2017 r. wstęp do informatyki i programowania część testowa (25 pyt. / 60 min.) Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek imię, nazwisko i nr indeksu:..............................................................
Bardziej szczegółowofunkcje rekurencyjne Wykład 12. Podstawy programowania (język C) Funkcje rekurencyjne (1) Funkcje rekurencyjne (2)
Podstawy programowania (język C) funkcje rekurencyjne Wykład 12. Tomasz Marks - Wydział MiNI PW -1- Tomasz Marks - Wydział MiNI PW -2- Funkcje rekurencyjne (1) W języku C funkcja moŝe wywoływać samą siebie.
Bardziej szczegółowoDrzewa poszukiwań binarnych
1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich
Bardziej szczegółowododatkowe operacje dla kopca binarnego: typu min oraz typu max:
ASD - ćwiczenia IX Kopce binarne własność porządku kopca gdzie dla każdej trójki wierzchołków kopca (X, Y, Z) porządek etykiet elem jest następujący X.elem Y.elem oraz Z.elem Y.elem w przypadku kopca typu
Bardziej szczegółowoTEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 5 część I 2 Iteracja Rekurencja Indukcja Iteracja Rekurencja Indukcja Algorytmy sortujące Rozwiazywanie
Bardziej szczegółowoAlgorytmy i Struktury Danych. Co dziś? Drzewo decyzyjne. Wykład IV Sortowania cd. Elementarne struktury danych
Algorytmy i Struktury Danych Wykład IV Sortowania cd. Elementarne struktury danych 1 Co dziś? Dolna granica sortowań Mediany i statystyki pozycyjne Warstwa implementacji Warstwa abstrakcji #tablice #listy
Bardziej szczegółowoDrzewa poszukiwań binarnych
1 Cel ćwiczenia Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet ielonogórski Drzewa poszukiwań binarnych Ćwiczenie
Bardziej szczegółowo[12] Metody projektowania algorytmów (dziel i rządź, programowanie dynamiczne i algorytmy zachłanne).
[12] Metody projektowania algorytmów (dziel i rządź, programowanie dynamiczne i algorytmy zachłanne). Tworzenie projektów informatycznych opiera się w dużej mierze na formułowaniu i implementacji algorytmów,
Bardziej szczegółowoAlgorytmika i programowanie. Wykład 2 inż. Barbara Fryc Wyższa Szkoła Informatyki i Zarządzania w Rzeszowie
Algorytmika i programowanie Wykład 2 inż. Barbara Fryc Wyższa Szkoła Informatyki i Zarządzania w Rzeszowie Tablice Tablica jest zbiorem elementów tego samego typu. Każdy element jest identyfikowany (numer
Bardziej szczegółowoUniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Drzewa poszukiwań binarnych 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie studentów
Bardziej szczegółowoRekurencja. Przykład. Rozważmy ciąg
Rekurencja Definicje rekurencyjne Definicja: Mówimy, iż ciąg jest zdefiniowany rekurencyjnie, jeżeli: (P) Określony jest pewien skończony zbiór wyrazów tego ciągu, zwykle jest to pierwszy wyraz tego ciągu
Bardziej szczegółowoTeoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 4: Iteracja, indukcja i rekurencja http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Słowem wstępu Iteracja, indukcja
Bardziej szczegółowoWykład 4: Iteracja, indukcja i rekurencja
Teoretyczne podstawy informatyki Wykład 4: Iteracja, indukcja i rekurencja Prof. dr hab. Elżbieta Richter-Wąs 1 Słowem wstępu Iteracja, indukcja i rekurencja to podstawowe zagadnienia pojawiające się przy
Bardziej szczegółowooperacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.
Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie
Bardziej szczegółowoALGORYTMY Algorytm poprawny jednoznaczny szczegółowy uniwersalny skończoność efektywność (sprawność) zmiennych liniowy warunkowy iteracyjny
ALGORYMY Algorytm to przepis; zestawienie kolejnych kroków prowadzących do wykonania określonego zadania; to uporządkowany sposób postępowania przy rozwiązywaniu zadania, problemu, z uwzględnieniem opisu
Bardziej szczegółowoProgramowanie dynamiczne
Programowanie dynamiczne Patryk Żywica 5 maja 2008 1 Spis treści 1 Problem wydawania reszty 3 1.1 Sformułowanie problemu...................... 3 1.2 Algorytm.............................. 3 1.2.1 Prosty
Bardziej szczegółowo