Sortowanie w czasie liniowym

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sortowanie w czasie liniowym"

Transkrypt

1 Sortowanie w czasie liniowym 1

2 Sortowanie - zadanie Definicja (dla liczb): wejście: ciąg n liczb A = (a 1, a 2,, a n ) wyjście: permutacja (a 1,, a n ) taka, że a 1 a n Po co sortować? Podstawowy problem dla algorytmiki Wiele algorytmów wykorzystuje sortowanie jako procedurę pomocniczą Pozwala pokazać wiele technik Dobrze zbadane (czas) 2

3 Zestawienie czasów działania Ø Przez wybór: O(N 2 ) zawsze Ø Bąbelkowe: O(N 2 ) najgorszy przypadek; O(N) najlepszy przyp. Ø Wstawianie: O(N 2 ) średnio; O(N) najlepszy przypadek Ø Shellsort: O(N 3/2 ) Ø Heapsort: O(NlogN) zawsze Ø Mergesort: O(NlogN) zawsze Ø Quicksort: O(NlogN) średnio; O(N 2 ) najgorszy przypadek Ø Zliczanie: O(N) zawsze Ø Radix sort: O(N) zawsze Ø zewnętrzne: O(b logb)) dla pliku o b stronach. 3

4 Przegląd Ø Czy możliwe jest sortowanie w czasie lepszym niż dla metod porównujących elementy (poprzednio najlepsze algorytmy dawały czas O(NlogN))? Ø Algorytmy o liniowym czasie działania: Przez zliczanie (Counting-Sort) Pozycyjne (Radix-Sort) Kubełkowe (Bucket-sort) Ø Potrzeba dodatkowych założeń! 4

5 Sortowanie o czasie liniowym Ø Możliwe przy dodatkowych informacjach (założeniach) o danych wejściowych. Ø Przykłady takich założeń: Dane są liczbami całkowitymi z przedziału [0..k] i k = O(n). Dane są liczbami wymiernymi z przedziału [0,1) o rozkładzie jednostajnym na tym przedziale Ø Trzy algorytmy: Counting-Sort Radix-Sort Bucket-Sort 5

6 Zliczanie (Counting sort) wejście: n liczb całkowitych z przedziału [0..k], dla k = O(n). pomysł: dla każdego elementu wejścia x określamy jego pozycje (rank): ilość elementów mniejszych od x. jeśli znamy pozycję elementu umieszczamy go na r+1 miejscu ciągu przykład: jeśli wiemy, że w ciągu jest 6 elementów mniejszych od 17, to 17 znajdzie się na 7 miejscu w ciągu wynikowym. powtórzenia: jeśli mamy kilka równych elementów umieszczamy je kolejno poczynając od indeksu pozycja 6

7 Zliczanie (Counting sort) A = Rank = Dla każdego A[i], liczymy elementy od niego. Daje to rank (pozycję) elementu B = Jeśli nie ma powtórzeń i n = k, Rank[A[i]] = A[i] i B[Rank[A[i]] ß A[i] 7

8 Zliczanie (Counting sort) A = Jeśli nie ma powtórzeń i n < k, Rank = B = Niektóre komórki tablicy rank pozostają niewykorzystane, ale algorytm działa. 8

9 Zliczanie (Counting sort) A = Jeśli n > k i mamy powtórzenia, Rank = B = umieszczamy na wyjściu powtarzające się elementy w takiej kolejności, w jakiej występowały w oryginalnym ciągu (stabilność) 9

10 Zliczanie (Counting sort) A[1..n] tablica wejściowa B [1..n] tablica wyjściowa C [0..k] pomocnicza tablica (do zliczania) Counting-Sort(A, B, k) 1. for i ß 0 to k 2. do C[i] ß 0 3. for j ß 1 to length[a] 4. do C[A[j]] ß C[A[j]] /* C zawiera ilości elementów równych i 6. for i ß 1 to k 7. do C[i] ß C[i] + C[i 1] 8. /* C zawiera ilości elementów i 9. for j ß length[a] downto do B[C[A[j]]] ß A[j] 11. C[A[j]] ß C[A[j]] 1 10

11 Sortowanie przez zliczanie przykład (1) A = C = C = B = 3 C = n = 8 k = 6 C[A[j]] ß C[A[j]] +1 po p.4 C[i] ß C[i] + C[i 1] po p. 7 B[C[A[j]]] ß A[j] C[A[j]] ß C[A[j]] 1 po p

12 Sortowanie przez zliczanie przykład (2) A = C = B = C =

13 Sortowanie przez zliczanie przykład (3) A = C = B = C =

14 Counting sort czas działania Ø Pętla for w p.1-2 zajmuje czas Θ(k) Ø Pętla for w p.3-4 zajmuje czas Θ(n) Ø Pętla for w p.6-7 zajmuje czas Θ(k) Ø Pętla for w p.9-11 zajmuje czas Θ(n) Ø Stąd dostajemy łączny czas Θ(n+k) Ø Ponieważ k = O(n), T(n) = Θ(n) à algorytm jest optymalny!! Ø Konieczne jest założenie k = O(n). Jeśli k >> n to potrzeba to potrzeba dużej ilości pamięci. Ø Nie jest to sortowanie w miejscu. 14

15 Radix sort sortowanie pozycyjne wejście: n liczb całkowitych, d-cyfrowych, łańcuchów o d-pozycjach pomysł: zajmować się tylko jedną z cyfr (sortować względem kolejnych pozycji cyfr/znaków). Zaczynamy od najmniej znaczącej cyfry/ znaku, potem kolejne pozycje (cyfry/znaki), aż do najbardziej znaczącej. Musimy stosować metodą stabilną. Ponieważ zbiór możliwych wartości jest mały (cyfry 0-9, znaki a - z ) możemy zastosować metodę zliczania, o czasie O(n) Po zakończeniu ciąg będzie posortowany!! 15

16 Radix sort przykład

17 Radix-Sort pseudokod Radix-Sort(A, d) 1. for i ß 1 to d 2. do zastosuj stabilną metodę sortowania do cyfry d dla tablicy A uwagi: złożoność: T(n) = Θ(d(n+k)) à Θ(n) dla stałego d i k = O(1) wartości cyfr/znaków są z zakresu [0..k 1] dla k = O(1) Metoda stosowana dla poszczególnych pozycji musi być stabilna! 17

18 Sortowanie kubełkowe Bucket sort wejście: n liczb rzeczywistych z przedziału [0..1) ważne jest, aby były równomiernie rozłożone (każda wartość równie prawdopodobna) pomysł: dzielimy przedział [0..1) na n podprzedziałów ( kubełków ):0, 1/n, 2/n. (n 1)/n. Elementy do odpowiednich kubełków, a i : 1/i a i 1/(i+1). Ponieważ rozkład jest równomierny to w żadnym z przedziałów nie powinno znaleźć się zbyt wiele wartości. Jeśli wkładamy je do kubełków zachowując porządek (np. przez wstawianie Insertion-Sort), dostaniemy posortowany ciąg. 18

19 Bucket sort przykład

20 Bucket-Sort A[i] tablica wejściowa B[0], B[1], B[k 1] lista kubełków Bucket-Sort(A) 1. n ß length(a) 2. for i ß 0 to k 3. do wstaw A[i] do listy B[floor(kA[i])] 4. for i ß 0 to k 1 5. do Insertion-Sort(B[i]) 6. Połącz listy B[0], B[1], B[k 1] 20

21 Bucket-Sort złożoność czasowa Ø Wszystkie instrukcje z wyjątkiem 5 (Insertion-Sort) wymagają czasu O(n), w przypadku pesymistycznym. Ø W przypadku pesymistycznym, O(n) liczb trafi do jednego kubełka czyli ich sortowanie zajmie czas O(n 2 ). Ø Jednak w średnim przypadku ilość elementów wpadających do jednego przedziału wynosi n/k stąd czas średni wyniesie O(n). 21

Programowanie w VB Proste algorytmy sortowania

Programowanie w VB Proste algorytmy sortowania Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich

Bardziej szczegółowo

Algorytmy sortujące 1

Algorytmy sortujące 1 Algorytmy sortujące 1 Sortowanie Jeden z najczęściej występujących, rozwiązywanych i stosowanych problemów. Ułożyć elementy listy (przyjmujemy: tablicy) w rosnącym porządku Sortowanie może być oparte na

Bardziej szczegółowo

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji.

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. 1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. Matematyczna funkcja f ma być określona w programie w oddzielnej funkcji języka C (tak, aby moŝna było łatwo ją zmieniać). Przykładowa funkcja to:

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

Zaawansowane algorytmy. Wojciech Horzelski

Zaawansowane algorytmy. Wojciech Horzelski Zaawansowane algorytmy Wojciech Horzelski 1 Organizacja Wykład: poniedziałek 8 15-10 Aula Ćwiczenia: Każdy student musi realizować projekty (treść podawana na wykładzie) : Ilość projektów : 5-7 Na realizację

Bardziej szczegółowo

Algorytmy przeszukiwania

Algorytmy przeszukiwania Algorytmy przeszukiwania Przeszukiwanie liniowe Algorytm stosowany do poszukiwania elementu w zbiorze, o którym nic nie wiemy. Aby mieć pewność, że nie pominęliśmy żadnego elementu zbioru przeszukujemy

Bardziej szczegółowo

Programowanie równoległe

Programowanie równoległe Programowanie równoległe ELEMENTARNE ALGORYTMY (PODSTAWA: Z.CZECH. WPROWADZENIE DO OBLICZEŃ RÓWNOLEGŁYCH. PWN, 2010) Andrzej Baran baran@kft.umcs.lublin.pl Charakterystyka ilościowa algorytmów Przez algorytm

Bardziej szczegółowo

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania:

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania: ANALIZA ALGORYTMÓW Analiza algorytmów polega między innymi na odpowiedzi na pytania: 1) Czy problem może być rozwiązany na komputerze w dostępnym czasie i pamięci? 2) Który ze znanych algorytmów należy

Bardziej szczegółowo

Wprowadzenie do złożoności obliczeniowej

Wprowadzenie do złożoności obliczeniowej problemów Katedra Informatyki Politechniki Świętokrzyskiej Kielce, 16 stycznia 2007 problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Wskaźniki w języku C i C++ dr inż. Piotr Kaczmarek Piotr.Kaczmarek@put.poznan.pl http://pk.cie.put.poznan.pl/wyklady.php Organizacja pamięci Pamięć ma organizację bajtową, liniową

Bardziej szczegółowo

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer Realizacja algorytmu przez komputer Wstęp do informatyki Wykład UniwersytetWrocławski 0 Tydzień temu: opis algorytmu w języku zrozumiałym dla człowieka: schemat blokowy, pseudokod. Dziś: schemat logiczny

Bardziej szczegółowo

1 3

1 3 1 3 1 3 1 3 ؽ ؽ ؽ ؽ 0 4 ؽ 1 3 0 7 0 7 0 1 1 3 0 3 0 1 0 1 0 1 1 3 0 1 1 3 1 3 0 1 0 1 0 7 0 1 1 3 0 3 0 1 0 1 0 1 0 1 0 1 0 1 1 3 0 3 0 1 0 1 1 3 1 3 0 1 0 1 0 1 1 3 0 1 0 1 ؽ ؽ 1 3 0 1 0 1 0 1

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI 19 MAJA 2015 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut

EGZAMIN MATURALNY Z INFORMATYKI 19 MAJA 2015 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

Optymalizacja zapytań. Proces przetwarzania i obliczania wyniku zapytania (wyrażenia algebry relacji) w SZBD

Optymalizacja zapytań. Proces przetwarzania i obliczania wyniku zapytania (wyrażenia algebry relacji) w SZBD Optymalizacja zapytań Proces przetwarzania i obliczania wyniku zapytania (wyrażenia algebry relacji) w SZBD Elementy optymalizacji Analiza zapytania i przekształcenie go do lepszej postaci. Oszacowanie

Bardziej szczegółowo

Przy pomocy indukcji udowodnimy, że nastąpi koniec świata, a warto byłoby wiedzieć kiedy, czy przed czy po egzaminie.

Przy pomocy indukcji udowodnimy, że nastąpi koniec świata, a warto byłoby wiedzieć kiedy, czy przed czy po egzaminie. POPRAWNOŚĆ ALGORYTMÓW W momencie gdy mikrofon został Panu w ręce a nie powinien i tekst O ktoś to urwał. Jak ktoś wygra światowy konkurs, to mu nawet 3 postawie na koniec bez egzaminu Do Francji możecie

Bardziej szczegółowo

Algorytmy. 1. Sortowanie 2. Statki i okręty. programowanie cz.7. poniedziałek, 2 marca 2009

Algorytmy. 1. Sortowanie 2. Statki i okręty. programowanie cz.7. poniedziałek, 2 marca 2009 Algorytmy. Sortowanie 2. Statki i okręty programowanie cz. ALGORYTMY SORTUJĄCE A. Przez zamianę (bąbelkowe) B. Przez wybieranie Najpopularniejsze metody sortowania C. Przez wstawianie Przez zamianę (sortowanie

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Formalne podstawy informatyki Rok akademicki: 2013/2014 Kod: EIB-1-220-s Punkty ECTS: 2 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria Biomedyczna

Bardziej szczegółowo

wagi cyfry 7 5 8 2 pozycje 3 2 1 0

wagi cyfry 7 5 8 2 pozycje 3 2 1 0 Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień

Bardziej szczegółowo

Podstawy Programowania 1 Sortowanie tablic jednowymiarowych. Plan. Sortowanie. Sortowanie Rodzaje sortowania. Notatki. Notatki. Notatki.

Podstawy Programowania 1 Sortowanie tablic jednowymiarowych. Plan. Sortowanie. Sortowanie Rodzaje sortowania. Notatki. Notatki. Notatki. Podstawy Programowania 1 Sortowanie tablic jednowymiarowych Arkadiusz Chrobot Zakład Informatyki 12 listopada 20 1 / 35 Plan Sortowanie Wartość minimalna i maksymalna w posortowanej tablicy Zakończenie

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MIN-R1A1P-061 EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY Czas pracy 90 minut ARKUSZ I STYCZEŃ ROK 2006 Instrukcja dla zdającego 1. Sprawdź, czy arkusz

Bardziej szczegółowo

f we DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu

f we DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu f wy f P Podzielnik częstotliwości: układ, który na każde p impulsów na wejściu daje

Bardziej szczegółowo

Wprowadzenie do programu Mathcad 15 cz. 1

Wprowadzenie do programu Mathcad 15 cz. 1 Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie

Bardziej szczegółowo

ć ć ć Ś ć Ż

ć ć ć Ś ć Ż Ę ć ć ć Ś ć Ż Ę Ś ŚĆ Ś ć ć ć Ś ć ć ć ć ć ć Ś Ć ć ć ć ć ć ć ć ć ć ć ć ć Ś ć Ś Ż Ś Ę ć ć Ż ŚĆ ć ć ć ć ć Ż ć ć ć ć ć ć ć ź ć Ż ć ć ć ć ź ć ć ć ć ć ć ć Ć ć ć Ę ć ź ć ć ć ć ć ć ć Ę ź Ę ć ć ć ć ć ć ć ć ć ć ć

Bardziej szczegółowo

Modyfikacja algorytmów retransmisji protokołu TCP.

Modyfikacja algorytmów retransmisji protokołu TCP. Modyfikacja algorytmów retransmisji protokołu TCP. Student Adam Markowski Promotor dr hab. Michał Grabowski Cel pracy Celem pracy było przetestowanie i sprawdzenie przydatności modyfikacji klasycznego

Bardziej szczegółowo

PROBLEM SORTOWANIA STABILNEGO NA PRZYKŁADZIE JĘZYKA PHP 5 PROBLEM OF STABLE SORTING ON THE PHP5 EXAMPLE

PROBLEM SORTOWANIA STABILNEGO NA PRZYKŁADZIE JĘZYKA PHP 5 PROBLEM OF STABLE SORTING ON THE PHP5 EXAMPLE WYŻSZA SZKOŁA PRZEDSIĘBIORCZOŚCI I ADMINISTRACJI W LUBLINIE KIERUNEK: INFORMATYKA PROBLEM SORTOWANIA STABILNEGO NA PRZYKŁADZIE JĘZYKA PHP 5 PROBLEM OF STABLE SORTING ON THE PHP5 EXAMPLE Autor: Wojciech

Bardziej szczegółowo

SQL SERVER 2012 i nie tylko:

SQL SERVER 2012 i nie tylko: SQL SERVER 2012 i nie tylko: Wstęp do planów zapytań Cezary Ołtuszyk coltuszyk.wordpress.com Kilka słów o mnie Starszy Administrator Baz Danych w firmie BEST S.A. (Bazy danych > 1TB) Konsultant z zakresu

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH ALGORYTMY I STRUKTURY DANYCH Temat : Drzewa zrównoważone, sortowanie drzewiaste Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/

Bardziej szczegółowo

Przetwarzanie tekstu 2. Operacje na plikach tekstowych w systemie Linux

Przetwarzanie tekstu 2. Operacje na plikach tekstowych w systemie Linux Przetwarzanie tekstu 2 Operacje na plikach tekstowych w systemie Linux filtry programy przetwarzajace pliki (w szczególności tekstowe) w taki sposób, że odczytuja dane (plik wejściowy) ze standardowego

Bardziej szczegółowo

Wojna morska algorytmy przeszukiwania

Wojna morska algorytmy przeszukiwania Temat 6 Wojna morska algorytmy przeszukiwania Streszczenie Wyszukiwanie informacji w wielkich zbiorach danych wymagają często użycia komputerów. Wymaga to ciągłego doskonalenia szybkich i efektywnych metod

Bardziej szczegółowo

Rozdział 4. Algorytmy sortowania 73 Rozdział 5. Typy i struktury danych 89 Rozdział 6. Derekursywacja i optymalizacja algorytmów 147

Rozdział 4. Algorytmy sortowania 73 Rozdział 5. Typy i struktury danych 89 Rozdział 6. Derekursywacja i optymalizacja algorytmów 147 Spis treści Przedmowa 9 Rozdział 1. Zanim wystartujemy 17 Jak to wcześniej bywało, czyli wyjątki z historii maszyn algorytmicznych 18 Jak to się niedawno odbyło, czyli o tym, kto wymyślił" metodologię

Bardziej szczegółowo

Rekurencja. Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów.

Rekurencja. Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów. Rekurencja Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów. Zgodnie ze znaczeniem informatycznym algorytm rekurencyjny to taki który korzysta z samego

Bardziej szczegółowo

Algorytmy. Programowanie Proceduralne 1

Algorytmy. Programowanie Proceduralne 1 Algorytmy Programowanie Proceduralne 1 Przepis Warzenie piwa Brunświckiego Programowanie Proceduralne 2 Przepis Warzenie piwa Brunświckiego składniki (dane wejściowe): woda, słód, itd. wynik: beczka piwa

Bardziej szczegółowo

Języki skryptowe w programie Plans

Języki skryptowe w programie Plans Języki skryptowe w programie Plans Warsztaty uŝytkowników programu PLANS Kościelisko 2010 Zalety skryptów Automatyzacja powtarzających się czynności Rozszerzenie moŝliwości programu Budowa własnych algorytmów

Bardziej szczegółowo

KODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F

KODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F KODY SYMBOLI Kod Shannona-Fano KODOWANIE DANYCH, A.Przelaskowski Metoda S-F Kod Huffmana Adaptacyjne drzewo Huffmana Problemy implementacji Kod Golomba Podsumowanie Kod drzewa binarnego Na wejściu rozkład:

Bardziej szczegółowo

Temat: Algorytm kompresji plików metodą Huffmana

Temat: Algorytm kompresji plików metodą Huffmana Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik

Bardziej szczegółowo

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. KOMPRESJA ALGORYTMEM ARYTMETYCZNYM, GOLOMBA I RICE'A Idea algorytmu arytmetycznego Przykład kodowania arytmetycznego Renormalizacja

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI POZIOM PODSTAWOWY CZĘŚĆ

Bardziej szczegółowo

Ogólne zasady projektowania algorytmów i programowania

Ogólne zasady projektowania algorytmów i programowania Ogólne zasady projektowania algorytmów i programowania Pracuj nad właściwie sformułowanym problemem dokładna analiza nawet małego zadania może prowadzić do ogromnych korzyści praktycznych: skrócenia długości

Bardziej szczegółowo

Analizy sprzedażowe w Excelu tabele i wykresy przestawne

Analizy sprzedażowe w Excelu tabele i wykresy przestawne Analizy sprzedażowe w Excelu Spis treści Zasady poprawnego przygotowania listy źródłowej dla raportu przestawnego... 2 Tabele przestawne... 3 Tworzenie przykładowej tabeli przestawnej... 3 Analiza sprzedaży

Bardziej szczegółowo

Podstawowe struktury danych

Podstawowe struktury danych Podstawowe struktury danych 1) Listy Lista to skończony ciąg elementów: q=[x 1, x 2,..., x n ]. Skrajne elementy x 1 i x n nazywamy końcami listy, a wielkość q = n długością (rozmiarem) listy. Szczególnym

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

Ą ŚĆ Ś Ś Ę ć

Ą ŚĆ Ś Ś Ę ć Ą Ę Ą Ą ŚĆ Ś Ś Ę ć ć ć ć ź ć ć ć ć ć ć ć ć Ą ć ć ć Ą Ś ć Ś ć ć Ą ć Ś Ś Ą Ś Ą ć ć Ą ź ź ć ć Ą ć ź ć Ą ć Ą ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć Ś ć ć ć Ę Ą ć Ą ć ć ć ć ć ć Ł ź ź ź Ł Ł ć Ą ć ć ć ć ć Ą ć Ą ć Ą

Bardziej szczegółowo

ź ź ć ź ź ź Ó Ó ć Ć ć ć Ą ć ć ź ć ć ć ć Ś

ź ź ć ź ź ź Ó Ó ć Ć ć ć Ą ć ć ź ć ć ć ć Ś Ś Ó ź ź ź ź ź ź ź ź ć ź ź ź Ó Ó ć Ć ć ć Ą ć ć ź ć ć ć ć Ś ć ć ć ć ź ź ć ź ź ć Ą ź ź ź ć ć ć ź ć ć ć ć Ó ź Ą ć ć ź ć ź ź ć ć ć Ż ć Ó ć ź ź ź ź ź Ą ź ź ź ź ź ź ć ć ź ć ź ć ź ć ź Ą ź ć ź ć ć Ó ć ć ć ć ć Ś

Bardziej szczegółowo

ś ść ść ś ść ść ś ś ś ś ść ś ś ś ść ść

ś ść ść ś ść ść ś ś ś ś ść ś ś ś ść ść Ą Ł Ł Ł Ę Ł ś ś ś ś ść ść ść ść Ś ść ŚĆ ś ŚĆ ś ś ść ść ś ść ść ś ś ś ś ść ś ś ś ść ść ś ś ś Ż ś Ś ś Ś ść ś ś ś ś ś ś ś ś Ś ś ś ś ś Ł Ś ś ś ś Ś ś ś ź Ś ŚĆ ś ś ś ś ś ś Ś ś Ś ś ś ś ś ś ś ś Ś Ś ść ś ś ś ś

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności

Bardziej szczegółowo

ż Ś ż Ą ż ć ż

ż Ś ż Ą ż ć ż Ś ż ż ż ż ż ż Ś ż Ś ż Ą ż ć ż ć Ż ż Ż Ś ć ź ż Ł ż Ł ż ż Ś Ł ż Ś ć ć Ż Ż ż Ą ź Ł ż ż ż ć ż ż ż ż ć Ż ć Ż Ż Ż Ż Ż ż ź ż Ż ż Ż ż Ź Ż ć ż Ż ć Ó ć Ł Ł Ś Ś ź ż Ż Ć ż Ż ć Ź Ł Ż Ż ć ż ż ż Ż ć ć ć ć Ż ź Ż Ś Ż ż

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Ż Ą Ź ć Ę Ź ć

Ż Ą Ź ć Ę Ź ć Ą Ż Ą Ź ć Ę Ź ć ć Ż Ę Ę ć Ś ć Ż Ż Ź ć Ą ć Ę Ź ć Ś Ś Ę ć Ę ć Ź Ś ć ć ć Ż Ż Ę Ź Ę Ż Ź Ść Ś Ż Ś Ę Ź Ż Ś Ć Ą Ź Ę Ź ć Ż Ć Ę Ź Ż ź Ę Ź Ż Ę Ś Ź Ż Ż Ś Ś Ź Ź Ź Ź Ś Ę Ą Ę Ć Ś Ę Ź Ś Ś Ś Ź Ś Ę Ę Ź Ś Ź Ę Ź Ż Ę Ę ź

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 90 minut

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 90 minut Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY

Bardziej szczegółowo

Ó ż ż Ść ż ż ć ż ż Ś Ść Ó

Ó ż ż Ść ż ż ć ż ż Ś Ść Ó Ć ż Ą Ą Ó Ł Ś Ł Ó Ś Ó ż ż Ść ż ż ć ż ż Ś Ść Ó Ó Ł ź ć ż Ść ż ż ż ż Ś ż ć ż ż Ś ć Ś Ś ż ć ż ż Ż Ż Ż Ś Ż Ś Ą Ó ź ź Ł Ż ź ź ź ż ż Ż ż ż ć ż Ś ż Ą ź ć ż Ł ć ż ż Ą Ł ż ż ż ź ż ć Ą ż Ś ź ż ż ż ż ć Ź ć ż ć ż

Bardziej szczegółowo

Ą Ą Ś Ń Ć Ó Ą Ą

Ą Ą Ś Ń Ć Ó Ą Ą Ń Ś Ą Ż Ż Ś Ż Ź Ń Ą Ą Ś Ń Ć Ó Ą Ą Ś Ą Ź Ń Ó Ś Ć Ż Ą Ą Ć Ż Ó Ą Ó Ą Ć Ś Ą Ą Ń Ń Ń Ń Ń Ą Ń Ą Ń Ń Ń Ń Ą Ń Ń Ń Ń Ń Ń Ń Ń Ś Ą Ń Ś Ś Ó Ś Ó Ą Ń Ś Ą Ś Ą Ś Ś Ż Ą Ą Ą Ą Ą Ś Ą Ś Ó Ą Ś Ś Ś Ń Ń Ż Ą Ś Ś Ą Ń Ż

Bardziej szczegółowo

ź Ź Ź ć ć ć ź ć ć ć ć ć Ź

ź Ź Ź ć ć ć ź ć ć ć ć ć Ź ź Ź Ź ć ć ć ź ć ć ć ć ć Ź ć ć ć ć ć ć ć ć Ż ć ć ć ć ć ć ć ć ć ć ć Ż Ż ć ć ć ć ć ć ć ć Ż ć ć ć ź ć Ź ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć ć ć Ż ć ć ć ć ć ć ć ć Ż ć Ł Ś Ś ć Ą Ę ć Ę ć Ż ć

Bardziej szczegółowo

Ż ż ż ź ś ż ś ż ż ż ż ż ś ż ź ś ś ż ść ż ś ż ż ż Ż ż ż ż ż ć ś ż ż ż ć ż ż ż ś Ż ć ś ż ś ż ż ż ś ż ś ż ś ś ż ż ś ś ść ż ść ść ś ś ś ś ś ś ż ć ż Ł ż Ń ź ź ś ś ś ż ć ś Ź ść ść ż ż ć ż ż Ą Ż ś Ń Ł ż ś ż ż

Bardziej szczegółowo

Ś ż Ó ż ż ć Ż Ą Ą ć Ż Ż ć Ż ż ć Ż ż

Ś ż Ó ż ż ć Ż Ą Ą ć Ż Ż ć Ż ż ć Ż ż Ś ż Ó ż ż ć Ż Ą Ą ć Ż Ż ć Ż ż ć Ż ż Ż Ź Ż ż ż ż ć Ź ż ć Ż ć Ż Ó ż Ż Ż ć Ż Ż ć ż ć Ż Ż ż ć ż Ż ż ż ż ż ż Ó ć ż ż ż Ź ż ż Ź Ż ż ź Ó Ó ć ć ć ć Ź ć ż ć ć Ó ż ż Ń Ż Ó ć ć ć ć ć ć ć Ź Ż ż Ż Ó ż ż Ź ć Ą ż ż Ż

Bardziej szczegółowo

Ż ć ź ć ć ź Ż Ż Ł Ż ć Ż Ż Ż ć Ł Ż ć ć ć ź Ż Ż Ż Ż Ż Ż ć ć ź Ż ć ć ć ź Ż Ż ć Ż Ż źć ć Ż Ż Ż ć Ż Ż Ż Ż Ś ć Ż ć Ł Ż Ł ć Ą Ż Ł ć Ż ć Ż Ż Ż ć ć ć Ż Ż Ż Ż Ż Ż Ł ć Ł Ż ź ć Ż Ż Ż ć ć ć ć ć Ż Ż Ą Ż Ż Ż ć Ż Ż ć

Bardziej szczegółowo

ń Ł ń ź ń ć Ż Ż ć Ż Ż ć Ą Ź ń Ś ń Ż ź ć Ż ź Ż Ż ć Ż Ź Ś Ż Ł Ź Ż ć Ś ń Ż ń Ść ń Ż Ś Ż Ś ć Ź ń Ł Ż ć Ż Ż Ś ć Ł ń Ż ć Ś ń Ł ć Ż Ż ć ć ć Ż ć ń ź Ż Ż Ż ń Ż Ż ń Ć Ź ń Ź ć Ż ć ć ć Ń ć Ł Ż Ż ć Ż Ż Ż ć Ż ć Ś ć

Bardziej szczegółowo