WYKŁAD 3 TEORIA POLA WIRUJĄCEGO
|
|
- Wiktoria Piotrowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Maiały oocnicz do wykładu Wsółczsn aszyny i naędy lkyczn WYKŁAD 3 TEORA POLA WRUJĄCEGO 3.. Podsawow cchy aszyn ądu zinngo. Wyóżnia się dwa odsawow yy aszyn ądu zinngo aszyny synchoniczn oaz asynchoniczn indukcyjn). Sojany obydwu odzajów aszyn są akyczni idnyczn są wyosażon w jdno- lub wilofazow uzwojni zasilan z sici ądu zinngo. Pądy łynąc w uzwojniach fazowych są zsunię o aki ką, aby uzyskać ol agnyczn o sałj aliudzi w czasi i jdnoczśni o zsznny ozkładzi wiujący w zszni. Różnica olga w budowi winika w aszynach synchonicznych winik wywaza ol agnyczn za oocą uzwojnia zasilango ąd sały lub za ośdnicw agnsów wałych) a kszał obwodu agnyczngo winika oż być cylindyczny lub z wydanyi jawnyi) bigunai, naoias w aszynach asynchonicznych uzwojni winika sanowi zway obwód, odizolowany od sici. Obwód n oż być wykonany w osaci klaki z ęów aluiniowych lub idzianych wyłniających żłobki i zwaych na czołach dwoa iściniai zw. winik klakowy) lub ż w osaci wilofazowgo, cwkowgo uzwojnia o zwaych ocząkach i końcach zw. winik iściniowy). Pąd w uzwojniu winika owsaj w wyniku indukowanj siły lkoooycznj wskuk zinności w czasi suinia skojazongo z y obwod. a. b. Rys.3.. Widok zkoju aszyn ądu zinngo, a. aszyna synchoniczna z winiki jawnobigunowy, b. aszyna asynchoniczna z winiki klakowy.
2 Maiały oocnicz do wykładu Wsółczsn aszyny i naędy lkyczn Cchą wsólną obydwu yów aszyn js wiowani względ sojana zsznngo ozkładu ola agnyczngo z zw. ędkością synchoniczną n f 3.) n gdzi f js częsoliwością sici zasilającj sojan a oznacza liczbę a bigunów. Różnią się aszyny naoias ędkością winika względ ola, co odkślono w ich nazwach: - w aszynach synchonicznych winik js niuchoy względ ola agnyczngo, czyli wiuj synchoniczni z ol, - w aszynach asynchonicznych ędkość winika względ ola usi być óżna od za aby ożliw było indukowani siły lkoooycznj w uzwojniach winika, dlago ż ówiy, ż wiuj on asynchoniczni względ ola. a. b. Rys.3.. Chwilow zsznn ozkłady linii suinia agnyczngo a. w czobigunowj aszyni synchonicznj, b. w czobigunowj aszyni asynchonicznj. Jak widać na ysunku 3. oologia chwilowgo ozkładu ola agnyczngo w obydwu aszynach js idnyczna ożna wyodębnić składowych suini znikających sojan i winik woząc układy zaknięych konuów. Podobna zsznna sukua ola agnyczngo wysęuj ówniż w aszynach ądu sałgo, gdzi uzwojni winika wiuj względ go ola z wną ędkością.
3 Maiały oocnicz do wykładu Wsółczsn aszyny i naędy lkyczn 3.. Wywazani ola wiującgo. Pol wiując z ędkością n n. względ sojana) ożna wywozyć na dwa sosoby: - w obszaz winika wzbudzić ol agnyczn wiując względ nigo z ędkością n za oocą odowidnio oziszczonych i zasilanych uzwojń oaz naędzić n winik z ędkością n -n. Szczgólny zyadki będzi u wzbudzni ola niuchogo względ winika n =) za oocą uzwojń wiodących ąd sały lub agnsów wałych jak a o ijsc w aszyni synchonicznj, ys.3.a. - w obszaz sojana wzbudzić ol agnyczn wiując względ nigo z ędkością n za oocą odowidnio oziszczonych i zasilanych uzwojń. Dla ozb skonsuowania oisu aayczngo ola wiującgo js wygodni ozocząć analizę od wskazango wyżj zyadku aszyny synchonicznj. Nich ol składowj adialnj indukcji agnycznj w szczlini aszyny niucho względ winika js oisan wną funkcją ) ys.3.3, gdzi ką js ką goyczny izony względ osi obou aszyny. Funkcja a js -oksowa w zszni, zn. )= ). Rys.3.3. Rozkład składowj adialnj indukcji agnycznj w zkoju ozczny szczliny aszyny synchonicznj z wysającyi bigunai w sani jałowy waz z jgo odsawową haoniczną. Rzczywisy zbig ) js zwykl zasęowany jgo odsawową haoniczną ), kóa dla ozkładu jak na ys.3.3 js ówna ) ) 3.)
4 Maiały oocnicz do wykładu Wsółczsn aszyny i naędy lkyczn Aliuda odsawowj haonicznj js obliczana z zalżności / ) ) Dla osokąngo zbigu ) jak na ys.3.4c o waościach odsawowj js ówna d aliuda haonicznj 3.3) 4 3.4) Posać wiującgo ola agnyczngo obswowango w układzi niuchoy względ sojana aszyny 3.5) gdzi = n, js ówna co uwzględniając 3.) daj osaczni, ) n ) 3.6), ) ) 3.7) gdzi = f js częsością ulsacją) sici zasilającj. Równani 3.7) js nazywan ównani fali wiującj z ędkością fazową n. Rozazy obcni ozkład ola agnyczngo wywozony zz układ skuionych cwk usyuowanych na sojani aszyny. Poijając wływ użłobkowania ozyuj się ozkłady składowj adialnj indukcji w szczlini aszyny okazan na ys.3.4. Dodani zwo indukcji okywa się z zyjęy zwo oinia. a. b. c. Rys.3.4. Pol agnyczn skuionych cwk w aszyni ądu zinngo a. ołożni uzwojnia o liczbi a bigunów =, b. ołożni uzwojnia o liczbi a bigunów =, c. chwilow ozkłady składowj adialnj indukcji w szczlini.
5 Maiały oocnicz do wykładu Wsółczsn aszyny i naędy lkyczn Widać, ż o liczbi a bigunów w aszyni, j. liczbi a obszaów w kóych wko indukcji js jdnoodni skiowany, dcyduj ozięość cwk wzbudzających ol agnyczn. Zobaczy az jak wływa na kszał ola w szczlini aszyny zwiększni liczby cwk sąsiadujących z sobą w koljnych żłobkach. Taką guę cwk nazywa się as cwkowy, a jgo liczność okśla się liczbą żłobków na bigun i fazę q. Pzykładowy ozkład ola dla aszyny dwubigunowj okazano na ys.3.5. a. b. Rys.3.5. Pol agnyczn asa cwkowgo a. sukua asa cwkowgo, =, q=3 b. Pzsznny ozkład indukcji w szczlini aszyny waz z haoniczną odsawową.. Poniważ aso cwkow js zasilan ąd zinny, o ol indukcji agnycznj w szczlini zz ni wywozon a chaak ola oscylacyjngo fali sojącj, kój węzły czyli ijsca o zowj indukcji są niucho). Zasęując zczywisy ozkład ola jgo odsawową haoniczną ay dla asa uzwojnia U U, ) )cos ) 3.8) Na odsawi ożsaości ygonoycznych ol oscylacyjn zasęujy suą dwóch wzajni zciwbiżnych fal wiujących. Uzwojni ójfazow owsaj o wowadzniu as V i W zsunięych w zszni o ką /3 i zasilniu ich ądai zsunięyi w czasi o ką /3. Wyażnia na wywozon zz ni fal indukcji są analogiczn do 3.9) V W, ), ) ) ) ) ) 3.9) 3.)
6 Maiały oocnicz do wykładu Wsółczsn aszyny i naędy lkyczn Suując zyczynki 3.9)3.) ozyuj się wyażni na wyadkow ol indukcji agnycznj w szczlini aszyny ając ówniż chaak fali wiującj 3 UVW, ) ) 3.) Pzbigi ola w szczlini wywozon w sojani i winiku są w ogólny zyadku zsunię w fazi o win ką SR wynikający z waunków zasilania i obciążnia konknj aszyny. U V W -.5 Oś agnyczna ola wyadkowgo U.867 W V Oś agnyczna ola wyadkowgo U W +.5 V - Oś agnyczna ola wyadkowgo Rys.3.6. Pzsznn ozkłady chwilowych ądów w uzwojniu ójfazowy o =, q=3 w koljnych chwilach czasowych.
7 Maiały oocnicz do wykładu Wsółczsn aszyny i naędy lkyczn Zianę kiunku wiowania ola w aszyni ozyuj się n. jżli uzwojni zsunię w zszni o + /3 będzi zasilon ąd zsunięy w czasi o ką - /3. W akyc uzyskuj się o zainiając ijscai zasilani w dwu dowolnych uzwojniach fazowych. Sosując analogiczn odjści ożna wyowadzić, ż falę wiującą ola agnyczngo ozya się akż dla aszyny dwufazowj, jżli jj uzwojnia będą zsunię w zszni o ką / a ądy w nich w czasi o ką /. Ziana kiunku wiowania wynika odobni jak w aszyni ójfazowj z zaiany zasilania z sici a akż o zaiani zacisków w dowolny uzwojniu. Wyznaczy obcni siłę lkoooyczną indukowaną w uzwojniu sojana zz falę indukcji o aliudzi sinusoidalną w zszni, ającą a bigunów i wiującą z ędkością n. Uzwojni sojana a as cwkowych o fkywnj zwojności N. SEM asa js ówna źódłowy sys oznaczń) gdzi dψ d, ) ) πn πn N L d 3.) d α d ozięość cwk asa, L długość akiu sojana, oiń wodzący szczliny. Zakładając wsęni, ż ozięość cwk js śdnicowa, o znaczy uzyskuj się / 3.3) ) πn N L, ) 4πn N L sin 3.4) Wowadzając ojęci odziałki bigunowj 3.5) ozyuj się osaczni wyażni oisując waość skuczną SEM asa E E πf N L 3.6) W wyniku zsunięcia fazowgo oiędzy SEM w koljnych cwkach fkywna liczba zwojów asa N js nico nijsza od zczywisj liczby zwojów N =qn ołączonych szgowo w aśi. lościowo ujuj o zalżność N q s N 3.7)
8 Maiały oocnicz do wykładu Wsółczsn aszyny i naędy lkyczn gdzi q wsółczynnik guowy uzwojnia ójfazowgo, s wsółczynnik skóu ozięości cwk q sin qsin q 3.8) q liczba żłobków na bigun i fazę, liczba uzwojń fazowych. sin s s 3.9) s/ - iloaz ozięości cwki i odziałki bigunowj. Uzwojni fazow zawia as będących w idnycznych waunkach agnycznych, co owadzi do swidznia, ż indukowan w nich SEM są akż idnyczn. Pasa ogą być ołączon szgowo bądź ównolgl w zalżności od ocy aszyny i waości naięcia znaionowgo. Dla szgowgo ołącznia as liczba zwojów szgowych w uzwojniu fazowy N oaz całkowiy ąd fazowy h wynoszą N N 3.) Dla ównolgłgo ołącznia as zalżności układają się odwoni h h N N 3.) Powiązani fali indukcji wiującj w szczlini z wywazający j układ ądów w ójfazowych uzwojniach js uzyskiwan zy oocy ojęcia zływu. Jżli zyjiy, ż naężni ola agnyczngo w żlazi js oijaln, o chwilowy ozkład indukcji w szczlini ) wywołany ojdynczą cwką o zwojności N i wiodącą ąd ) js osokąny ys.3.4) 3.) gdzi u ) js osokąną falą o jdnoskowj aliudzi, js gubością szczliny w aszyni. Funkcja F,) js nazywana zływ agnsujący, lub kóko zływ. Posęując odobni jak zy analizi ola indukcji w szczlini ożna wyznaczyć aliudę odsawowj haonicznj zływu dla óżnych zsznnych kszałów ola. Uzyskuj się:
9 Maiały oocnicz do wykładu Wsółczsn aszyny i naędy lkyczn - dla zływu wywozongo zz uzwojni ójfazow F l N c q s h 3.3) - dla zływu wywozongo zz uzwojni jdnofazow winika wiodąc ąd sały) F 4 l N c q s h 3.4) gdzi l c js liczbą cwk w sojani bądź winiku. Liczba zwojów szgowych na fazę N js ówna gdzi js liczbą faz uzwojnia. lc N N 3.5) 3.3. Moc ola wiującgo. Wyóżniay dwa składniki ola wiującgo w szczlini aszyny ądu zinngo w układzi wsółzędnych niuchogo względ sojana: - wywozony zz ądy w układzi ójfazowych uzwojń sojana S, ) S ) 3.6) - wywozony zz ądy o częsoliwości f łynąc w uzwojniach winika lub uiszczon a agnsy wał, ) ) 3.7) R R SR Pędkość wiowania ola wywozongo w winiku względ winika wynosi f 3.8) n Aby częsość ola winika względ sojana ówna była o ędkość chaniczna winika n usi słniać Wowadzając ojęci oślizgu s dfiniowango jako ozyuj się o uwzględniniu 3.) n n n 3.9) n n n s 3.3) f f s 3.3)
10 Maiały oocnicz do wykładu Wsółczsn aszyny i naędy lkyczn Jżli założyy, ż siła lkoooyczna ) wdług wzou 3.7) zosała wywozona zz układ ójfazowych ądów w sojani, o w dany uzwojniu fazowy ąd js zgodny z suini skojazony z y uzwojni a więc w sosunku do indukowanj w ni SEM wyzdza ją źódłowy sys oznaczń) o ką ówny /. i ) sin 3.3) Zsolona oc śdnia za oks dla całj aszyny wynisi j * j S i E j E jq 3.33) S będąc w całości ocą biną agnsującą. Asisk oznacza u liczbę zsoloną szężoną. Jak nalżało oczkiwać, ol agnyczn wywozon ylko zz sojan ni oż ośdniczyć w zwazaniu ocy czynnj. Rozazy obcni syuację, kidy w szczlini aszyny wysęują dwa nizalżn ola indukcji: S,) oaz R,) wzoy 3.6-7) a oblicznia ocy są owadzon o soni sojana. Moc zsolona aszyny wynosi w y zyadku S * * S R is jqs RiS jqs E R j SR S j 3.34) co o osych zkszałcniach daj śdnią za oks oc czynną i biną 3.35) Ką SR odzilony zz liczbę a bigunów js ką goyczny wyzdznia względ kiunku uchu winika) osi agnycznj ola winika w sosunku do osi ola sojana. Na ys.3.7 zaiszczono zsawini dla acy ądnicowj i silnikowj aszyny zsznnych ołożń ól sojana i winika zy założniu, ż ol winika a isoni większą aliudę) i odowiadających i wyksów wskazowych wykonanych w konwncji źódłowj. Dla zyadku acy silnikowj zy doinujący zływi sojana analogiczn wyksy okazano na ys.3.8.
11 Maiały oocnicz do wykładu Wsółczsn aszyny i naędy lkyczn E R SR E S a. Oś agnyczna ola sojana Oś agnyczna ola winika F R F S F E E R E S SR E b. Oś agnyczna ola sojana Oś agnyczna ola winika Rys.3.7. Zsawini zsznnych ołożń ól sojana i winika z wyks wskazowy wykonany w konwncji źódłowj a. aca ądnicowa aszyny oddającj oc biną agnsującą, b. aca silnikowa aszyny oddającj oc biną agnsującą. F R F S F E R E S SR Oś agnyczna ola sojana Oś agnyczna ola winika F R E S E F F S F R F S E F E R a. b. c. Rys.3.8. Zsawini zsznnych ołożń ól sojana i winika aszyny zy acy silnikowj obiającj oc biną agnsującą dla óżnych konwncji wyksu wskazowgo a. ołożni osi agnycznych sojana i winika b. wyks wskazowy w konwncji źódłowj, c. wyks wskazowy w konwncji odbionikowj.
Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice.
Wykład 6 Pochodna, całka i równania różniczkow w prakycznych zasosowaniach w lkrochnic. Przypomnini: Dfinicja pochodnj: Granica ilorazu różnicowgo-przyros warości funkcji do przyrosu argumnów-przy przyrości
AMD. Układy trójfazowe
Wykład 7 kłady rójazow. Gnraory rójazow. kłady ołączń źródł. Wilkości azow i rzwodow 4. ołącznia odbiorników w Y(gwiazda i w D (rójką 5. Analiza układów rójazowych Gnraor naięcia sinusoidalngo rójazowgo
MASZYNY PRĄDU STAŁEGO
Zagadninia: Tma: MASZYNY PRĄDU STAŁEGO budowa i zasada działania maszyn prądu sałgo, napięci indukowan i momn obroowy, prądnica obcowzbudna i bocznikowa, silniki charakrysyki mchaniczn, rozruch i rgulacja
( t) UKŁADY TRÓJFAZOWE
KŁDY TRÓJFW kładm wilofazowym nazywamy zbiór obwodów lktrycznych (fazowych) w których działają napięcia żródłow sinusoidaln o jdnakowj częstotliwości przsunięt względm sibi w fazi i wytwarzan przważni
Podręcznik: Jan Machowski Regulacja i stabilność
dr hab. Désiré D. Rasolomampionona, pro. PW GM pok.111 STANY NEUSTALONE SYSTEMÓW ELEKTROENERGETYCZNYCH Wykład dla sem. sudiów sopnia Auomayka Elekroenergeyczna Podręcznik: Jan Machowski Regulacja i sabilność
Sygnały zmienne w czasie
Sygnały zmienne w czasie a) b) c) A = A = a A = f(+) d) e) A d = A = A sinω / -A -A ys.. odzaje sygnałów: a)sały, b)zmienny, c)okresowy, d)przemienny, e)sinusoidalny Sygnały zmienne okresowe i ich charakerysyczne
OSCYLATOR HARMONICZNY
OSCYLTOR HRMONICZNY Dgania swobone oscylaoa haonicznego negia oencjalna sęŝysości Dgania łuione oscylaoa haonicznego Dgania wyuszone oscylaoa haonicznego Rezonans aliuowy Rezonans ocy Doboć ukłau gającego
Ł Ź Ż ć Ą Ż ć Ż Ż Ż ć ć Ż Ż ć Ż ć Ź Ź ć Ż Ż Ż Ę Ę Ż ć ć ć Ż Ż ć ć ć ć Ż ć ć Ż ć Ż Ż Ż Ź Ź Ż Ż Ż ć Ż Ż Ó Ż Ż ć Ż Ż ć Ż ć Ż ć Ż ć ć Ź ć Ć Ż Ż Ż Ż Ż Ż Ż Ż ć Ż Ź Ż ć Ż Ż Ż Ż Ż ć ć ć Ż ć Ł Ź ć Ź Ź Ź ć Ż Ż Ż
XLI OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne
XLI OLIPIADA FIZYCZNA EAP I Zadanie doświadczalne ZADANIE D Pod działaniem sil zewnęznych ciała sale ulęgają odkszałceniom. Wyznacz zależność pomienia obszau syczniści szklanej soczewki z płyka szklana
PRZYCZYNY I SKUTKI ZMIENNOŚCI PARAMETRÓW MASZYN INDUKCYJNYCH
LV SESJA STUENCKICH KÓŁ NAUKOWYCH PRZYCZYNY I SKUTKI ZMIENNOŚCI PARAMETRÓW MASZYN INUKCYJNYCH Wykonali: Michał Góki, V ok Elektotechnika Maciej Boba, V ok Elektotechnika Oiekun naukowy efeatu: d hab. inż.
Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny
Eikonał Optyczny.doc Stona z 6 Eikonał Optyczny µ µ Rozpatzmy ośodk bz ładunków i pądów z polm o pulsacji ω Uwaga: ni zakłada się jdnoodności ośodka: ε ε xyz,,, Równania Maxwlla: H iωε ε E ikc ε ε E E
ψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
MECHANIKA BUDOWLI 12
Olga Koacz, Kzysztof Kawczyk, Ada Łodygowski, Michał Płotkowiak, Agnieszka Świtek, Kzysztof Tye Konsultace naukowe: of. d hab. JERZY RAKOWSKI Poznań /3 MECHANIKA BUDOWLI. DRGANIA WYMUSZONE, NIETŁUMIONE
SYSTEMY ELEKTROMECHANICZNE
SYSTEMY ELEKTROMECHANICZNE kie. Elektotechnika, studia stopnia stacjonane, sem. 1, 010/011 SZKIC DO WYKŁADÓW SILNIKI BEZSZCZOTKOWE Z MAGNESAMI TRWAŁYMI (SBMT) (1) MODELE OBWODOWE DYNAMICZNE Mieczysław
Lista A) Proszę pokazać, że przy padaniu prostopadłym na granicę ośrodka próżnia(dielektryk)-metal,
Lista 1. A) Poszę okazać ż zy adaniu ostoadłym na ganicę ośodka óżnia(dilktyk)-mtal n11 n N 1 wsółczynnik odbicia fali lktomagntycznj (FEM) R. Ws-ka: Andix A książki N 1 n `1 n M. Foxa Otical otis of Solids
MODELOWANIE ROZKŁADU INDUKCJI W SZCZELINIE POWIETRZNEJ MASZYNY SYNCHRONICZNEJ Z MAGNESAMI TRWAŁYMI UWZGLĘDNIAJĄCE EKSCENTRYCZNOŚCI WIRNIKA
Pac Naukow Intytutu Mazyn Naędów i Poiaów Elktycznych N 6 Politchniki Wocławkij N 6 Studia i Matiały N 8 008 Toaz WĘGIEL* azyny z agnai twałyi kcntyczność winika MODELOWANIE ROZKŁADU INDUKCJI W SZCZELINIE
Termodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ
Trodynaika Część 1 Elnty fizyki statystycznj klasyczny gaz doskonały Janusz Brzychczyk, Instytut Fizyki UJ Użytczn całki ax2 dx = 1 2 a x ax2 dx = 1 2a ax2 dx = a a x 2 ax2 dx = 1 4a a x 3 ax2 dx = 1 2a
Ł Ł Ń Ą Ę Ó Ś ę Ż żń ĆŻ Ż ś ść Ż Ó Ż Ż ń ść ń ę Ź ż Ż Ż ż ń ż ń Ż ÓŻ Ś Ó Ź Ż Ż Ź Ż ń Ż ś Ż Ż Ż Ż ść ż Ż Ż ń ń ść Ż ś Ż ś ż ś Ó ę ś ś Ż ż śż ś ż ę ę Ó Ż Ś Ó Ż Ó Ż ń ż ś Ż ń ż Óż ń ś ę ć Ż Ż ś żż Ż ś Ś Ż
Ę Ł Ż Ż ŻŻ Ą Ą ć ż Ó ć ż ć Ż Ś ż Ż ć Ć Ó Ż Ś ć ÓŹ Ź Ó Ż Ó Ż Ś Ą Ó Ś Ąć Ż Ż Ó ć Ż ć Ę Ż Ó Ó Ó Ó Ż ć Ó Ó Ó Ż Ó Ó Ó Ł Ź Ó Ó Ó Ó Ó Ł Ś ć ć ć Ó Ó Ó Ó Ó Ś Ó Ó Ż Ó Ż Ś ż ć Ę ż Ż Ę Ż Ż ć ż ż Ż ć Ę ć ż ż ż ć ć
Wykład 2: Atom wodoru
Wykład : Ato wodou Równani Schödinga Kwantowani ngii Wida atoow wodou Kwantowani ontu pędu Liczby kwantow Część adialna i kątowa funkcji falowj Radialny ozkład gęstości pawdopodobiństwa Kontuy obitali
Twierdzenia o przyrostach
Twirdznia o przyrosach Jżli w sici liniow zwrzy dwa węzły, iędzy kóryi panu napięci, o przyrosy (dodani lub un prądów w gałęziach sici oży obliczyć włączaąc iędzy węzły idaln źródło napięciow o sil lkroooryczn
Przykłady procesów nieodwracalnych: wyrównywanie się temperatur, gęstości i różnicy potencjałów.
modynamika pocsów niodwacalnych modynamika klasyczna - tmostatyka - opis pocsów odwacalnych Ni można na podstawi otzymać wniosków dotyczących pzbigu w czasi pocsów niodwacalnych Pzykłady pocsów niodwacalnych:
Ł Ą Ń
Ł Ą Ń Ł Ł ź ź Ż Ż Ą Ł ź ź Ł Ź Ż Ź ź Ż Ż Ż ź Ć Ą ź Ł Ć Ż Ż Ż Ź Ć ź Ń Ż Ż Ć Ć ź Ż Ć ź Ź Ć Ć ź Ź Ć Ź Ż ź Ź Ż Ć ź Ń Ź Ć Ć ź Ż Ź Ź Ż Ć Ź Ż Ż Ż Ż Ż Ń Ą Ź ź Ć Ż Ż Ż Ż Ż ź Ż Ż Ź ź Ć Ć Ź Ż Ł Ą Ń ź Ń Ż Ć Ą Ź Ą
Ł Ą ż ż Ś Ą ż ż Ń Ę ż Ą ż ż Ą ć Ą ż ż Ą Ń ż ż Ę ż ż ż ż ćż ż Ś Ź ż Ź ć ż ż ż ż ż ć ż ż ć ż ć ż ż Ś ż ć ż ż ż ć ż ż ż ż ż ż ż Ź ż ć ż ż ż ć Ź ćż ż ć ż ż ż ż Ż Ń ż ż ż ż Ź ć ż ć ż ć ż ż ż ż ż ć ż ż ż Ź ć
BADANIE DYNAMICZNEGO TŁUMIKA DRGA
Ćwiczenie 3 BDNIE DYNMICZNEGO TŁUMIK DRGŃ. Cel ćwiczenia yłumienie dgań układu o częsości ezonansowej za pomocą dynamicznego łumika dgań oaz wyznaczenie zakesu częsości wymuszenia, w kóym łumik skuecznie
ź ż ć ć Ę ż ż ż ż ż ż ż ć ż ź Ę ć ż ż ż Ę ż ż ż ż ż ż ż ź ź ż ż ć ź ź ż ź ź ć ź ż ź ć ź ź ć ź Ę ź ż ź ż ć Ę ż ż ż ć ż ż ż ź ż ż ż ż ż ż ż ć ć ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ć ć ć ć ć ć Ę ż Ę ż ż
Ż ż Ź ż ż ć ż ż ż ż ć ż Ź ż ż ż ć Ś ż Ś ć ż ć ż ż ż ć ć ż Ź ż ćż ż ż ż Ż ż Ą ż żć ż ż Ś ż ż ż ć ż ż ż ż ż ż ż ć Ć ż Ą Ż Ż ć Ś ż ż Ś Ś Ęż ż ć ż Ż Żż Ć ż ż ż ż ż ć Ż ż Ćż Ż ż ż ż Ą ż ż ć ż ć ż ż ć ż ż ż
WYKŁAD 8 BUDOWA I ZASADA DZIAŁANIA MASZYN PRĄDU STAŁEGO
WYKŁAD 8 BUDOWA I ZASADA DZIAŁANIA MASZYN PRĄDU STAŁEGO 8.1. Podstawowe enty konstrukcyjne W każdej maszynie ektrycznej wyróżnia się w sposób naturalny część ruchomą względem otoczenia wirnik oraz nieruchomą
5.3 TRANSFORMACJA LORENTZA
5. TRANSFORMACJA LORENTZA Rozdział naży do oii p. "Toia Pzszni" auoswa Daiusza Sanisława Sobowskigo. Hp: www.hsngins.om hp: www.hoyofspa.info E-mai: info@hsngins.om A ighs sd. Tansfomaja Lonza w zowymiaowj
BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC
Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia
Maria Dems. T. Koter, E. Jezierski, W. Paszek
Sany niesalone masyn synchonicnych Maia Dems. Koe, E. Jeieski, W. Pasek Zwacie aowe pąnicy synchonicnej San wacia salonego, wany akże waciem nomalnym lb pomiaowym yskje się pe wacie acisków wonika (j (sojana
Swobodny spadek ciał w ośrodku stawiającym opór
Ryszard Chybici Swobodny spad ciał w ośrodu stawiający opór (Posłuiwani się przz osoby trzci ty artyuł lub jo istotnyi frantai bz widzy autora jst wzbronion) Milc, 005 Swobodny spad ciała ośrodu stawiający
ó óź óź óź ó ó ć ó ó ó ó Ą ó ó ó Ż ó ó ń Ą Ą Ą ó ó Ż ź Ś Ż Ż Ś Ż Ż Ż Ś Ż Ą ź ź Ą ź ź Ż Ż Ż Ś Ż ź Ż Ż Ż ć Ś Ż Ś ć Ł Ś Ś Ś Ł ć Ł Ś ó ó ó ó ó ó ó ó ó ó ń ń ń ó Żń ź ó ó ó ó ó Ż ó Ś ó ó ó ć ó ó ó ó ć ń Ż
Wykład 2 Wahadło rezonans parametryczny. l+δ
Wykład Wahadło rzonans paramryczny θ θ l l+δ C B B Wykład Wahadło - rzonans paramryczny E E E B mg l cos θ θ E kinb m d d l l+δ B B l C I m l E B B kinb' I m B' B' d d d d B l ml d d B ' mgl cos ' B gcos
POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych LABORATORIUM
POLITECHNIKA GDAŃSKA Wydział Elktrotchniki i Automatyki Katdra Enrgolktroniki i Maszyn Elktrycznych LABORATORIUM SYSTEMY ELEKTROMECHANICZNE TEMATYKA ĆWICZENIA MASZYNA SYNCHRONICZNA BADANIE PRACY W SYSTEMIE
Ł Ą Ą Ń ć ź Ł Ł Ł Ś Ł ź Ź ć ź ć Ź ć Ź ć ć Ź ź ć ć Ó Ś Ę Ś Ś Ń ć ć ć ć Ś Ź Ź ć ć ć ć Ź ź Ę ć ć Ę ć ć ć ć Ź ć ć Ć ć Ę ź ź ć ź ć Ź Ę Ź ź ź Ę Ź Ę Ś Ą ć Ź ź ć ź ć Ę Ę ć Ę ć Ń Ś Ę Ó Ó ć Ó Ę Ź Ę Ę ź ć ć ć Ć
Przejścia międzypasmowe
Pzjścia iędzypasow Funcja diltyczna Pzjścia iędzypasow związan są z polayzacją cuy ltonowj wwnątz dzni atoowyc - są odpowidzialn za część funcji diltycznj ε Wóćy do foalizu funcji diltycznj: ε las N (
Mikrosilniki synchroniczne
Mikoilniki ynchoniczne Specyfika eoii: R >0 z uwagi na ounkowo dużą waość ezyancji ojana nie wolno jej pomijać w analizie zjawik mikomazyny ynchonicznej. Zwykle wykozyywane ą óżne odzaje momeny ynchonicznego:
Rozkład Maxwell a prędkości cząsteczek gazu Prędkości poszczególnych cząsteczek mogą być w danej chwili dowolne
Rozkład Maxwll a rędkośi ząstzk gazu 9-9. Rozkład Maxwll a rędkośi ząstzk gazu Prędkośi oszzgólnyh ząstzk ogą być w danj hwili dowoln 3 a tylko rędkość śrdnia kwadratowa wynosi sk. Można się jdnak sodziwać,
Układy Trójfazowe. Wykład 7
Wykład 7 kłady Trójazowe. Generatory trójazowe. kłady ołączeń źródeł. Wielkości azowe i rzewodowe 4. ołączenia odbiorników w Y(gwiazda) i w D (trójkąt) 5. Analiza układów trójazowych 6. Moc w układach
ć ż ź ć ć Ń ć ż ż ż ż ż ć ż ż ć ż Ź ż ż ż ż ź ź ż ż ń ż ćż ż ź ć ń ć Ń Ą ż ń ż ż ż ż ć ż ć ż ż Ń ż ż ń ż ć ż ń ż ń ż Ź ż ż ń ż ć ć ź ż ż ż ź ż ń ź ż ń ż Ń ć Ą Ę ż ż ć ń ć ż ż ń ż ż ż ć ć ć ń ż Ź ć ż ć
Ś ź ź Ś Ś Ź ć ź Ń ź Ś Ś ć ć Ź Ś ź Ź Ź Ń ź Ś ć Ł ź ź ć Ś ć ć ć ć Ś ź ź Ź Ń ź ź Ś ć Ś ź ć ź ź ć ź ź ć Ł Ź ź ź ź ź ź ć ź ź ć ź ć ć Ź ź ź Ń ź ź ć ź ź ć Ń Ś Ś Ź Ń Ś ź ć Ś ź ź ź ć Ś Ź Ń ź ź Ś ć Ź ź ć ć ź Ł ć
11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
Fale elektromagnetyczne spektrum
Fale elekroagneyczne spekru w próżni wszyskie fale e- rozchodzą się z prędkością c 3. 8 /s Jaes Clerk Mawell (w połowie XIX w.) wykazał, że świało jes falą elekroagneyczną rozprzesrzeniającą się falą ziennego
SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego
Ćwiczenia: SK-7 Wpowadzenie do metody wektoów pzetzennych SK-8 Wektoowy model ilnika indukcyjnego, klatkowego Wpowadzenie teoetyczne Wekto pzetzenny definicja i poawowe zależności. Dowolne wielkości kalane,
WYKŁAD 2 INDUKOWANIE SIŁY ELEKTROMOTORYCZNEJ
WYKŁAD DUKOWA SŁY KTOMOTOYCZJ.. Źródłowy i odbiornikowy system oznaczeń. ozpatrzmy elementarny obwód elektryczny prądu stałego na przykładzie ładowania akumulatora samochodowego przedstawiony na rys...
Wartość ciśnienia wiatru działającego na powierzchnie zewnętrzne (w e ) i wewnętrzne (w i ) konstrukcji.
Zbrani obciążń a) Stał: Ciężar własny okrycia dachu: Pokryci dachówką kariówką odwójni. Przyjęto ciężar okrycia wraz z konstrukcją dachu: g 0,95 ; b) Zinn: Śnig wg EC: s ) C i i C s t k,gdzi: s wartość
Ł Ź Ź Ł Ź Ę Ś Ę Ę Ś Ą Ę Ś Ą Ć Ć ć Ę Ą Ł Ś ć ń ć Ł ć Ź ć Ę Ą Ą Ź ź ź ć ć ć ć ć ń ń ć ć ń Ó ź Ę Ą ć ć ć Ź ć Ź ć ć ń ń ć ń Ó ć Ą ń ć Ę Ą Ą ń ń ń ń ć ń ć ć Ź ć ń Ź ń ń Ć ń ń ń Ę Ą Ś Ą ń ć ń ć ź ń Ę Ś Ą Ąć
Ń Ą Ę Ł Ł Ł Ł ź Ł Ł Ł Ł Ł Ł ź Ł Ł Ł Ł Ś Ś źć Ą ź ź ć ź ć Ś ć Ą ć Ż ć ć Ę ć Ą Ł Ł Ł ź Ś Ą ź Ą Ą Ł Ś Ą Ż Ą Ł Ł ć Ż Ś ź Ó ź Ó ć Ć ź Ś ć Ł ć ć ć ć ć ć Ą Ą Ą Ł Ą ć ć ć ć Ą Ł ź ć ćź ć ć ź Ś ć ć Ą Ą Ą ć Ą ć Ż
ć ć ć ć ć ć ć źć ć ć ć ć ć ć ź Ś ź ć ć ć Ż ć Ę ć ć ć ć ć ć Ę Ę ć ć ć Ż ź ź ź ć ć ć ć ć Ś ć ć ć ć ć Ż ćż ć ć ć ć ć ć Ż ć ć ć ć ź ć ź Ę ć ć ź ć ć Ś Ż ć ć ć Ą Ż ć ć ć Ę ć ć Ż ć ć ć Ś ć ć ć ć ć ć ć ć ć ć ć
Ł Ł Ó Ś Ż Ł Ń Ż Ż ć Ż Ł Ż Ż Ż Ż Ż Ż Ż Ż Ż Ż Ż Ł ć Ż Ż ć ć Ź Ł Ż Ż Ż ć ź Ż ń Ż Ż Ż Ż ć ń ć ń ć Ł Ż ć Ż Ł Ś ŻŻ Ł Ż Ń Ł ź Ź Ż Ź Ł Ż Ł Ł Ń ć Ó Ż Ń Ń Ł ź ź Ż Ż Ż Ś Ć Ż Ć Ł Ł Ł Ż Ż Ś ŚĆ Ś Ś ć ć Ż Ż ŚĆ Ś Ś ŚĆ
cz.1 dr inż. Zbigniew Szklarski
ykład : Gawitacja cz. d inż. Zbiniew Szklaski szkla@ah.edu.l htt://laye.uci.ah.edu.l/z.szklaski/ Doa do awa owszechneo ciążenia Ruch obitalny lanet wokół Słońca jak i dlaczeo? Reulane, wieloletnie omiay
ĆWICZENIE 11 OPTYMALIZACJA NIEZAWODNOŚCIOWA STRUKTURY ELEKTRONICZNEGO SYSTEMU BEZPIECZEŃSTWA
ĆWICZENIE OPTYMALIZACJA NIEZAWODNOŚCIOWA STUKTUY ELEKTONICZNEGO SYSTEMU EZPIECZEŃSTWA Cl ćwicznia: zapoznani z analizą nizawodnościowo-ksploaacyjną lkronicznych sysmów bzpiczńswa; wyznaczni wybranych wskaźników
BADANIE OBWODÓW TRÓJFAZOWYCH
Katedra Energetyki Laboratorium Podstaw Elektrotechniki i Elektroniki Instrukcja do ćwiczenia: BADAIE OBWODÓW TÓJFAZOWYCH . Odbiornik rezystancyjny ołączony w gwiazdę. Podłączyć woltomierze ameromierze
POLE ELEKTROSTATYCZNE W PRÓŻNI - CD. Dipol charakteryzuje się przez podanie jego dipolowego momentu elektrycznego p (5.1)
POL LKTROTATYCZN W PRÓŻNI - CD Dio ktyczny q + q Dio ktyczny to ukła ównych co o watości unktowych łaunków ktycznych zciwngo znaku ozmiszczonych w stałj ogłości o sibi Dio chaaktyzuj się zz oani jgo ioowgo
POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU
Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów
2009 ZARZĄDZANIE. LUTY 2009
Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w
DETERMINANTY CENY OPCJI NA AKCJE ASPEKT TEORETYCZNY
TUDIA PRAWNO-EKONOMICZNE,. LIV, 0 PL IN 008-684 s. 9 309 Pawł DYKA * Maiusz TROJAK ** DETERMINANTY CENY OPCJI NA AKCJE APEKT TEORETYCZNY Wsęp Clm ninijszgo opacowania js zapznowani wóch najważnijszych
ó ę ą ż ż ś ść Ó Ś ż Ó Ś ę ą żć ó ż Ó ż Ó ó ó ż Ó ż ó ą ą Ą ś ą ż ó ó ż ę Ć ż ż ż Ó ó ó ó ę ż ę Ó ż ę ż Ó Ę Ó ó Óś Ś ść ę ć Ś ę ąć śó ą ę ęż ó ó ż Ś ż
Ó śó ą ę Ę śćś ść ę ą ś ó ą ó Ł Ó ż Ś ą ś Ó ą ć ó ż ść śó ą Óść ó ż ż ą Ś Ś ż Ó ą Ó ą Ć Ś ż ó ż ę ąś ó ć Ś Ó ó ś ś ś ó Ó ś Ź ż ą ó ą żą śó Ś Ó Ś ó Ś Ś ąś Ó ó ę ą ż ż ś ść Ó Ś ż Ó Ś ę ą żć ó ż Ó ż Ó ó ó
LABORATORIUM MECHANIKI EKSPERYMENTALNEJ. Instrukcja do ćwiczenia
LABORAORIUM MECHANIKI EKSPERYMENALNE Insukcja do ćwicznia Wyznaczani onów bzwładności nów aszyn odą podwisznia ójpunkowo C ćwicznia C ćwicznia js zapoznani z kspynanyi odai wyznaczania onów bzwładności
Stanowisko laboratoryjne do badań przesuwników fazowych
Polichnika Śląska Wydział Elkryczny Insyu Mrologii i Auomayki Elkrochniczn Tma pracy: Sanowisko laboraoryn do badań przsuwników fazowych Promoor: Dr inż. Adam Cichy Dyploman: Adam Duna Srukura rfrau. Wsęp.
INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11
NSTRKCJA LABORATORM ELEKTROTECHNK BADANE TRANSFORMATORA Autor: Grzegorz Lenc, Strona / Badanie transformatora Celem ćwiczenia jest poznanie zasady działania transformatora oraz wyznaczenie parametrów schematu
Długo łuku krzywej., klasy. t ; t oraz łuk nie ma czci wielokrotnych, to długo łuku. wyraa si wzorem
Długo łuku kzwj Kzw ( L : [, ] f ( Jli dn js ównni wkoow kzwj pochodn (, ( s cigł w pzdzil W współzdnch igunowch:, kls C, m długo L ( f ( ( α;, pz czm funkcj (, ( oz ich ( ; oz łuk ni m czci wilokonch,
Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne
Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką
13 K A T E D R A F I ZYKI S T O S O W AN E J
3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony
Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE
w7 58 Prąd zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów zmiennych Opór bierny
58 Prąd zienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów ziennych Opór bierny Prąd zienny Prąd zienny 3 Prąd zienny 4 Prąd zienny 5 Prąd zienny Przy stałej prędkości kątowej ω const pola
w5 58 Prąd d zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w zmiennych Opór r bierny Podstawy elektrotechniki
58 Prąd d zienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w ziennych Opór r bierny Prąd d zienny Prąd d zienny 3 Prąd d zienny 4 Prąd d zienny 5 Prąd d zienny Przy stałej prędkości kątowej
Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO
Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1 Źródła energii elektrycznej prądu przemiennego: 1. prądnice synchroniczne 2. prądnice asynchroniczne Surowce energetyczne: węgiel kamienny i brunatny
Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona
Wyznaczanie poienia kzywizny soczewki płasko-wypukłej etodą pieścieni Newtona I. Cel ćwiczenia: zapoznanie ze zjawiskie intefeencji światła, poia poienia soczewki płasko-wypukłej. II. Pzyządy: lapa sodowa,
Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC
Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów
Ł Ś Óń Ź ń Ń ż ż ć ż ć ć ż ż Ą ż ć Ó Ó ż ż ć ń ń ń Óń Ó ń ń Óć ć ć ń ń ń ń ń Ś ń ń ń ż ć ć Ś Ł ż ń ż ż Ś Ó Ó ń ń ń Ś Ś ć Ó ń Ś ż Ó Ó Ś Ó Ó ż ń Ś Ó Ę ń ń Ó Ó ń ń Ś ż ń Óń Ó Ś ń Ó Ś ń ż ń ż Ó ć ń ń ń ż Ó
WYKŁAD 4 TRANSFORMATOR JEDNOFAZOWY
WYKŁAD 4 TASFOMATO JEDOFAZOWY 4.. Struktury transformatorów jednofazowych. ys.4.. Transformatory jednofazowe o rdzeniu płaszczowym E ys.4.. Transformatory jednofazowe o rdzeniu płaszczowym zwijanym. ys.4.3.
Projekt silnika bezszczotkowego prądu przemiennego. 1. Wstęp. 1.1 Dane wejściowe. 1.2 Obliczenia pomocnicze
projekt_pmsm_v.xmcd 01-04-1 Projekt silnika bezszczotkowego prądu przemiennego 1. Wstęp Projekt silnika bezszczotkowego prądu przemiennego - z sinusoidalnym rozkładem indukcji w szczelinie powietrznej.
INSTRUKCJA DO ĆWICZENIA
NSTRKJA DO ĆWZENA Temat: Rezonans w obwodach elektycznych el ćwiczenia elem ćwiczenia jest doświadczalne spawdzenie podstawowych właściwości szeegowych i ównoległych ezonansowych obwodów elektycznych.
cx siła z jaką element tłumiący działa na to ciało.
Drgania układu o jedny sopniu swobody Rozparzy układ składający się z ciała o asie połączonego z nierucoy podłoże za poocą eleenu sprężysego o współczynniku szywności k oraz eleenu łuiącego o współczynniku
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015
EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,
2. Tablica routingu dla pewnej sieci złożonej z czterech węzłów wygląda następująco:
Colloquium 4, Grupa A. Jaką oszczędność w zarządzaniu działm Biura Obsługi Klina (polgającą na rdukcji liczby sanowisk obsługi) mogą odnoować dwa połączon przdsiębiorswa, jżli: a. każda z firm przd połącznim
Badanie przebiegu czasowego prądu magnesującego transformatora. Wprowadzenie
Badanie przebiegu czasowego prądu agnesującego transforatora Wprowadzenie Transforator jest statyczny przetwornikie energii, w który, bez ruchu obrotowego, za pośrednictwe pola elektroagnetycznego następuje,
BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO
LABORATORIUM ELEKTRONIKI I ELEKTROTECHNIKI BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO Opacował: d inŝ. Aleksande Patyk 1.Cel i zakes ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową, właściwościami
Dr inż. Agnieszka Wardzińska Room: 105 Polanka Advisor hours: Tuesday: Thursday:
Dr inż. Agnieszka Wardzińska Roo: 05 Polanka agnieszka.wardzinska@put.poznan.pl cygnus.et.put.poznan.pl/~award Advisor hours: Tuesday: 0.00-0.45 Thursday: 0.30-.5 Jednolitość oznaczeń Oznaczenia dla prądu
Teoria sygnałów. II rok Inżynieria Obliczeniowa Wykład /2018
oia sgnałó II ok Inżniia Obliznioa Wkład 7/8 Gd koś boi się sąpać po zapadłm guni obaoanm pakulanmi insami najlpij jśli pzjdzi bokim. R.E.alman(93 - ) Ida zodziła się z końm lisopada 958oku głoi Rudolfa
Ą Ą Ą Ą Ą Ł Ż Ż Ą Ż Ż Ż ź Ż ź ź Ż ź ć ć Ą Ż Ż Ż Ż Ż ź Ż ź Ż Ż Ż Ż Ą Ż Ż ŻŻ Ż Ż Ż Ą ŻŻ Ż ŻŻ ć ŻŻ ŻŻ Ż ć Ń Ł ŻŻ Ż ŻŻ ć ŻŻ Ż Ż Ż ć ŻŻ Ż Ż ź Ą ŻŻ Ż ć ć ŻŻ Ś Ż Ż Ś Ą Ż Ą Ż Ż Ż ź Ż ć Ż ć Ś Ż ć ć Ż ź Ż ć ź Ż
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
ELEKTROTECHNIKA I ELEKTRONIKA
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E19 BADANIE PRĄDNICY
2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.
Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz
Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym
1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci
str. 1 Temat: Uzwojenia maszyn prądu stałego. 1. Uzwojenia maszyn prądu stałego. W jednej maszynie prądu stałego możemy spotkać trzy rodzaje uzwojeń:
Temat: Uzwojenia maszyn prądu stałego. 1. Uzwojenia maszyn prądu stałego. W jednej maszynie prądu stałego możemy spotkać trzy rodzaje uzwojeń: a) uzwojenie biegunów głównych jest uzwojeniem wzbudzającym
Oddziaływanie wirnika
Oddziaływanie wirnika W każdej maszynie prądu stałego, pracującej jako prądnica lub silnik, może wystąpić taki szczególny stan pracy, że prąd wirnika jest równy zeru. Jedynym przepływem jest wówczas przepływ
Pomiar parametrów w obwodach magnetycznych Pomiar parametrów w łączach selsynowych
Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich W Laboratoriu Elektrotechniki i Elektroniki Ćwiczenie - protokół oiar paraetrów w obwodach agnetycznych oiar paraetrów w łączach selsynowych
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ODPOWIEDZI DO ARKUSZA ROZSZERZONEGO Zadanie ( pkt) A Zadanie ( pkt) C Zadanie ( pkt) A, bo sinα + cosα sinα + cosα cos sinα sin cosα + π π + π sin α π A więc musi
ń Ż ć Ą Ę Ę ń Ą Ż ń Ż ń Ę Ę Ę ń Ż ń Ś ń ć Ś ń ń ń ń ń Ę Ę Ą ń Ą Ń Ę ń Ż Ń ń Ź ń Ż Ś ń Ż ń ń ń Ź Ż Ą ń ń Ż ń ć Ś ń ń ź ń ń Ź ń Ś Ź ń ń ń Ż ń ć Ś ń ń ć Ż Ę ń ć Ś Ś Ż ń Ź Ż ń ń Ą ń Ś Ść Ń ń ń ź ń Ż ń Ż Ż
Ą ń Ż Ź Ś Ż ź Ł Ż Ż ź ź Ż Ż Ż Ż ź ź ź ż Ż ź Ż ż ń Ż ż ć ń ż ż ż Ż ź Ż Ż ź Ż ż Ż ć ż Ż Ś ż Ś Ż ź ń ń Ż ń Ż ń Ż ź ń ń ż ż ń Ą ń Ą ń ń ń ń ń ź ń Ź ż ć ż Ż ć ź Ż ć ż ć ć ż Ą ć ń ń ć Ł ż ż ć Ż Ż ż ż Ż Ż Ż ń
Ą Ę ą Ś ą ć Ą ą ą ą ą ŻŻ ŻŻ Ą Ż ą ą ą ą ą ą ą ą ą Ą ą ą Ęć ą ą ą ą ą ć Ę Ś Ą ć ą ć Ś ą Ą ć Ą ą Ą ź Ę ź ą ć ć ą ą Ę ą ą Ę ą ą ą ą ą ą ć ą ą ą ą ć ą ą ą Ę ą ą ą ą ą ą ą ą ć ć ź ą Ą ą ć Ę Ł Ł Ę ą ą Ą ą ą