WYKŁAD 4 TRANSFORMATOR JEDNOFAZOWY

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYKŁAD 4 TRANSFORMATOR JEDNOFAZOWY"

Transkrypt

1 WYKŁAD 4 TASFOMATO JEDOFAZOWY 4.. Struktury transformatorów jednofazowych. ys.4.. Transformatory jednofazowe o rdzeniu płaszczowym E ys.4.. Transformatory jednofazowe o rdzeniu płaszczowym zwijanym.

2 ys.4.3. Typowe kształtki rdzeni transformatorów jednofazowych. a. b. ys.4.4. Przykładowe uzwojenia transformatorów jednofazowych a. rurowe, b. krążkowe.

3 4.. Moc pozorna transformatora jednofazowego. ozpatrzmy transformator jednofazowy z rdzeniem płaszczowym pokazany na rys.4.5. Przekrój kolumny rdzenia wynosi S a w obwodzie magnetycznym wytyczono zamknięty kontur l. l S ys.4.5. Geometria transformatora jednofazowego. a podstawie prawa Faraday a (.) otrzymano zależność pomiędzy SEM indukowanymi w obydwu uzwojeniach E E Zastosujmy obecnie prawo Ampe a do konturu l f (4.) l H dl l Bdl 0 r i ( t) i ( t) (4.) Okazuje się, że wartość lewej strony równania (.3) jest równa dla współczesnych blach zimnowalcowanych około 00*l, natomiast amperozwoje strony G bądź D jednostek o mocy od kilkudziesięciu kva w warunkach znamionowych są rzędu Można więc zapisać i ( t) i ( t) 0 (4.3) Przyjmując, że iloraz napięć znamionowych praktycznie nie odbiega od wartości przekładni fazowej uzyskuje się z wymnożenia stronami równań (4.)(4.3)

4 S S S (4.4) S moc znamionowa (pozorna) transformatora jednofazowego, [ VA ]. Stan jałowy i zwarcia są granicznymi stanami pracy transformatora, w których moc pozorna wyjściowa S jest równa zeru. Oznaczając stronę zasilaną indeksem () mamy - w stanie jałowym S 0 ponieważ 0 (4.5) ys.4.6. Transformator w stanie jałowym zasilany od strony G - w stanie zwarcia S 0 ponieważ 0 (4.6) k k k ys.4.7. Transformator w stanie zwarcia zasilany od strony G

5 4.3. Stan jałowy transformatora jednofazowego Jedno z uzwojeń transformatora (G bądź D) jest zasilane napięciem t sinωt u 0 (4.7) Pod wpływem tego napięcia w zamkniętym obwodzie zasilanego uzwojenia o zwojach płynie prąd, który wytwarza strumień magnetyczny w rdzeniu t m sin ωt (4.8) gdzie - luktancja obwodu magnetycznego. Strumień ten jest skojarzony z uzwojeniem zasilającym i wytwarza w nim siłę elektromotoryczną (SEM) e(t) t d (4.9) e Bilans napięć w obwodzie (w opisie odbiornikowym) daje t d e(t) i0(t) (4.0) u Jak pokazują obliczenia rzeczywistych obiektów, pominięcie w (4.0) spadku napięcia na zystancji daje znikomy błąd rzędu części procenta. Całkując to równanie otrzymuje się Φt u t dt 0 cosωt C (4.) π f Stała całkowania w stanie ustalonym równa się zeru. Ostatecznie przebieg czasowy strumienia wynosi Φ t 0 π sinωt (4.) π f Porównując (4.8) i (4.) widzimy, że prąd, zwany prądem magnesującym, jest opóźniony w stosunku do napięcia o kąt, a amplituda strumienia jest równa Φ m π f 0 0 (4.3) 4.44 f We wzorze (4.3) 0 jest wartością skuteczną.

6 Łącząc (4.8) i (4.) otrzymuje się 0 πf (4.4) co daje wyrażenie na tzw. aktancję magnesującą 0 πf ωlμ Xμ μ (4.5) zwojenie wtórne jest skojarzone z tym samym strumieniem i wartość skuteczna napięcia indukowanego w tym uzwojeniu wynosi (4.6) 0 π f Φm apięcia 0 oraz 0 są ze sobą w fazie, ponieważ są związane z przebiegiem czasowym tego samego strumienia magnetycznego d u0( t ) dt u0( t ) (4.7) 0 = jl 0 = L ys.4.8. Wyks wskazowy transformatora w idealnym stanie jałowym Własności magnetyczne blach rdzenia są silnie nieliniowe i zależą znacznie od stopnia zaawansowania technologii jej wykonania. Dla małych transformatorów decyduje poziom kosztów wielkoseryjnej produkcji, w jednostkach największych mocy istotne są poziom strat oraz gabaryty transformatora.

7 B [ T ].5 M MVA 00 VA M H [ A m ] ys.4.9. Charakterystyka magnesowania blachy transformatorowej M9 z zaznaczonym zaksem typowych punktów pracy dla różnych mocy transformatorów. ndukcja magnetyczna B i natężenie pola magnetycznego H są proporcjonalne do strumienia skojarzonego i natężenia prądu w obwodzie, który wytworzył strumień i Ψ S l 0 H dl Hl B ds S B (4.8) Z kolei strumień skojarzony jest proporcjonalny do napięcia (3.7), przy czym jest opóźniony w fazie o. W większości wypadków napięcie zasilające jest sinusoidalne w czasie, stąd dla nieliniowej charakterystyki magnesowania prąd magnesujący musi być odkształcony w stopniu zależnym od amplitudy wymuszającego napięcia. i (B m =.5 T) i (B m =0.75 T) (B m =.5 T) (B m =0.75 T) 0 T u(b m =0.75 T) u(b m =.5 T) ys.4.0. Przebiegi czasowe napięcia u, strumienia skojarzonego oraz prądu magnesującego i dla nieliniowego obwodu magnetycznego transformatora

8 4.4. Straty mocy w rdzeniu transformatora. ozpatrzmy fragment elementarnego obwodu magnetycznego, w którym wzbudzono oksowy strumień magnetyczny przy pomocy skupionej cewki o zwojach i pomijalnie małej zystancji. Dysponujemy pomiarami mocy, napięcia zasilającego i prądu wykonanymi dla różnych częstotliwości od znikomo małej do sieciowej. B= 0 r H S i l d Ψ u dt a. b. ys.4.. Zasada wyznaczania strat w ferromagnetykach a. szkic układu pomiarowego, b. wyks wskazowy Przesunięcie fazowe pomiędzy prądem i napięciem jest mniejsze od, tak więc przy pomijalnej zystancji uzwojenia, moc czynna pobrana ze źródła jest związana ze zjawiskami w rdzeniu a oblicza się ją (dla przebiegów sinusoidalnych) ze wzoru P cos 0 (4.9) lub w przypadku przebiegów odkształconych z ogólnej zależności P T u t it dt (4.0) T 0 0 Moc elektryczna jest związana z energią ogólną zależnością stąd elementarna zmiana energii W dw P (4.) d i t i (4.)

9 Całkowita energia pobrana ze źródła i zmagazynowana w polu magnetycznym przy zmianie strumienia skojarzonego od zera do m wynosi W względniając definicyjne zależności m 0 i d (4.3) i d S l 0 Hdl db H l (4.4) Wyrażenie (4.3) przekształca się do Bm B M m W l S H db H db (4.5) 0 ρ 0 gdzie M jest masą rdzenia a jego gęstością. Elementarne zmiany energii przypadające na jednostkę objętości w [Jm 3 ] δ w H δ B (4.6) mogą być dodatnie (w opisie odbiornikowym - energia pobrana ze źródła) lub ujemne energia zwrócona do źródła. ozpatrzmy obecnie przypadek, kiedy strumień skojarzony jest opóźniony o niewielki kąt (z guły kilka stopni) a amplituda strumienia jest na tyle mała, że przebiegi B(t) oraz H(t) są sinusoidalne. B H B pq qr rs sp H>0, B>0 H>0, B<0 H<0, B<0 H<0, B>0 q r s p r q 0 p H s energia pobrana (pq) oraz (rs) energia zwrócona (qr) oraz (sp) ys.4.. Powstawanie strat histezowych w ferromagnetykach a. przebiegi czasowe indukcji B i natężenia pola magnetycznego H, b. ilustracja wymiany energii ze źródłem

10 Jak wynika z rys.4., w ciągu jednego cyklu przemagnesowania ulega rozproszeniu na ciepło pewna ilość energii W o wielkości proporcjonalnej do pola pętli histezy B(H). Śdnie za oks napięcia zasilającego straty mocy P h wynoszą M W H db (4.7) ρ pqrsp M P W f f h H db (4.8) ρ pqrsp gdzie f jest częstotliwością napięcia zasilania. W przypadku, kiedy indukcja w ferromagnetyku jest na tyle duża, że prąd magnesujący jest odkształcony, kształt pętli histezy ulega zmianie. Metodyka wyznaczania strat histezowych jest taka sama i również obowiązuje wzór (4.8). H pq H>0, B>0 qr H>0, B<0 rs H<0, B<0 sp H<0, B>0 B s p 0 q r B q r 0 p H s energia pobrana (pq) oraz (rs) energia zwrócona (qr) oraz (sp) ys.4.3. Powstawanie strat histezowych w ferromagnetykach nasyconych a. przebiegi czasowe indukcji B i natężenia pola magnetycznego H, b. ilustracja wymiany energii ze źródłem W zastosowaniach praktycznych wzór (4,8) jest podawany w nieco innej postaci n f B Ph ph,b M f B (4.9) p h,b stratność blachy [ Wkg ], pomierzona przy indukcji o amplitudzie B (zwykle B =.5 lub.75 T) i częstotliwości f, M jest masą badanego obiektu. Wartość wykładnika n zmienia się od.8 do.. Typowe wartości stratności wynoszą: - dla blach transformatorowych (zimnowalcowanych, wzdłuż kierunku walcowania) p h,.5 = Wkg, - dla blach prądnicowych (gorącowalcowanych,) p h,.5 =.6.3 Wkg

11 Oprócz strat histezowych w przemagnesowywanym pakiecie blach elektrotechnicznych występują również straty związane z przepływem prądów wirowych w pojedynczych blachach. ch wyznaczenie otrzymać można na drodze następującego rozumowania zakłada się, że kolejne blachy o grubości d są od siebie odizolowane elektrycznie a w każdej z nich występuje równomierne pole indukcji o amplitudzie B (założenie jest poprawne tylko dla cienkich blach, w których akcja prądów wirowych nie deformuje istotnie pola źródłowego). Przyjmuje się też, że wszystkie przebiegi są sinusoidalne w czasie. y B O -d E y E d x B O x ys.4.4. kład współrzędnych do wyznaczania akcji prądów wirowych w cienkich blachach Dla pewnego zamkniętego konturu o rozmiarach x, y całkowa postać prawa Kirchoffa jest następująca l d E dl B ds (4.30) dt gdzie E jest wektom natężenia pola elektrycznego. Dla dostatecznie cienkich blach droga całkowania w kierunku 0x jest pomijalnie mała. względniając ponadto zależność pomiędzy gęstością prądu J a natężeniem E poprzez konduktywność elektryczną otrzymuje się S(l) J γ E (4.3) J Δ y π f B Δ y(x) (4.3) γ Ostatecznie rozkład gęstości prądu wzdłuż grubości blachy jest linią prostą J(x) π fγ B x (4.33)

12 J B O y x B O J a. b. ys.4.5. ozkład prądów wirowych w cienkich blachach a. fragment pojedynczej blachy, b. pakiet izolowanych blach Objętościowa gęstość strat mocy [Wm 3 ] wynosi pec x J x (4.34) γ Gęstość tę można uśdnić na grubości blachy jako p ec av d 0.5d 0.5d J x γ dx π 3 f B γ d (4.35) Całkowite straty w pakiecie o masie M są równe γ Pec π f B d M 3 ρ (4.36) Do zastosowań praktycznych wykorzystywana jest zależność podobna do równania okślającego straty histezowe f B Pec pec,b M f B (4.37) p ec,b stratność blachy (dla prądów wirowych) [Wkg], pomierzona przy indukcji o amplitudzie B (zwykle B =.5 lub.75 T) i częstotliwości f. W katalogach często podaje się łączną stratność p B = p h,b + p ec,b. Przy rozdziale strat można w takim przypadku założyć, że dla f=50 Hz p h,b = p ec,b. ależy pamiętać, że prosta struktura wzorów (4.9)

13 (4.37) została uzyskana dzięki szegu założeń upraszczających, dlatego też ich zastosowanie jest ograniczone dla indukcji i częstotliwości niezbyt odległych (0% - 30%)od B i f Stan zwarcia transformatora. Zwarcie zacisków strony wtórnej przy pełnym napięciu zasilania po stronie pierwotnej grozi nieodwracalnymi uszkodzeniami cieplnymi i dielektrycznymi uzwojeń. ie dotyczy to wąskiej klasy transformatorów specjalnych (np. piecowych), lecz dla znakomitej większości jednostek jest to stan awaryjny i musi być natychmiast wyłączony przez zabezpieczenia. Zagadnienia te nie będą tu omawiane, natomiast tzw. zwarcie pomiarowe, kiedy napięcie zasilania jest znacznie (kilku- a nawet czasem kilkunastokrotnie) obniżone jest typową próbą podczas badań transformatorów energetycznych. Ze względu na obniżone napięcie można przyjąć, że prąd magnesujący jest znikomy i zachodzi tzw. pełna kompensacja amperozwojów Θ (4.38) h X X B(x) x a a a. b. ys.4.6. ozkład linii strumienia podczas zwarcia transformatora a. rzeczywisty kształt strumienia magnetycznego, b. idealizowany kształt strumienia magnetycznego w oknie transformatora. Przyjmując uproszczony prostoliniowy przebieg linii pola w oknie transformatora, amplituda czasowa indukcji B m w obszarze uzwojeń zależeć będzie od miejsca

14 Θ x Bm(x) μ0 k, (4.39) h a k gdzie x jest mierzone od skraju uzwojenia (przy powierzchni kolumny rdzenia). Zgodnie z zależnościami (4.3)(4.6) energia zmagazynowana w polu magnetycznym wynosi W Bm Bm H db dv dv 0 (4.40) μ V V 0 Wykonując całkowanie kolejno dla trzech obszarów o szerokościach a,, a otrzymuje się lsr a a μ0 Θ k δ (4.4) h 3 3 W gdzie l śr jest śdnią długością zwoju obydwu uzwojeń, a k, nazywany współczynnikiem ogowskiego, szacuje zmiany indukcji wzdłuż wysokości kolumny w rzeczywistym transformatorze. Dla typowych uzwojeń cylindrycznych wynosi on a δ a (4.4) π h k Wykorzystując energetyczną definicję indukcyjności, wynikającą wprost z (4.3) mamy L k j W j j, (4.43) Θ W zależności któ uzwojenie zostanie wykorzystane w obliczeniach (4.43) do wyznaczenia L kj, mówimy o indukcyjności sprowadzonej na stronę pierwotną lub wtórną. Straty mocy w stanie zwarcia wydzielają się w większości w obszarach uzwojeń i wynoszą P k k k (4.44) d d gdzie, są zystancjami uzwojeń mierzonymi prądem stałym, a współczynniki k d, k d > ujmują tzw. straty dodatkowe wynikające z indukowanych prądów wirowych zarówno w poszczególnych drutach cewek jak i w obwodach równoległych uzwojenia.

15 4.6. dea schematu zastępczego. stotą elektrycznego schematu zastępczego dowolnego urządzenia, będącego z punktu widzenia teorii obwodów dwójnikiem lub czwórnikiem, jest dobranie takich elementów, L, C podłączonych pomiędzy zaciski wejściawyjścia, któ pozwolą na odtworzenie rzeczywistego układu zasilających prądów i napięć oraz przepływu mocy. Schematycznie pokazano to na rys.5.. W A A W V V a. W A L A W V C C V b. ys.4.7. dea schematu zastępczego a. rzeczywisty obiekt, b. schemat zastępczy typu. ależy pamiętać, że elementy LC nie muszą odtwarzać układu rzeczywistych połączeń galwanicznych wewnątrz urządzenia, ich zadaniem jest prawidłowa pzentacja zjawisk energetycznych. tak obecność zystora przedstawia występowanie zamiany energii elektrycznej na inny rodzaj energii (najczęściej dyssypację cieplną), a indukcyjność i pojemność przedstawiają akumulację energii - odpowiednio w polu magnetycznym lub polu elektrycznym występujących wewnątrz urządzenia. ajbardziej rozpowszechnione są schematy o stałych parametrach, pozwalające na stosowanie zasady superpozycji. Występowanie nieliniowości materiałowych w elementach ferromagnetycznych wymusza wprowadzenie zależności funkcyjnych, któ z jednej strony pozwalają na dokładniejsze odwzorowanie zachodzących zjawisk, jednak jednocześnie ograniczają zastosowanie tak wyznaczonego schematu do konktnego rodzaju urządzenia.

16 4.6.. Schemat zastępczy transformatora w stanie jałowym. Proces magnesowania transformatora w stanie jałowym jest opisany zależnością (4.5), 0 π f ω Lμ X μ m μ (4.45) natomiast straty mocy P 0, któ są związane ze wzrostem temperatury rdzenia, okślono równaniami (4.9)(4.37). f f B P0 Δ ph,b Δ pec,b M f f B (4.46) Zastępując iloraz indukcji stosunkiem napięć zasilanej strony transformatora B B f f (4.47) oraz przekształcając formalnie straty mocy P 0 za pomocą prawa Ohma otrzymuje się 0 f Δ ph,b Δ pec,b M f (4.48) Stąd zystancja 0 odwzorowująca straty w żelazie równa jest 0 Δ p h,b f f Δ p ec, B M (4.49) Zarówno 0 jak i X 0 są wyznaczane na podstawie wartości napięcia zasilającego, więc elementy te w schemacie zastępczym są połączone równolegle i pozwalają na dokładne odwzorowanie prądu i mocy pobieranych z sieci. 0 W A V 0 X = 0 ys.4.8. Schemat zastępczy transformatora w stanie jałowym

17 Strona wtórna transformatora nie jest połączona galwanicznie z pierwotną, jednak w celu ułatwienia analizy obwodowej wprowadza się fikcyjne połączenia zacisków uzwojenia pierwotnego i wtórnego. Tak uzyskane napięcie, nazywane napięciem wtórnym sprowadzonym na stronę pierwotną, jest związane z rzeczywistym napięciem poprzez prawo Faraday a 0 0 (4.50) Schemat zastępczy transformatora w stanie zwarcia. Omawiane dalej zagadnienia dotyczą wyłącznie tzw. zwarcia pomiarowego, kiedy transformator jest zasilany napięciem obniżonym kilku a nawet kilkunastokrotnie mniejszym od napięcia znamionowego zasilanego uzwojenia. W takiej sytuacji strumień w rdzeniu jest również wielokrotnie mniejszy od strumienia znamionowego i w konsekwencji prąd magnesujący może być uznany za zerowy. Prądy w uzwojeniach, zarówno zasilanym jak i zwartym nie przekraczają wielkości znamionowych i ich przepływy się równoważą (4.38). Można formalnie wprowadzić fikcyjny prąd strony wtórnej k definicyjnie równy prądowi zasilania i związany z rzeczywistym prądem w zwartym uzwojeniu lacją wynikającą z prawa Ampe a k k k (4.5) Całkowite straty w stanie zwarcia okślone w (4.44) obejmują zarówno straty w obu uzwojeniach jak i w masywnych metalowych elementach konstrukcji transformatora (kadź, belki jarzmowe) przez któ płynie strumień rozproszenia. Łącząc (4.44) i (4.5) mamy P k k d k d (4.5) ównanie (4.8) przekształca się do postaci P k k k (4.53) gdzie k jest równe

18 k kd kd (4.54) nazywane jest zystancją zwarcia sprowadzoną na stronę pierwotną. Moc bierna pobierana z sieci w stanie zwarcia wynika z energii magazynowanej w polu rozproszenia i pzentowanej przez indukcyjność L k (4.43). Sprowadzając jak poprzednio wyrażenia energetyczne do strony pierwotnej otrzymuje się Q dw d W d k Lk k ωlkk X kk (4.55) k eaktancja X k nazywana jest aktancją zwarcia sprowadzoną na stronę pierwotną. k W A k = k k X k V k k = 0 ys.4.9. Transformator w stanie zwarcia zasilany od strony G Schemat zastępczy transformatora w stanie obciążenia. W stanie obciążenia strumienie skojarzone z uzwojeniami transformatora są zależne od prądów płynących w obydwu uzwojeniach. u u i L i L d i L d i L d i d i (4.56) Jeżeli w analizie stanu zwarcia (np. u =0) zaniedbamy zystancję, to otrzymuje się d i d i 0 L L (4.57) Zastępując w (4.56) pochodną di dt wyrażeniem wynikającym z (4.57) otrzymuje się

19 d i L L u k i L (4.58) LL Wyrażenie w nawiasie jest bezwymiarowe i nosi nazwę współczynnika Heylanda L L H (4.59) LL któgo wartość jest najczęściej rzędu kilku procent. W celu uzyskania schematu zastępczego dla stanu obciążenia przekształcimy równania (5.) wykorzystując pojęcie przekładni zwojowej (fazowej) transformatora Otrzymujemy kolejno u i u i (4.60) u u i L i L d i L d i L i d L i d L d i L d i i d L i d (4.6) Wprowadzając wyrażenia na tzw. wielkości sprowadzona na stronę pierwotną u L i u i L (4.6) i pamiętając, że L = L zależności (4.6) przyjmują wzajemnie symetryczną postać d i u i u i d L L L i i d i d L L L i i (4.63) na podstawie których można zbudować schemat zastępczy pokazany na rys.4.0.

20 + () L -L L -L L () ys.4.0. Schemat zastępczy transformatora Parametry schematu zastępczego wyznacza się z dostateczną dokładnością z prób stanu jałowego i zwarcia L L k k L L L L (4.64) a podstawie pokazanego wyżej schematu można narysować odpowiadający mu wyks wskazowy j X -j X j X - ys.4.. Wyks wskazowy transformatora (bez zachowania skali)

21 W transformatorach o mocy powyżej 00 VA prąd magnesujący jest rzędu (-)% i dlatego w praktycznych obliczeniach przyjmuje się zazwyczaj 0 a schematy zastępcze w warunkach obciążenia i zwarcia są wtedy takie same. Bilans napięć dla transformatora można w takim przypadku zapisać jako k j X k Wprowadzając pojęcie impedancji znamionowej (4.65) Z (4.66) i dzieląc obustronnie (4.65) przez (4.66) otrzymuje się bilans napięć w jednostkach względnych (bądź procentowych) u % u % j u X % u% (4.67) gdzie składniki wewnętrznego procentowego spadku napięć w transformatorze wynoszą u u % X % Z k X Z k 00% 00% (4.68) Moduł tego spadku napięć nosi nazwę procentowego napięcia zwarcia u k% i okśla w procentach napięcia znamionowego wielkość napięcia po stronie pierwotnej, któ przy zwartej stronie wtórnej spowoduje przepływ znamionowego prądu w obydwu uzwojeniach. u u u (4.69) k% % X % apięcie po stronie wtórnej w warunkach obciążenia można obliczyć z zależności (4.70), która została wyprowadzona na podstawie wyksu wskazowego przy założeniu, że przesunięcie fazowe pomiędzy SEM jx a napięciem pierwotnym jest równe zeru 00 % u % % cos( ) u X % sin( ) (4.70) gdzie kąt obciążenia po stronie wtórnej rys.5.4.

WYKŁAD 4 STAN JAŁOWY I ZWARCIE TRANSFORMATORA

WYKŁAD 4 STAN JAŁOWY I ZWARCIE TRANSFORMATORA WYKŁAD 4 STA JAŁOWY ZWARCE TRASFORMATORA 4.. Moc pozorna transformatora jednofazowego. Rozpatrzmy transformator jednofazowy z rdzeniem płaszczowym pokazany na rys.4.. Przekrój kolumny rdzenia wynosi S

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11 NSTRKCJA LABORATORM ELEKTROTECHNK BADANE TRANSFORMATORA Autor: Grzegorz Lenc, Strona / Badanie transformatora Celem ćwiczenia jest poznanie zasady działania transformatora oraz wyznaczenie parametrów schematu

Bardziej szczegółowo

Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia.

Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia. Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia. Transformator może się znajdować w jednym z trzech charakterystycznych stanów pracy: a) stanie jałowym b) stanie obciążenia c) stanie

Bardziej szczegółowo

H a. H b MAGNESOWANIE RDZENIA FERROMAGNETYCZNEGO

H a. H b MAGNESOWANIE RDZENIA FERROMAGNETYCZNEGO MAGNESOWANIE RDZENIA FERROMAGNETYCZNEGO Jako przykład wykorzystania prawa przepływu rozważmy ferromagnetyczny rdzeń toroidalny o polu przekroju S oraz wymiarach geometrycznych podanych na Rys. 1. Załóżmy,

Bardziej szczegółowo

WYKŁAD 2 INDUKOWANIE SIŁY ELEKTROMOTORYCZNEJ

WYKŁAD 2 INDUKOWANIE SIŁY ELEKTROMOTORYCZNEJ WYKŁAD DUKOWA SŁY KTOMOTOYCZJ.. Źródłowy i odbiornikowy system oznaczeń. ozpatrzmy elementarny obwód elektryczny prądu stałego na przykładzie ładowania akumulatora samochodowego przedstawiony na rys...

Bardziej szczegółowo

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala

Bardziej szczegółowo

OBWODY MAGNETYCZNE SPRZĘśONE

OBWODY MAGNETYCZNE SPRZĘśONE Obwody magnetyczne sprzęŝone... 1/3 OBWODY MAGNETYCZNE SPRZĘśONE Strumień magnetyczny: Φ = d B S (1) S Strumień skojarzony z cewką: Ψ = w Φ () Indukcyjność własna: L Ψ = (3) i Jeśli w przekroju poprzecznym

Bardziej szczegółowo

WYKŁAD 4 TRANSFORMATOR ZASADA DZIAŁANIA

WYKŁAD 4 TRANSFORMATOR ZASADA DZIAŁANIA WYKŁAD 4 TRANSFORMATOR ZASADA DZIAŁANIA 4.1. Idealny transformator jednofazowy. Analizujemy transformator jednofazowy z rdzeniem płaszczowym o wyidealizowanych własnościach materiałowych: rezystywność

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora POLITECHIKA ŚLĄSKA WYDIAŁ IŻYIERII ŚRODOWISKA I EERGETYKI ISTYTUT MASY I URĄDEŃ EERGETYCYCH LABORATORIUM ELEKTRYCE Badanie transformatora (E 3) Opracował: Dr inż. Włodzimierz OGULEWIC 3. Cel ćwiczenia

Bardziej szczegółowo

TRANSFORMATOR TRÓJFAZOWY

TRANSFORMATOR TRÓJFAZOWY TRANSFORMATOR TRÓJFAZOWY Do transformacji energii elektrycznej w układach trójfazowych można wykorzystać trzy jednostki jednofazowe. Rozwiązanie taki jest jednak nieekonomiczne. Na Rys. 1 pokazano jakie

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTROTECHNIKI

LABORATORIUM PODSTAWY ELEKTROTECHNIKI LABORATORIUM PODSTAWY ELEKTROTECHNIKI CHARAKTERYSTYKI TRANSFORMATORA JEDNOFAZOWEGO Badanie właściwości transformatora jednofazowego. Celem ćwiczenia jest poznanie budowy oraz wyznaczenie charakterystyk

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Ćwiczenie 5 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Rodzaje transformatorów.

Bardziej szczegółowo

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..

Bardziej szczegółowo

Wyznaczenie parametrów schematu zastępczego transformatora

Wyznaczenie parametrów schematu zastępczego transformatora Wyznaczenie parametrów schematu zastępczego transformatora Wprowadzenie Transformator jest statycznym urządzeniem elektrycznym działającym na zasadzie indukcji elektromagnetycznej. adaniem transformatora

Bardziej szczegółowo

Ć W I C Z E N I E nr 9 BADANIE TRANSFORMATORA JEDNOFAZOWEGO

Ć W I C Z E N I E nr 9 BADANIE TRANSFORMATORA JEDNOFAZOWEGO Ć W I C Z E N I E nr 9 BADANIE TRANSFORMATORA JEDNOFAZOWEGO CEL ĆWICZENIA: poznanie zasady działania, budowy, właściwości i metod badania transformatora. PROGRAM ĆWICZENIA. Wiadomości ogólne.. Budowa i

Bardziej szczegółowo

Prądy wirowe (ang. eddy currents)

Prądy wirowe (ang. eddy currents) Prądy wirowe (ang. eddy currents) Prądy można indukować elektromagnetycznie nie tylko w przewodnikach liniowych, ale również w materiałach przewodzących o dowolnym kształcie i powierzchni, jeżeli tylko

Bardziej szczegółowo

TRANSFORMATORY. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

TRANSFORMATORY. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego TRANSFORMATORY Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Maszyny elektryczne Przemiana energii za pośrednictwem pola magnetycznego i prądu elektrycznego

Bardziej szczegółowo

Ćwiczenie nr 7. Badanie wybranych elementów i układów z rdzeniami ferromagnetycznymi

Ćwiczenie nr 7. Badanie wybranych elementów i układów z rdzeniami ferromagnetycznymi Ćwiczenie nr 7 Badanie wybranych elementów i układów z rdzeniami ferromagnetycznymi. Cel ćwiczenia Celem ćwiczenia jest badanie dławika jako elementu nieliniowego, wyznaczenie jego parametrów zastępczych

Bardziej szczegółowo

LABORATORIUM PRZEKŁADNIKÓW

LABORATORIUM PRZEKŁADNIKÓW Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, nformatyki i Automatyki nstytut Elektroenergetyki, Zakład Przekładników i Kompatybilności Elektromagnetycznej Grupa dziekańska... Rok akademicki...

Bardziej szczegółowo

Indukcyjność. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Indukcyjność. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Indukcyjność Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Indukcyjność Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Powszechnie stosowanym urządzeniem, w którym wykorzystano zjawisko indukcji elektromagnetycznej

Bardziej szczegółowo

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.

Bardziej szczegółowo

Transformatory. Budowa i sposób działania

Transformatory. Budowa i sposób działania Transformatory Energię elektryczną można w sposób ekonomiczny przesyłać na duże odległości tylko wtedy, gdy stosuje się wysokie napięcia i małe wartości prądu. Zadaniem transformatorów jest przetwarzanie

Bardziej szczegółowo

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Efekt naskórkowy (skin effect)

Efekt naskórkowy (skin effect) Efekt naskórkowy (skin effect) Rozważmy cylindryczny przewód o promieniu a i o nieskończonej długości. Przez przewód płynie prąd I = I 0 cos ωt. Dla niezbyt dużych częstości ω możemy zaniedbać prąd przesunięcia,

Bardziej szczegółowo

Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi"

Ćwiczenie: Obwody ze sprzężeniami magnetycznymi Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:

Bardziej szczegółowo

BADANIE PRZEKŁADNIKÓW PRĄDOWYCH

BADANIE PRZEKŁADNIKÓW PRĄDOWYCH 1. Podstawy teoretyczne ĆWCENE NR 4 BADANE PREKŁADNKÓW PRĄDOWYCH Przekładnik prądowy jest to urządzenie elektryczne transformujące sinusoidalny prąd pierwotny na prąd wtórny o wartości dogodnej do zasilania

Bardziej szczegółowo

Obwody sprzężone magnetycznie.

Obwody sprzężone magnetycznie. POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTT MASZYN I RZĄDZEŃ ENERGETYCZNYCH LABORATORIM ELEKTRYCZNE Obwody sprzężone magnetycznie. (E 5) Opracował: Dr inż. Włodzimierz OGLEWICZ

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

transformatora jednofazowego.

transformatora jednofazowego. Badanie transformatora jednofazowego. Celem ćwiczenia jest zapoznanie się z budową, zasadami działania oraz podstawowymi właściwościami transformatora jednofazowego pracującego w stanie jałowym, zwarcia

Bardziej szczegółowo

LABORATORIUM PRZEKŁADNIKÓW

LABORATORIUM PRZEKŁADNIKÓW Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, nformatyki i Automatyki nstytut Elektroenergetyki, Zakład Przekładników i Kompatybilności Elektromagnetycznej Grupa dziekańska... Rok akademicki...

Bardziej szczegółowo

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Wnioski (które wyciągnęlibyśmy, wykonując doświadczenia

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną Cewki Wstęp. Urządzenie elektryczne charakteryzujące się indukcyjnością własną i służące do uzyskiwania silnych pól magnetycznych. Szybkość zmian prądu płynącego przez cewkę indukcyjną zależy od panującego

Bardziej szczegółowo

1) Wyprowadź wzór pozwalający obliczyć rezystancję R AB i konduktancję G AB zastępczą układu. R 1 R 2 R 3 R 6 R 4

1) Wyprowadź wzór pozwalający obliczyć rezystancję R AB i konduktancję G AB zastępczą układu. R 1 R 2 R 3 R 6 R 4 1) Wyprowadź wzór pozwalający obliczyć rezystancję B i konduktancję G B zastępczą układu. 1 2 3 6 B 4 2) Wyprowadź wzór pozwalający obliczyć impedancję (Z, Z) i admitancję (Y, Y) obwodu. Narysować wykres

Bardziej szczegółowo

Wykład 14: Indukcja cz.2.

Wykład 14: Indukcja cz.2. Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład

Bardziej szczegółowo

BADANIE TRANSFORMATORA I.

BADANIE TRANSFORMATORA I. BADANIE TRANSFORMATORA I. Cel ćwiczenia: zapoznanie się z budową i działaniem transformatora w trybie stanu jałowego oraz stanu obciążenia (roboczego), wyznaczenie przekładni transformatora, jego sprawności

Bardziej szczegółowo

Charakterystyki częstotliwościowe elementów pasywnych

Charakterystyki częstotliwościowe elementów pasywnych Charakterystyki częstotliwościowe elementów pasywnych Parametry elementów pasywnych; reaktancji indukcyjnej (XLωL) oraz pojemnościowej (XC1/ωC) zależą od częstotliwości. Ma to istotne znaczenie w wielu

Bardziej szczegółowo

ĆWICZENIE 6 BADANIE OBWODÓW MAGNETYCZNYCH

ĆWICZENIE 6 BADANIE OBWODÓW MAGNETYCZNYCH ĆWCZENE 6 BADANE OBWODÓW MAGNETYCZNYCH Cel ćwiczenia: poznanie procesów fizycznych zachodzących, w cewce nieliniowej i jej własności, przez wyznaczenie rezystancji oraz indukcyjności cewki w różnych warunkach

Bardziej szczegółowo

2.3. Praca samotna. Rys Uproszczony schemat zastępczy turbogeneratora

2.3. Praca samotna. Rys Uproszczony schemat zastępczy turbogeneratora E Rys. 2.11. Uproszczony schemat zastępczy turbogeneratora 2.3. Praca samotna Maszyny synchroniczne może pracować jako pojedynczy generator zasilający grupę odbiorników o wypadkowej impedancji Z. Uproszczony

Bardziej szczegółowo

Pracownia Elektrotechniki

Pracownia Elektrotechniki BADANIE TRANSFORMATORA I. Cel ćwiczenia: zapoznanie się z budową i działaniem transformatora w trybie stanu jałowego oraz stanu obciążenia (roboczego), wyznaczenie przekładni i sprawności transformatora.

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

Elementy indukcyjne. Konstrukcja i właściwości

Elementy indukcyjne. Konstrukcja i właściwości Elementy indukcyjne Konstrukcja i właściwości Zbigniew Usarek, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Elementy indukcyjne Induktor

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

LABORATORIUM PRZEKŁADNIKÓW

LABORATORIUM PRZEKŁADNIKÓW Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, nformatyki i Automatyki nstytut Elektroenergetyki, Zakład Przekładników i Kompatybilności Elektromagnetycznej Grupa dziekańska... Rok akademicki...

Bardziej szczegółowo

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych Z TR C. Materiał ilustracyjny do przedmiotu. (Cz. 3)

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych Z TR C. Materiał ilustracyjny do przedmiotu. (Cz. 3) Politechnika Wrocławska nstytut Maszyn, Napędów i Pomiarów lektrycznych Z A KŁ A D M A S Z YN L K TR C Materiał ilustracyjny do przedmiotu LKTROTCHNKA Y Z N Y C H Prowadzący: * * M N (Cz. 3) Dr inż. Piotr

Bardziej szczegółowo

Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena

Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena Metody mostkowe Mostek Wheatstone a, Maxwella, Sauty ego-wiena Rodzaje przewodników Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności cewek, pojemności i stratności kondensatorów stosuje się

Bardziej szczegółowo

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0. Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do

Bardziej szczegółowo

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE

Bardziej szczegółowo

Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Mostek Wheatstone a, Maxwella, Sauty ego-wiena Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego 2 Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Przedmiot: Pomiary Elektryczne Materiały dydaktyczne: Pomiar i regulacja prądu i napięcia zmiennego Zebrał i opracował: mgr inż. Marcin Jabłoński

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Impedancje i moce odbiorników prądu zmiennego

Impedancje i moce odbiorników prądu zmiennego POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Impedancje i moce odbiorników prądu zmiennego (E 6) Opracował: Dr inż.

Bardziej szczegółowo

Elektrotechnika teoretyczna

Elektrotechnika teoretyczna Zachodniopomorski Uniwersytet Technologiczny w Szczecinie RYSZARD SIKORA TOMASZ CHADY PRZEMYSŁAW ŁOPATO GRZEGORZ PSUJ Elektrotechnika teoretyczna Szczecin 2016 Spis treści Spis najważniejszych oznaczeń...

Bardziej szczegółowo

ĆWICZENIE 2 BADANIE TRANSFORMATORA JEDNOFAZOWEGO

ĆWICZENIE 2 BADANIE TRANSFORMATORA JEDNOFAZOWEGO ĆWICZENIE BADANIE TRANSFORMATORA JEDNOFAZOWEGO Cel ćwiczenia: poznanie budowy, zasady działania i własności transformatora oraz zachodzących w nim zjawisk w stanie jałowym, przy próbie zwarcia i obciążeniu.1.

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 3 Zagadnienie mocy w obwodzie RLC przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie sinusoidalnie

Bardziej szczegółowo

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych ĆWICZENIE 1 Badanie obwodów jednofazowych rozgałęzionych przy wymuszeniu sinusoidalnym Cel ćwiczenia Celem ćwiczenia jest Poznanie podstawowych elementów pasywnych R, L, C, wyznaczenie ich wartości na

Bardziej szczegółowo

MAGNETYZM. PRĄD PRZEMIENNY

MAGNETYZM. PRĄD PRZEMIENNY Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.

Bardziej szczegółowo

Laboratorium Elektroenergetycznej Automatyki Zabezpieczeniowej Instrukcja laboratoryjna LABORATORIUM ELEKTROENERGETYCZNEJ AUTOMATYKI ZABEZPIECZENIOWEJ

Laboratorium Elektroenergetycznej Automatyki Zabezpieczeniowej Instrukcja laboratoryjna LABORATORIUM ELEKTROENERGETYCZNEJ AUTOMATYKI ZABEZPIECZENIOWEJ nstrukcja laboratoryjna - 1 - LABORATORUM ELEKTROENERGETYCZNEJ AUTOMATYK ZABEZPECZENOWEJ BADANE PRZEKŁADNKA PRĄDOWEGO TYPU ASK10 1. Cel ćwiczenia Poznanie budowy, zasady działania, danych znamionowych

Bardziej szczegółowo

Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika

Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika r opór wewnętrzny baterii - opór opornika V b V a V I V Ir Ir I 2 POŁĄCZENIE SZEEGOWE Taki sam prąd płynący przez oba oporniki

Bardziej szczegółowo

Przykład ułożenia uzwojeń

Przykład ułożenia uzwojeń Maszyny elektryczne Transformator Przykład ułożenia uzwojeń Transformator idealny - transformator, który spełnia następujące warunki:. Nie występują w nim straty mocy, a mianowicie straty w rdzeniu ( P

Bardziej szczegółowo

Ćwiczenie 2. BADANIE DWÓJNIKÓW NIELINIOWYCH STANOWISKO I. Badanie dwójników nieliniowych prądu stałego

Ćwiczenie 2. BADANIE DWÓJNIKÓW NIELINIOWYCH STANOWISKO I. Badanie dwójników nieliniowych prądu stałego Laboratorium elektrotechniki 19 Ćwiczenie BDNE DWÓJNKÓW NELNOWYCH STNOWSKO Badanie dwójników nieliniowych prądu stałego W skład zestawu ćwiczeniowego wchodzą dwa zasilacze stałoprądowe (o regulowanym napięciu

Bardziej szczegółowo

WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000

WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000 SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ ZAKŁ AD ELEKTROENERGETYKI Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW WIROWYCH Opracował: mgr inż. Edward SKIEPKO Warszawa 000 Wersja 1.0 www.labenergetyki.prv.pl

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

13 K A T E D R A F I ZYKI S T O S O W AN E J

13 K A T E D R A F I ZYKI S T O S O W AN E J 3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony

Bardziej szczegółowo

Zwój nad przewodzącą płytą

Zwój nad przewodzącą płytą Zwój nad przewodzącą płytą Z potencjału A można też wyznaczyć napięcie u0 jakie będzie się indukować w pojedynczym zwoju cewki odbiorczej: gdzie: Φ strumień magnetyczny przenikający powierzchnię, której

Bardziej szczegółowo

12. Zasilacze. standardy sieci niskiego napięcia tj. sieci dostarczającej energię do odbiorców indywidualnych

12. Zasilacze. standardy sieci niskiego napięcia tj. sieci dostarczającej energię do odbiorców indywidualnych . Zasilacze Wojciech Wawrzyński Wykład z przedmiotu Podstawy Elektroniki - wykład Zasilacz jest to urządzenie, którego zadaniem jest przekształcanie napięcia zmiennego na napięcie stałe o odpowiednich

Bardziej szczegółowo

Podstawy fizyki sezon 2 6. Indukcja magnetyczna

Podstawy fizyki sezon 2 6. Indukcja magnetyczna Podstawy fizyki sezon 2 6. Indukcja magnetyczna Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Dotychczas

Bardziej szczegółowo

Ćwiczenie: "Silnik indukcyjny"

Ćwiczenie: Silnik indukcyjny Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO

Bardziej szczegółowo

2.Rezonans w obwodach elektrycznych

2.Rezonans w obwodach elektrycznych 2.Rezonans w obwodach elektrycznych Celem ćwiczenia jest doświadczalne sprawdzenie podstawowych właściwości szeregowych i równoległych rezonansowych obwodów elektrycznych. 2.1. Wiadomości ogólne 2.1.1

Bardziej szczegółowo

Sposób analizy zjawisk i właściwości ruchowych maszyn synchronicznych zależą od dwóch czynników:

Sposób analizy zjawisk i właściwości ruchowych maszyn synchronicznych zależą od dwóch czynników: Temat: Analiza pracy i właściwości ruchowych maszyn synchronicznych Sposób analizy zjawisk i właściwości ruchowych maszyn synchronicznych zależą od dwóch czynników: budowy wirnika stanu nasycenia rdzenia

Bardziej szczegółowo

Zakład Zastosowań Elektroniki i Elektrotechniki

Zakład Zastosowań Elektroniki i Elektrotechniki Zakład Zastosowań Elektroniki i Elektrotechniki Laboratorium ytwarzania energii elektrycznej Temat ćwiczenia: Badanie prądnicy synchronicznej 4.2. BN LBOTOYJNE 4.2.1. Próba biegu jałowego prądnicy synchronicznej

Bardziej szczegółowo

Prąd przemienny - wprowadzenie

Prąd przemienny - wprowadzenie Prąd przemienny - wprowadzenie Prądem zmiennym nazywa się wszelkie prądy elektryczne, dla których zależność natężenia prądu od czasu nie jest funkcją stałą. Zmienność ta może związana również ze zmianą

Bardziej szczegółowo

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym Ćwiczenie nr Badanie obwodów jednofazowych RC przy wymuszeniu sinusoidalnym. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z rozkładem napięć prądów i mocy w obwodach złożonych z rezystorów cewek i

Bardziej szczegółowo

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 15: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ 1 Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki

Bardziej szczegółowo

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 14: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki

Bardziej szczegółowo

KATEDRA ELEKTROTECHNIKI LABORATORIUM ELEKTROTECHNIKI

KATEDRA ELEKTROTECHNIKI LABORATORIUM ELEKTROTECHNIKI KTEDR ELEKTROTECHNIKI LBORTORIUM ELEKTROTECHNIKI =================================================================================================== Temat ćwiczenia POMIRY OBODCH SPRZĘŻONYCH MGNETYCZNIE

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna................ 3 7.2

Bardziej szczegółowo

Lekcja 59. Histereza magnetyczna

Lekcja 59. Histereza magnetyczna Lekcja 59. Histereza magnetyczna Histereza - opóźnienie w reakcji na czynnik zewnętrzny. Zjawisko odkrył i nazwał James Alfred Ewing w roku 1890. Najbardziej znane przypadki histerezy występują w materiałach

Bardziej szczegółowo

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu 7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R

Bardziej szczegółowo

II. Elementy systemów energoelektronicznych

II. Elementy systemów energoelektronicznych II. Elementy systemów energoelektronicznych II.1. Wstęp. Główne grupy elementów w układach impulsowego przetwarzania mocy: elementy bierne bezstratne (kondensatory, cewki, transformatory) elementy przełącznikowe

Bardziej szczegółowo

5. POMIARY POJEMNOŚCI I INDUKCYJNOŚCI ZA POMOCĄ WOLTOMIERZY, AMPEROMIERZY I WATOMIERZY

5. POMIARY POJEMNOŚCI I INDUKCYJNOŚCI ZA POMOCĄ WOLTOMIERZY, AMPEROMIERZY I WATOMIERZY 5. POMY POJEMNOŚC NDKCYJNOŚC POMOCĄ WOLTOMEY, MPEOMEY WTOMEY Opracował:. Czajkowski Na format elektroniczny przetworzył:. Wollek Niniejszy rozdział stanowi część skryptu: Materiały pomocnicze do laboratorium

Bardziej szczegółowo

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego.

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. 1. Moc odbiorników prądu stałego Prąd płynący przez odbiornik powoduje wydzielanie się określonej

Bardziej szczegółowo

Oddziaływanie wirnika

Oddziaływanie wirnika Oddziaływanie wirnika W każdej maszynie prądu stałego, pracującej jako prądnica lub silnik, może wystąpić taki szczególny stan pracy, że prąd wirnika jest równy zeru. Jedynym przepływem jest wówczas przepływ

Bardziej szczegółowo

Pomiar indukcyjności.

Pomiar indukcyjności. Pomiar indukcyjności.. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z metodami pomiaru indukcyjności, ich wadami i zaletami, wynikającymi z nich błędami pomiarowymi, oraz umiejętnością ich właściwego

Bardziej szczegółowo

dt Sem transformacji, które zostały zaindukowane przez ten sam strumień są ze sobą w fazie czyli (e 1,e 2 ) = 0. Stosunek tych napięć wynosi

dt Sem transformacji, które zostały zaindukowane przez ten sam strumień są ze sobą w fazie czyli (e 1,e 2 ) = 0. Stosunek tych napięć wynosi 19 2. TRANSFORMATORY 2.1. Zasada działania Najprostszym urządzeniem, w którym wykorzystano zjawisko indukcji elektromagnetycznej jest transformator jednofazowy. Składa się on z dwóch uzwojeń (o liczbie

Bardziej szczegółowo

Zasilacze: - prostowniki, - filtry tętnień, - powielacze napięcia. Rodzaje transformatorów sieciowych

Zasilacze: - prostowniki, - filtry tętnień, - powielacze napięcia. Rodzaje transformatorów sieciowych Zasilacze: - prostowniki, - filtry tętnień, - powielacze napięcia Główne parametry transformatora sieciowego Moc (jednofazowe do 3kW) Znamionowe napięcie wejściowe (np. 3V +% -%) zęstotliwość pracy (np.

Bardziej szczegółowo

Siła elektromotoryczna

Siła elektromotoryczna Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana

Bardziej szczegółowo

Źródła zasilania i parametry przebiegu zmiennego

Źródła zasilania i parametry przebiegu zmiennego POLIECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI INSYU MASZYN I URZĄDZEŃ ENERGEYCZNYCH LABORAORIUM ELEKRYCZNE Źródła zasilania i parametry przebiegu zmiennego (E 1) Opracował: Dr inż. Włodzimierz

Bardziej szczegółowo

NAGRZEWANIE INDUKCYJNE CZĘSTOTLIWOŚCIĄ SIECIOWĄ

NAGRZEWANIE INDUKCYJNE CZĘSTOTLIWOŚCIĄ SIECIOWĄ INSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenia Nr 9 NAGRZEWANIE INDUKCYJNE CZĘSTOTLIWOŚCIĄ SIECIOWĄ 1.WPROWADZENIE. Nagrzewanie indukcyjne jest bezpośrednią metodą grzejną, w której energia

Bardziej szczegółowo

Miernictwo I INF Wykład 13 dr Adam Polak

Miernictwo I INF Wykład 13 dr Adam Polak Miernictwo I INF Wykład 13 dr Adam Polak ~ 1 ~ I. Właściwości elementów biernych A. Charakterystyki elementów biernych 1. Rezystor idealny (brak przesunięcia fazowego między napięciem a prądem) brak części

Bardziej szczegółowo

X X. Rysunek 1. Rozwiązanie zadania 1 Dane są: impedancje zespolone cewek. a, gdzie a = e 3

X X. Rysunek 1. Rozwiązanie zadania 1 Dane są: impedancje zespolone cewek. a, gdzie a = e 3 EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 20/202 Odpowiedzi do zadań dla grupy elektrycznej na zawody II stopnia Zadanie Na rysunku przedstawiono schemat obwodu

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA; PRAWO FARADAYA

INDUKCJA ELEKTROMAGNETYCZNA; PRAWO FARADAYA INDUKJA EEKTOMAGNETYZNA; PAWO FAADAYA. uch ramki w polu magnetycznym: siła magnetyczna wytwarza SEM. uch magnesu względem ramki : powstanie wirowego pola elektrycznego 3. Prawo Faradaya 4. eguła entza

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 28 PRĄD PRZEMIENNY

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 28 PRĄD PRZEMIENNY autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSK 28 PRĄD PRZEMENNY Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU Od roku 2015 w programie

Bardziej szczegółowo

Ćwiczenie 6. BADANIE TRANSFORMATORÓW STANOWISKO I. Badanie transformatora jednofazowego V 1 X

Ćwiczenie 6. BADANIE TRANSFORMATORÓW STANOWISKO I. Badanie transformatora jednofazowego V 1 X 4 Laboratorium elektrotechniki Ćwiczenie 6. BADANIE TRANSFORMATORÓW STANOWISKO I. Badanie transformatora jednofazowego Wykonanie ćwiczenia Prowadzący ćwiczenie określa obiekt naszych badań jeden z dwu,

Bardziej szczegółowo