Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona"

Transkrypt

1 Wyznaczanie poienia kzywizny soczewki płasko-wypukłej etodą pieścieni Newtona I. Cel ćwiczenia: zapoznanie ze zjawiskie intefeencji światła, poia poienia soczewki płasko-wypukłej. II. Pzyządy: lapa sodowa, soczewka płasko-wypukła, płasko-ównoległa płytka szklana, ikoskop. III. Liteatua: [1] J. L. Kacpeski, I pacownia fizyczna [] T. Dyński, Ćwiczenia laboatoyjne z fizyki [3] A. Zawadzki, H. Hofokl, Laboatoiu fizyczne. IV. Wpowadzenie Koncepcje kopuskulanej i falowej teoii światła naodziły się w XVII wieku. Piewszą zapoponował I. Newton ( ) taktując światło jako stuienie cząstek. Falową teoię twozyli R. Hooke ( ) i Ch. Huygens ( ) a pzybała postać w iaę zwatej toii dopieo w latach dwudziestych XIX wieku. Teoia kopuskulana Newtona nie pozwalała skonstuować jednolitego scheatu wyjaśniającego wszystkie zjawiska intefeencji. Dziś wiey, że światło wykazuje dwoistą natuę kopuskulano-falową. W pewnych zjawiskach zachowuje się jak stuień cząstek fotonów (np. efekt fotoelektyczny) a w innych (dyfakcja, intefeencja) jak fala. W ujęciu falowy światło jest częścią wida fal elektoagnetycznych, stanowiący pzedział fal od λ f = 380 n (światło o bawie fioletowej) do λ cz = 780 n (światło o bawie czewonej). Falę elektoagnetyczną opisuje wekto natężenia pola elektoagnetycznego E (, oaz postopadły do niego wekto indukcji pola agnetycznego B (,. Za zjawiska optyczne odpowiedzialny jest wekto E (,. Dlatego haoniczną falę świetlną opisujey funkcją falową postaci t E(, = Eo( ) sin π +ϕ T λ gdzie T okes dgań oscylatoa źódła światła (fali świetlnej, odległość punktu od źódła, ϕ faza początkowa, E o () watość aplitudy natężenia pola elektycznego w odległości od źódła światła. Natężenie I fali świetlnej ejestowane pzez nasze oko i pzyządy optyczne jest popocjonalne do kwadatu aplitudy E o (). Zjawisko intefeencji to nakładanie się fal, ozchodzących się w pzestzeni z jednakowyi częstotliwościai, powadzące do zwiększenia lub zniejszenia aplitudy fali wypadkowej (a ty say i natężenia fali) w pewnych punktach pzestzeni. Innyi słowy w pewnych punktach stale jest jasno, a w innych stale cieno. Intefeencja jest cechą ogólną wszystkich fal, nie tylko świetlnych. Aby zjawisko intefeencji ogło być zaejestowane okie lub inny pzyząde, konieczna jest stała w czasie óżnica faz, nakładających się fal świetlnych docieających do ob- 1

2 sewowanego punktu. Tylko wtedy obaz intefeencyjny nie zienia się w czasie. W pzeciwny pzypadku iejsca wzocnień wędowałyby pzypadkowo po cały polu intefeencyjny. Jeśli spotykające się fale ają tę saą częstotliwość i stałą w czasie óżnicę faz, to takie fale nazyway spójnyi i tylko takie fale dają efekty intefeencyjne. Rozpatzy dwie fale spójne, biegnące ze źódeł A i B spotykające się w punkcie C. Fale w punkcie C intefeują czyli nakładają się. Wynik intefeencji jest uzależniony od óżnicy faz spotykających się fal. C B A D Rys. 1 Intefeencja dwóch ciągów falowych Jeżeli fale w chwili wyjścia ze źódeł A i B były zgodne w fazie, to óżnica faz w punkcie C oże powstać tylko z powodu óżnicy ich dóg optycznych. Doga optyczna jest iloczyne dogi geoetycznej i współczynnika załaania światła n. Ponieważ dla powietza n 1, to doga optyczna w powietzu jest ówna dodze geoetycznej. Wpowadźy oznaczenia: AC = 1, BC =, AD = Dla óżnicy dóg ównej całkowitej wielokotności długości fali 1 = = λ = 0, 1,,, w iejscu spotkania się fal, ay wzocnienie dgań. Natoiast jeśli óżnica dóg jest ówna niepazystej wielokotności λ/ λ = 1 = ( + 1), (1) to ay wygaszanie fal i dgania znoszą się. Obsewuje się na pzeian jasne i ciene pążki. Doby sposobe obsewowania zjawiska intefeencji jest zestaw złożony z płytki szklanej i soczewki płasko-wypukłej. Za poocą takiego zestawu ożna uzyskać na pzeian jasne i ciene pieścienie intefeencyjne, któe były obsewowane już w XVII wieku (ys.). Zostały odkyte pzez R. Hooke a a zbadane po az piewszy pzez I. Newtona. Zestaw składa się z płasko-ównoległej płytki szklanej i soczewki płasko-wypukłej o duży poieniu kzywizny w poównaniu z gubością płytki, oświetlonych światłe jednoodny. Soczewka styka się z płytką szklaną P w punkcie O (ys.3). Oświetlona jest ównoległą wiązką światła z lapy sodowej padającego w pzybliżeniu pionowo, kąt padania jest bliski zeu. Gubość d wastwy powietza, poiędzy soczewką S a płytką zienia się w sposób ciągły od śodka O do bzegów soczewki. Intefeencja zachodzi iędzy poienie odbity od dolnej powiezchni soczewki (poień 1) i poienie odbity od gónej powiezchni płytki (poień ). W ty pzypadku, io że światło pochodzi ze zwykłego źódła (lapy sodowej), wiązki są spójne, ponieważ każdy ciąg falowy dochodzący do wastwy powietza o gubości d ulega ozszczepieniu na dwa ciągi (poienie 1 i ), któe następnie łączą się ze sobą po pzebyciu óżnych dóg.

3 1 O S P d Rys. Pieścienie Newtona Rys. 3 Pzebieg wiązek światła w układzie W iejscach, dla któych to zachodzi obsewuje się koncentycznie ozieszczone jasne i ciene pieścienie. Całkowite wygaszenie pzypada w połowie gubości pieścieni cienych natoiast aksyalne wzocnienie w połowie gubości pieścieni jasnych. Ciene pieścienie odpowiadają takiej gubości wastwy powietza, dla któej óżnica dóg optycznych poiędzy dwoa ciągai intefeujących fal jest ówna niepazystej liczbie półfal. Śodek pieścieni jest cieny. Jest to doświadczalne potwiedzenie faktu, że chociaż óżnica dóg geoetycznych poieni wynosi zeo (soczewka pzylega do płytki), to óżnica dóg optycznych wynosi λ/. Poień biegnący w powietzu (po wyjściu z soczewki) doznaje bowie pzy odbiciu od powiezchni szklanej płytki ziany fazy na pzeciwną (ziana fazy o 180 o ) co odpowiada dodze λ/. Natoiast poień, któy biegnie w soczewce, odbija się od dolnej powiezchni i nie zienia fazy. W pzybliżeniu óżnica dóg geoetycznych poieni jest więc ówna d + λ/. Ciene pieścienie powstaną zate dla gubości d wastwy powietza spełniającej waunek λ λ d + = (+ 1) d= Piewszy cieny pieścień powstaje na soczewce w takiej odległości od jej śodka, któa odpowiada gubości wastwy powietza = λ, -ty cieny pieścień dla gubości Stąd długość fali światła jednoodnego wynosi d 1 λ d = () d λ = (3) Śodkową cieną plaę ożey taktować jako pieścień zeowego zędu. λ 3

4 R d Rys.4 Geoetyczna intepetacja waunku intefeencji Jeżeli poień kzywizny soczewki R jest dużo większy od poienia pieścienia cienego i gubości wastwy powietza d (ys.4), to ożna napisać: = R ( R d) = R R + Rd d Rd Stąd d= (4) R W szczególności, gdy wybiezey pieścień o nueze, to ay d = R gdzie poień -tego cienego pieścienia, d gubość wastwy powietza odpowiadająca -teu pieścieniowi cieneu. Gdy poównay wzoy () i (4) to otzyay Stąd λ = R = λr Równanie (5) ożna spowadzić do postaci liniowej: y = ax pzez podstawienie y=, x =, wtedy współczynnik kieunkowy postej będzie ówny a = Rλ. Znajdując współczynnik nachylenia a postej etodą najniejszych kwadatów lub gaficznie, ożey obliczyć jedną z pozostałych dwu wielkości (R lub λ), np a R= (6) λ Oczywiście długość fali λ dla światła sodowego odczytuje się wtedy z tablic. (5) 4

5 Rys. 5 Liniowa zależność poiędzy kwadate poienia pieścienia i jego nuee V. Układ poiaowy Na ys.6 pzedstawiony jest scheatycznie układ poiaowy. Jednobawne światło z lapy sodowej pada na płytkę P ustawioną pod kąte w taki sposób, że częściowo odbija się od niej i pada w dół na soczewkę i płytkę szklaną, dając wskutek odbicia i intefeencji obsewowane pzez nas pieścienie Newtona. Poienie odbite ku góze pzechodzą pzez płytkę P i tafiają do obiektywu ikoskopu i oka obsewatoa. Mikoskop zaopatzony jest w okula z nicią pajęczą i a pzesuwany w płaszczyźnie pozioej tubus ikoskopu. Mechaniz pzesuwu tubusa spzężony jest ze śubą ikoetyczną. Położenie nici pajęczej odczytuje się kozystając z pozioej ilietowej skali oaz skali bębna śuby ikoetycznej. ikoskop lapa sodowa pokętło ikoetu P VI. Poiay Rys.6 Układ poiaowy 1. Ustawić nić pajęczą okulau na +1 cieny pieścieniu widoczny z lewej stony śodkowego cienego pieścienia (gdy = 15 będzie to 16-ty pieścień). Pokętłe ikoetu 5

6 w czasie poiaów należy obacać tylko w jedną stonę w ten sposób eliinujey błędy związane z luze na śubie ikoetycznej ikoskopu.. Odczytać położenie -tego cienego pieścienia, pote 1 aż do 9. W ten sposób dokonay odczytów położeń kolejnych 10-ciu pieścieni po lewej stonie. Obacając pokętłe cały czas w tę saą stonę pzesunąć nić pajęczą na ( 10)-ty pieścień po pawej stonie. Poczynając od ( 9)-tego odczytywać położenia kolejnych pieścieni aż do -tego (po pawej stonie). 3. Wyniki zapisać w Tabeli I i policzyć poienie poiezonych pieścieni. Następnie spoządzić wykes w funkcji. Powinna to być posta typu y = ax + b. 4. Obliczyć współczynnik nachylenia a postej oaz niepewność a jego wyznaczenia etodą najniejszych kwadatów (wykozystując np. funkcję REGLINP pogau Excel) lub gaficznie. 5. Obliczyć ze wzou (6) poień R soczewki poiaowej. 6. Obliczyć niepewność R poiau poienia kzywizny soczewki. Ponieważ watość λ znana jest dokładnie (jest odczytana z tablic), ożna pzyjąć, że a R= R a 7. W pzypadku, gdy dugi paaet b postej jest óżny od zea (linia posta pzeywana na ysunku 5) wyjaśnić co ogło być tego pzyczyną. Tabela I lp. ząd pieścienia [] położenie lewe d l [] położenie pawe d p [] = (d p d l )/ [] [ ] 6

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona

Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Jakub Orłowski 6 listopada 2012 Streszczenie W doświadczeniu dokonano pomiaru krzywizny soczewki płasko-wypukłej z wykorzystaniem

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

Krystyna Gronostaj Maria Nowotny-Różańska Katedra Chemii i Fizyki, FIZYKA Uniwersytet Rolniczy do użytku wewnętrznego ĆWICZENIE 4

Krystyna Gronostaj Maria Nowotny-Różańska Katedra Chemii i Fizyki, FIZYKA Uniwersytet Rolniczy do użytku wewnętrznego ĆWICZENIE 4 Kystyna Gonostaj Maia Nowotny-Różańska Katea Cheii i Fizyki, FIZYKA Uniwesytet Rolniczy o użytku wewnętznego ĆWICZENIE 4 WYZNACZANIE GĘSTOŚCI CIAŁ STAŁYCH I CIECZY PRZY POMOCY PIKNOMETRU Kaków, 2004-2012

Bardziej szczegółowo

5. Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

5. Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej 5. Dynaika uchu postępowego, uchu punktu ateialnego po okęgu i uchu obotowego były sztywnej Wybó i opacowanie zadań 5..-5..0; 5..-5..6 oaz 5.3.-5.3.9 yszad Signeski i Małgozata Obaowska. Zadania 5..-5..4

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

Ć W I C Z E N I E N R O-7

Ć W I C Z E N I E N R O-7 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-7 POMIAR PROMIENI KRZYWIZNY SOCZEWKI PŁASKO-WYPUKŁEJ METODĄ PIERŚCIENI

Bardziej szczegółowo

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda

Bardziej szczegółowo

Model klasyczny gospodarki otwartej

Model klasyczny gospodarki otwartej Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli

Bardziej szczegółowo

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i

Bardziej szczegółowo

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej

Bardziej szczegółowo

Guma Guma. Szkło Guma

Guma Guma. Szkło Guma 1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

T E S T Z F I Z Y K I

T E S T Z F I Z Y K I 1* Miejsce egzainu 2* Nue kandydata 3* Kieunek studiów 4 Liczba uzyskanych punktów * wypełnia kandydat /100 T E S T Z F I Z Y K I Test ekutacyjny dla kandydatów na studia w Polsce WERSJA I - A 2014 ok

Bardziej szczegółowo

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich

Bardziej szczegółowo

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste: Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa

Bardziej szczegółowo

35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2

35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2 Włodzimierz Wolczyński Załamanie światła 35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2 ZAŁAMANIE ŚWIATŁA. SOCZEWKI sin sin Gdy v 1 > v 2, więc gdy n 2 >n 1, czyli gdy światło wchodzi do ośrodka gęstszego optycznie,

Bardziej szczegółowo

Wykład 17. 13 Półprzewodniki

Wykład 17. 13 Półprzewodniki Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa

Bardziej szczegółowo

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Instrukcja wykonawcza 1. Wykaz przyrządów Ława optyczna z podziałką, oświetlacz z zasilaczem i płytka z wyciętym wzorkiem, ekran Komplet soczewek z oprawkami

Bardziej szczegółowo

Zależność natężenia oświetlenia od odległości

Zależność natężenia oświetlenia od odległości Zależność natężenia oświetlenia CELE Badanie zależności natężenia oświetlenia powiezchni wytwazanego pzez żaówkę od niej. Uzyskane dane są analizowane w kategoiach paw fotometii (tzw. pawa odwotnych kwadatów

Bardziej szczegółowo

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela.

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. I LO im. Stefana Żeromskiego w Lęborku 20 luty 2012 Stolik optyczny

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

Notatki z II semestru ćwiczeń z elektroniki, prowadzonych do wykładu dr. Pawła Grybosia.

Notatki z II semestru ćwiczeń z elektroniki, prowadzonych do wykładu dr. Pawła Grybosia. Notatki z II semestu ćwiczeń z elektoniki, powadzonych do wykładu d. Pawła Gybosia. Wojciech Antosiewicz Wydział Fizyki i Techniki Jądowej AGH al.mickiewicza 30 30-059 Kaków email: wojanton@wp.pl 2 listopada

Bardziej szczegółowo

15. Energia i praca w polu elektrycznym. Wybór i opracowanie zadań Andrzej Kuczkowski.

15. Energia i praca w polu elektrycznym. Wybór i opracowanie zadań Andrzej Kuczkowski. 5 Enegia i paca w polu elektyczny ybó i opacowanie zadań Andzej Kuczkowki 5 aka paca zotanie wykonana podcza pzenozenia ładunku punktowego q -8 C z niekończoności do punktu oddalonego o c od powiezchni

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne

XLI OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne XLI OLIPIADA FIZYCZNA EAP I Zadanie doświadczalne ZADANIE D Pod działaniem sil zewnęznych ciała sale ulęgają odkszałceniom. Wyznacz zależność pomienia obszau syczniści szklanej soczewki z płyka szklana

Bardziej szczegółowo

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM PRZEMIANA ENERGII ELEKTRYCZNE W CIELE STAŁYM Anaizowane są skutki pzepływu pądu pzemiennego o natężeniu I pzez pzewodnik okągły o pomieniu. Pzyęto wstępne założenia upaszcząace: - kształt pądu est sinusoidany,

Bardziej szczegółowo

+OPTYKA 3.stacjapogody.waw.pl K.M.

+OPTYKA 3.stacjapogody.waw.pl K.M. Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w

Bardziej szczegółowo

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia

Bardziej szczegółowo

Ruch punktu materialnego

Ruch punktu materialnego WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY PROGRAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH Moduł dydaktyczny: fizyka - infomatyka Ruch punktu mateialnego Elżbieta Kawecka

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

ĆWICZENIE 5. Badanie przekaźnikowych układów sterowania

ĆWICZENIE 5. Badanie przekaźnikowych układów sterowania ĆWICZENIE 5 Badanie zekaźnikowych układów steowania 5. Cel ćwiczenia Celem ćwiczenia jest badanie zekaźnikowych układów steowania obiektem całkującoinecyjnym. Ćwiczenie dotyczy zekaźników dwu- i tójołożeniowych

Bardziej szczegółowo

Optyka 2012/13 powtórzenie

Optyka 2012/13 powtórzenie strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Słońce w ciągu dnia przemieszcza się na niebie ze wschodu na zachód. W którym kierunku obraca się Ziemia? Zadanie 2. Na rysunku przedstawiono

Bardziej szczegółowo

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek

Bardziej szczegółowo

Ć W I C Z E N I E N R O-6

Ć W I C Z E N I E N R O-6 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-6 WYZNACZANIE DŁUGOŚCI FAL PODSTAWOWYCH BARW W WIDMIE ŚWIATŁA BIAŁEGO

Bardziej szczegółowo

Pracownia komputerowa

Pracownia komputerowa Stanisław Lampeski Ćwiczenia z chemii fizycznej Pacownia komputeowa Opis wykonania ćwiczeń WYDZIAŁ CHEMII UAM Poznań 009 Mateiały umieszczone na stonie: http://www.staff.amu.edu.pl/~slampe Spis teści Wstęp...

Bardziej szczegółowo

MECHANIKA BUDOWLI 12

MECHANIKA BUDOWLI 12 Olga Koacz, Kzysztof Kawczyk, Ada Łodygowski, Michał Płotkowiak, Agnieszka Świtek, Kzysztof Tye Konsultace naukowe: of. d hab. JERZY RAKOWSKI Poznań /3 MECHANIKA BUDOWLI. DRGANIA WYMUSZONE, NIETŁUMIONE

Bardziej szczegółowo

Pomiar drogi koherencji wybranych źródeł światła

Pomiar drogi koherencji wybranych źródeł światła Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego

Bardziej szczegółowo

Problemy optyki geometrycznej. Zadania problemowe z optyki

Problemy optyki geometrycznej. Zadania problemowe z optyki . Zadania problemowe z optyki I LO im. Stefana Żeromskiego w Lęborku 3 lutego 2012 Zasada Fermata Sens fizyczny zasady Zasada, sformułowana przez Pierre a Fermata w 1650 roku dotyczy czasu przejścia światła

Bardziej szczegółowo

BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI

BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI ĆWICZENIE 43 BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI Układ optyczny mikroskopu składa się z obiektywu i okularu rozmieszczonych na końcach rury zwanej tubusem. Przedmiot ustawia się w odległości większej

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został

Bardziej szczegółowo

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2. Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy

Bardziej szczegółowo

Ćwiczenie 9 ZASTOSOWANIE ŻYROSKOPÓW W NAWIGACJI

Ćwiczenie 9 ZASTOSOWANIE ŻYROSKOPÓW W NAWIGACJI 9.1. Cel ćwiczenia Ćwiczenie 9 ZASTSWANIE ŻYRSKPÓW W NAWIGACJI Celem ćwiczenia jest pezentacja paktycznego wykozystania efektu żyoskopowego w lotniczych pzyządach nawigacyjnych. 9.2. Wpowadzenie Żyoskopy

Bardziej szczegółowo

Interferencja i dyfrakcja

Interferencja i dyfrakcja Podręcznik zeszyt ćwiczeń dla uczniów Interferencja i dyfrakcja Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl

Bardziej szczegółowo

Ć W I C Z E N I E N R O-3

Ć W I C Z E N I E N R O-3 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-3 WYZNACZANIE OGNISKOWYCH SOCZEWEK ZA POMOCĄ METODY BESSELA I.

Bardziej szczegółowo

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie

Bardziej szczegółowo

Ćwiczenie Nr 455. Temat: Efekt Faradaya. I. Literatura. Problemy teoretyczne

Ćwiczenie Nr 455. Temat: Efekt Faradaya. I. Literatura. Problemy teoretyczne Ćwiczenie Nr 455 Temat: Efekt Faradaya I. Literatura. Ćwiczenia laboratoryjne z fizyki Część II Irena Kruk, Janusz Typek, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin. Ćwiczenia laboratoryjne

Bardziej szczegółowo

12. Lewitujący Bączek

12. Lewitujący Bączek . Wstęp. Lewitujący ączek Dużyna XV LO i. Stanisława Staszica w Waszawie stnieje zaawka (np. Leviton ), w któej wiujący agnetyczny ączek lewituje nad płytką zawieającą agnesy. W jakich waunkach oże wystąpić

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie

Bardziej szczegółowo

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D. OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o

Bardziej szczegółowo

OPTYKA W INSTRUMENTACH GEODEZYJNYCH

OPTYKA W INSTRUMENTACH GEODEZYJNYCH OPTYKA W INSTRUMENTACH GEODEZYJNYCH Prawa Euklidesa: 1. Promień padający i odbity znajdują się w jednej płaszczyźnie przechodzącej przez prostopadłą wystawioną do powierzchni zwierciadła w punkcie odbicia.

Bardziej szczegółowo

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,

Bardziej szczegółowo

ŚWIATŁO I JEGO ROLA W PRZYRODZIE

ŚWIATŁO I JEGO ROLA W PRZYRODZIE ŚWIATŁO I JEGO ROLA W PRZYRODZIE I. Optyka geotermalna W tym rozdziale poznasz właściwości światła widzialnego, prawa rządzące jego rozchodzeniem się w przestrzeni oraz sposoby wykorzystania tych praw

Bardziej szczegółowo

MONITORING STACJI FOTOWOLTAICZNYCH W ŚWIETLE NORM EUROPEJSKICH

MONITORING STACJI FOTOWOLTAICZNYCH W ŚWIETLE NORM EUROPEJSKICH 51 Aleksande Zaemba *, Tadeusz Rodziewicz **, Bogdan Gaca ** i Maia Wacławek ** * Kateda Elektotechniki Politechnika Częstochowska al. Amii Kajowej 17, 42-200 Częstochowa e-mail: zaemba@el.pcz.czest.pl

Bardziej szczegółowo

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których

Bardziej szczegółowo

Badania nad kształtowaniem się wartości współczynnika podatności podłoża dla celów obliczeń statycznych obudowy tuneli

Badania nad kształtowaniem się wartości współczynnika podatności podłoża dla celów obliczeń statycznych obudowy tuneli AKADEMIA GÓRNICZO HUTNICZA im. Stanisława Staszica WYDZIAŁ GÓRNICTWA I GEOINŻYNIERII KATEDRA GEOMECHANIKI, BUDOWNICTWA I GEOTECHNIKI Rozpawa doktoska Badania nad kształtowaniem się watości współczynnika

Bardziej szczegółowo

Człowiek najlepsza inwestycja FENIKS

Człowiek najlepsza inwestycja FENIKS FENIKS - długoalowy program odbudowy, popularyzacji i wsagania izyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i inormatycznych uczniów Pracownia Fizyczna

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

ZJAWISKO INTERFERENCJI ŚWIATŁA PIERŚCIENIE NEWTONA, INTERFEROMETR MICHELSONA. 1. Podstawy fizyczne. λ λ. Politechnika Warszawska.

ZJAWISKO INTERFERENCJI ŚWIATŁA PIERŚCIENIE NEWTONA, INTERFEROMETR MICHELSONA. 1. Podstawy fizyczne. λ λ. Politechnika Warszawska. Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Politechnika Warszawska Andrzej Kubiaczyk Wydział Fizyki Laboratorium Fizyki I 5 ZJAWISKO INTEFEENCJI ŚWIATŁA PIEŚCIENIE ZJAWISKO NEWTONA,

Bardziej szczegółowo

jeden radian ( 1 rad ) jest równy kątowi środkowemu opartemu na łuku o długości równej promieniowi okręgu

jeden radian ( 1 rad ) jest równy kątowi środkowemu opartemu na łuku o długości równej promieniowi okręgu g Opacowanie wyników poiaów: jednotki tałe fizyczne liczy t. EDNOTI MIR ednotki poawowe układu I ednotka nazwa kót długość et aa kiloga kg cza ekunda natężenie pądu elektycznego * ape tepeatua * kelwin

Bardziej szczegółowo

METODY STATYCZNE Metody pomiaru twardości.

METODY STATYCZNE Metody pomiaru twardości. METODY STATYCZNE Metody pomiau twadości. Opacował: XXXXXXXX studia inŝynieskie zaoczne wydział mechaniczny semest V Gdańsk 00. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z metodami pomiaów twadości,

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI Projekt Plan rozwoj Politechniki Częstochowskiej współinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Nmer Projekt: POKL.04.0.0-00-59/08 INSTYTUT FIZYKI WYDZIAŁINśYNIERII

Bardziej szczegółowo

Pomiar ogniskowych soczewek metodą Bessela

Pomiar ogniskowych soczewek metodą Bessela Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.

Bardziej szczegółowo

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych. msg O 7 - - Temat: Badanie soczewek, wyznaczanie odległości ogniskowej. Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej.

Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej. STOLIK OPTYCZNY V 7-19 Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej. Na drewnianej podstawie (1) jest umieszczona mała Ŝaróweczka (2) 3,5 V, 0,2 A, którą moŝna

Bardziej szczegółowo

POMIARY PRZY WYKORZYSTANIU ZJAWISKA INTERFERENCJI

POMIARY PRZY WYKORZYSTANIU ZJAWISKA INTERFERENCJI ĆWICZENIE 45 POMIARY PRZY WYKORZYSTANIU ZJAWISKA INTERFERENCJI Wprowadzenie teoretyczne Interferencja, to zjawisko wzmocnienia lub osłabienia fal, zachodzące w wyniku wzajemnego nakrywania się. Wzmocnionemu

Bardziej szczegółowo

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki

Bardziej szczegółowo

Laboratorium Półprzewodniki, Dielektryki i Magnetyki Ćwiczenie nr 10 Pomiary czasu życia nośników w półprzewodnikach

Laboratorium Półprzewodniki, Dielektryki i Magnetyki Ćwiczenie nr 10 Pomiary czasu życia nośników w półprzewodnikach Laboaoium Półpzewodniki, Dielekyki i Magneyki Ćwiczenie n 10 Pomiay czasu życia nośników w półpzewodnikach I. Zagadnienia do pzygoowania: 1. Pojęcia: nośniki mniejszościowe i większościowe, ównowagowe

Bardziej szczegółowo

Ćwiczenie 53. Soczewki

Ćwiczenie 53. Soczewki Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.

Bardziej szczegółowo

Stanowisko do pomiaru fotoprzewodnictwa

Stanowisko do pomiaru fotoprzewodnictwa Stanowisko do pomiaru fotoprzewodnictwa Kraków 2008 Układ pomiarowy. Pomiar czułości widmowej fotodetektorów polega na pomiarze fotoprądu w funkcji długości padającego na detektor promieniowania. Stanowisko

Bardziej szczegółowo

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach Scenariusz lekcji : Soczewki i obrazy otrzymywane w soczewkach Autorski konspekt lekcyjny Słowa kluczowe: soczewki, obrazy Joachim Hurek, Publiczne Liceum Ogólnokształcące z Oddziałami Dwujęzycznymi w

Bardziej szczegółowo

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki LASEROWY POMIAR ODLEGŁOŚCI INTERFEROMETREM MICHELSONA Instrukcja wykonawcza do ćwiczenia laboratoryjnego ćwiczenie

Bardziej szczegółowo

ANALIZA WPŁYWU KOŁA SWOBODNEGO

ANALIZA WPŁYWU KOŁA SWOBODNEGO POLITECHIKA OPOLSKA WYZIAŁ ELEKTROTECHIKI, AUTOMATYKI I IFORMATYKI MGR IŻ. TOMASZ PYKA AALIZA WPŁYWU KOŁA SWOBOEGO W ROBOCIE MOBILYM TRÓJKOŁOWYM A JAKOŚĆ STEROWAIA RUCHU ROBOTA PO TRAJEKTORII AUTOREFERAT

Bardziej szczegółowo

Pomiar dyspersji materiałów za pomocą spektrometru

Pomiar dyspersji materiałów za pomocą spektrometru Ćwiczenie nr 9 Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampy spektralne: helowa i rtęciowa 3. Pryzmaty szklane, których własności mierzymy II. Cel ćwiczenia

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

Rozwiązanie: Część teoretyczna

Rozwiązanie: Część teoretyczna Zgodnie z prawem Hooke a idealnie sprężysty pręt o długości L i polu przekroju poprzecznego S pod wpływem przyłożonej wzdłuż jego osi siły F zmienia swoją długość o L = L F/(S E), gdzie współczynnik E

Bardziej szczegółowo

MODELOWANIE PRĄDÓW WIROWYCH W ŚRODOWISKACH SŁABOPRZEWODZĄCYCH PRZY WYKORZYSTANIU SKALARNEGO POTENCJAŁU ELEKTRYCZNEGO

MODELOWANIE PRĄDÓW WIROWYCH W ŚRODOWISKACH SŁABOPRZEWODZĄCYCH PRZY WYKORZYSTANIU SKALARNEGO POTENCJAŁU ELEKTRYCZNEGO Pzemysław PŁONECKI Batosz SAWICKI Stanisław WINCENCIAK MODELOWANIE PRĄDÓW WIROWYCH W ŚRODOWISKACH SŁABOPRZEWODZĄCYCH PRZY WYKORZYSTANIU SKALARNEGO POTENCJAŁU ELEKTRYCZNEGO STRESZCZENIE W atykule pzedstawiono

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

4.8 Wyznaczanie ogniskowych soczewek i badanie wad soczewek(o2)

4.8 Wyznaczanie ogniskowych soczewek i badanie wad soczewek(o2) 204 Fale 4.8 Wyznaczanie ogniskowych soczewek i badanie wad soczewek(o2) Celem ćwiczenia jest pomiar ogniskowych soczewek skupiających i rozpraszających oraz badanie wad soczewek: aberracji sferycznej,

Bardziej szczegółowo

Propagacja światła we włóknie obserwacja pól modowych.

Propagacja światła we włóknie obserwacja pól modowych. Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących

Bardziej szczegółowo

Ćw. 16. Skalowanie mikroskopu i pomiar małych przedmiotów

Ćw. 16. Skalowanie mikroskopu i pomiar małych przedmiotów 16 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 16. Skalowanie mikroskopu i pomiar małych przedmiotów Wprowadzenie Mikroskop jest przyrządem optycznym dającym znaczne powiększenia małych przedmiotów

Bardziej szczegółowo

WAHADŁO OBERBECKA V 6 38a

WAHADŁO OBERBECKA V 6 38a Wahadło Obebecka V 6-38a WAHADŁO OBERBECKA V 6 38a Wahadło ma zasosowanie na lekcjach fizyki w klasie I i III liceum ogólnokszałcącego. Pzyząd sanowi byłę szywną uwozoną pzez uleję (1) i czey wkęcone w

Bardziej szczegółowo

7. Drgania i fale. Drgania

7. Drgania i fale. Drgania 7 Drgania i fale Drgania Ruche drgający okresowy nazyway taki ruch w który układ po upływie pewnego czasu nazywanego okrese drgania wraca do stanu wyjściowego Drganie haroniczne proste W ujęciu geoetryczny

Bardziej szczegółowo

EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA

EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA Nekedy zachodz koneczność zany okesu kapt. z ównoczesny zachowane efektów opocentowane. Dzeje sę tak w nektóych zagadnenach ateatyk fnansowej np.

Bardziej szczegółowo

ZJAWISKO SKRĘCENIA PŁASZCZYZNY POLARYZACJI ŚWIATŁA

ZJAWISKO SKRĘCENIA PŁASZCZYZNY POLARYZACJI ŚWIATŁA Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Irma Śledzińska Andrzej Kubiaczyk 28 ZJAWISKO SKRĘCENIA PŁASZCZYZNY POLARYZACJI ŚWIATŁA 1. Podstawy fizyczne W zjawisku dyfrakcji, interferencji

Bardziej szczegółowo

Źródła pola magnetycznego

Źródła pola magnetycznego Pole magnetyczne Źódła pola magnetycznego Cząstki elementane takie jak np. elektony posiadają własne pole magnetyczne, któe jest podstawową cechą tych cząstek tak jak q czy m. Pouszający się ładunek elektyczny

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA 1 WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ NOWYCH TECHNOLOGII I CHEMII FIZYKA Ćwiczenie laboratoryjne nr 43 WYZNACZANIE ABERRACJI SFERYCZNEJ SOCZEWEK I ICH UKŁADÓW Autorzy: doc. dr inż. Wiesław Borys dr inż.

Bardziej szczegółowo

XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne

XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne ZADANIE D2 Nazwa zadania: Światełko na tafli wody Mając do dyspozycji fotodiodę, źródło prądu stałego (4,5V bateryjkę), przewody, mikroamperomierz oraz

Bardziej szczegółowo

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka. Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,

Bardziej szczegółowo

KOLOKACJA SYSTEMÓW BEZPRZEWODOWYCH NA OBIEKTACH MOBILNYCH

KOLOKACJA SYSTEMÓW BEZPRZEWODOWYCH NA OBIEKTACH MOBILNYCH KOLOKACJA SYSTEMÓW BEZPRZEWODOWYCH NA OBIEKTACH MOBILNYCH Janusz ROMANIK, Kzysztof KOSMOWSKI, Edwad GOLAN, Adam KRAŚNIEWSKI Zakład Radiokomunikacji i Walki Elektonicznej Wojskowy Instytut Łączności 05-30

Bardziej szczegółowo