PRZEWODNIK PO PRZEDMIOCIE

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "PRZEWODNIK PO PRZEDMIOCIE"

Transkrypt

1 Nazwa przedmiotu: Analiza Matematyczna III Mathematical Analysis III Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom przedmiotu: I stopnia Liczba godzin/tydzień: W E, C Semestr: III Liczba punktów: 6 ECTS PRZEWODNIK PO PRZEDMIOCIE I KARTA PRZEDMIOTU CEL PRZEDMIOTU C1. Zapoznanie studentów z rachunkiem różniczkowym i całkowym funkcji wielu zmiennych oraz odwzorowań w przestrzeniach euklidesowych. Nabycie umiejętności różniczkowania i całkowania funkcji wielu zmiennych oraz ich stosowania do wyznaczania ekstremów i wielkości geometrycznych oraz mechanicznych WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Wiedza z zakresu analizy matematycznej I i II 2. Wiedza z zakresu algebry liniowej. Umiejętność rozwiązywania układów równań liniowych i określania charakteru form kwadratowych 4. Umiejętność wyznaczania granic ciągów liczbowych i granic funkcji rzeczywistej jednej zmiennej 5. Umiejętność różniczkowania i całkowania funkcji rzeczywistych jednej zmiennej EFEKTY KSZTAŁCENIA EK 1 definiuje pojęcia i przedstawia twierdzenia z zakresu rachunku różniczkowego i całkowego funkcji wielu zmiennych (także funkcji wektorowych) EK 2 wymienia zastosowania rachunku różniczkowego i całkowego funkcji rzeczywistych i wektorowych wielu zmiennych EK wyznacza granice ciągów i funkcji wielu zmiennych, bada istnienie i nieistnienie granicy, oblicza pochodne kierunkowe i cząstkowe (pierwszego i drugiego rzędu )

2 EK 4 wyznacza różniczki pierwszego i drugiego rzędu funkcji wielu zmiennych, bada różniczkowalność funkcji oraz stosuje rachunek różniczkowy funkcji wielu zmiennych do badania istnienia i wyznaczania ekstremów funkcji także warunkowych EK 5 oblicza całki wielokrotne oraz krzywoliniowe i powierzchniowe pierwszego rodzaju EK 6 stosuje całki do obliczania wielkości geometrycznych i mechanicznych TREŚCI PROGRAMOWE Forma zajęć WYKŁADY W 1 k-wymiarowa przestrzeń Euklidesowa. Ciągi - granice ciągów i granice funkcji wielu zmiennych. Ciągłość funkcji wielu zmiennych, własności funkcji ciągłych Liczba godzin W 2 Pochodne kierunkowe i cząstkowe. Twierdzenie o szacowaniu przyrostu funkcji W Różniczkowalność i pierwsza różniczka funkcji wielu zmiennych W 4 Reguły różniczkowania i twierdzenie o wartości średniej W 5 Rachunek różniczkowy drugiego rzędu. Symetria drugiej różniczki. Wzór Taylora drugiego rzędu W 6 Ekstrema funkcji wielu zmiennych. Warunek konieczny i dostateczny. Wartość największa i najmniejsza W 7 Ekstrema warunkowe funkcji wielu zmiennych. Twierdzenie Lagrange a 2 W 8 Odwzorowania w przestrzeniach euklidesowych wielowymiarowych. Rachunek różniczkowy pierwszego rzędu W 9 Odwzorowania w przestrzeniach euklidesowych wielowymiarowych. Rachunek różniczkowy drugiego rzędu W 10 Przekształcenia nieosobliwe i dyfeomorfizmy. Twierdzenie o odwzorowaniach odwrotnych i twierdzenie o funkcji uwikłanej W 11 Podwójna i potrójna całka Riemanna. Konstrukcja, przykłady W 12 Całki iterowane. Całkowanie przez podstawienie. Zastosowanie całek wielokrotnych. 4 W 1 Całki krzywoliniowe pierwszego i drugiego rodzaju. Zastosowanie W 14 - Całki powierzchniowe pierwszego i drugiego rodzaju. Zastosowanie W15 Wzory całkowe wzór Greena i Gaussa-Ostrogradskiego

3 Forma zajęć ĆWICZENIA C 1 Powtórzenie granicy ciągów przestrzeni jednowymiarowej i technik obliczania granic ciągów i funkcji. Granice ciągów w przestrzeni k-wymiarowej i granice funkcji wielu zmiennych C 2 Obliczanie pochodnych kierunkowych i cząstkowych z zastosowaniem definicji i reguł różniczkowania C Różniczkowalność funkcji wielu zmiennych. Badanie różniczkowalności i wyznaczanie pierwszej różniczki. Przykłady funkcji nieróżniczkowalnych C 4 Rachunek różniczkowy drugiego rzędu. Pochodne kierunkowe i cząstkowe drugiego rzędu. Wyznaczanie drugiej różniczki C 5 Ekstrema funkcji wielu zmiennych. Zastosowanie warunku koniecznego i dostatecznego oraz badanie istnienia na podstawie definicji Liczba godzin 4 C 5 Ekstrema warunkowe funkcji wielu zmiennych 2 C 6 Rachunek różniczkowy pierwszego rzędu odwzorowań między przestrzeniami euklidesowymi C 7 Rachunek różniczkowy drugiego rzędu odwzorowań między przestrzeniami euklidesowymi C 8 Kolokwium I rachunek różniczkowy 2 C 9-10 Obszary normalne na płaszczyźnie i w przestrzeni. Obliczanie całek podwójnych i potrójnych C 11 Zastosowanie twierdzenia o podstawieniu do całkowania. Współrzędne biegunowe, walcowe i sferyczne 5 C 12 Zastosowanie całki podwójnej i potrójnej 2 C 1 Całki krzywoliniowe i powierzchniowe 4 C 14 Zastosowanie całek krzywoliniowych i powierzchniowych C 15 Kolokwium II rachunek całkowy 2 NARZĘDZIA DYDAKTYCZNE 1. wykład z wykorzystaniem prezentacji multimedialnych 2. ćwiczenia

4 SPOSOBY OCENY ( F FORMUJĄCA, P PODSUMOWUJĄCA). ocena samodzielnego przygotowania do ćwiczeń. ocena aktywności podczas zajęć. ocena umiejętności rozwiązywania postawionych problemów zaliczenie na ocenę. ocena opanowania materiału nauczania będącego przedmiotem wykładu egzamin pisemny z zadań i teorii OBCIĄŻENIE PRACĄ STUDENTA Forma aktywności Godziny kontaktowe z prowadzącym Zapoznanie się ze wskazaną literaturą Przygotowanie do ćwiczeń Obecność na konsultacjach Przygotowanie do kolokwiów Przygotowanie do egzaminu Obecność na egzaminie Średnia liczba godzin na zrealizowanie aktywności 45W 45C 90h 10 h 15 h 5 h 15 h 11h 4h Suma SUMARYCZNA LICZBA PUNKTÓW ECTS DLA PRZEDMIOTU Liczba punktów ECTS, która student uzyskuje na zajęciach wymagających bezpośredniego udziału prowadzącego Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym 150 h 6 ECTS 4 ECTS,2 ECTS

5 LITERATURA PODSTAWOWA I UZUPEŁNIAJĄCA Literatura podstawowa A. Birkholc Analiza matematyczna. Funkcje wielu zmiennych. PWN, Warszawa 2002 Literatura uzupełniająca R. Rudnicki Wykłady z analizy matematycznej. PWN, Warszawa 2006 W.J. Kaczor, M.T. Nowak Zadania z analizy matematycznej. Część Całkowanie. PWN 2006 W. Kołodziej Analiza matematyczna. PWN, Warszawa 2009 M. Gewert, Z. Skoczylas, Analiza Matematyczna 2. Definicje, twierdzenia, wzory. GiS, Wrocław 2010 M. Gewert, Z. Skoczylas, Analiza Matematyczna 2. Przykłady i zadania. GiS, Wrocław 2010 PROWADZĄCY PRZEDMIOT ( IMIĘ, NAZWISKO, ADRES ) 1. dr hab. Małgorzata Klimek, prof. PCz. 2. dr Jolanta Lipińska, MATRYCA REALIZACJI I WERYFIKACJI EFEKTÓW KSZTAŁCENIA Efekt kształcenia EK1 EK2 Odniesienie danego efektu do efektów zdefiniowanych dla kierunku Matematyka K_W02 K_W04 K_W05 K_W07 K_U01 K_U02 K_U17 K_U24 K_W04 K_W05 K_W07 K_U01 Cele przedmiotu Treści programowe Narzędzia dydaktyczne Sposób oceny C1 W C1 W5-7,1,15 1

6 K_U17 K_U24 EK K_U09 K_U10 K_U11 W1-2 C1-2,4 EK4 K_U11 K_U12 W-7 C-5 EK5 K_U1 K_U14 W10-15 C9-11,1 EK6 K_U1 K_U14 W1,15 C12,14 II. FORMY OCENY - SZCZEGÓŁY Na ocenę 2 Na ocenę Na ocenę 4 Na ocenę 5 EK 1- EK2 Student nie spełnia kryteriów oceny Student potrafi podać część definicji i sformułować podstawowe twierdzenia z zakresu rachunku różniczkowego i całkowego funkcji wielu zmiennych definiuje pojęcia z zakresu analizy funkcji/funkcji wektorowych wielu zmiennych oraz poprawnie formułuje twierdzenia. Zna zastosowania rachunku całkowego. definiuje pojęcia z zakresu analizy funkcji/funkcji wektorowych wielu zmiennych oraz poprawnie formułuje twierdzenia. Potrafi przeprowadzić dowody wybranych twierdzeń. Zna zastosowania rachunku całkowego.

7 EK -EK6 Student nie spełnia kryteriów oceny Student potrafi przeprowadzić podstawowe obliczenia z zakresu analizy funkcji wielu zmiennych oblicza granice ciągów, pochodne kierunkowe i cząstkowe, wyznacza różniczki pierwszego i drugiego rzędu oraz ekstrema. Oblicza całki korzystając z podstawowych technik. przeprowadza obliczenia, stosuje odpowiednie twierdzenia. Obok obliczeń podstawowych bada istnienie granicy funkcji i ciągu, ciągłość funkcji wielu zmiennych i jej różniczkowalność. Oblicza całki i potrafi je zastosować do wyznaczania wielkości geometrycznych i mechanicznych. przeprowadza podstawowe i zaawansowane obliczenia w zakresie rachunku różniczkowego i całkowego. Bada istnienie granicy funkcji i ciągu, ciągłość funkcji wielu zmiennych i jej różniczkowalność. Oblicza całki stosując wszystkie poznane twierdzenia i metody oraz potrafi je zastosować do wyznaczania wielkości geometrycznych i mechanicznych. Dopuszcza się wystawienie oceny połówkowej o ile student spełniający wszystkie efekty kształcenia wymagane do oceny pełnej spełnia niektóre efekty kształcenia odpowiadające ocenie wyższej III. INNE PRZYDATNE INFORMACJE O PRZEDMIOCIE 1. Wszelkie informacje dla studentów na temat planu zajęć dostępne są na stronie internetowej: 2. Informacja na temat konsultacji przekazywana jest studentom podczas pierwszych zajęć z danego przedmiotu oraz umieszczona jest na stronie internetowej Instytutu Matematyki:

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 3W E, 3C PRZEWODNIK PO PRZEDMIOCIE

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 3W E, 3C PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Teoria miary i całki Measure and Integration Theory Kod przedmiotu: Poziom

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza matematyczna I Mathematical analysis I Kierunek: Kod przedmiotu: Matematyka Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Poziom kwalifikacji:

Bardziej szczegółowo

WYDZIAŁ ***** KARTA PRZEDMIOTU

WYDZIAŁ ***** KARTA PRZEDMIOTU 9815Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: ANALIZA MATEMATYCZNA M3 Nazwa w języku angielskim: MATHEMATICAL ANALYSIS M3 Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Załącznik nr 1 do procedury nr W_PR_12 Nazwa przedmiotu: Matematyka II Mathematics II Kierunek: inżynieria środowiska Rodzaj przedmiotu: Poziom kształcenia: nauk ścisłych, moduł 1 I stopnia Rodzaj zajęć:

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Teoria mnogości Set theory Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Matematyka I Mathematics I Kierunek: biotechnologia Rodzaj przedmiotu: Poziom przedmiotu: obowiązkowy dla wszystkich I stopnia specjalności Rodzaj zajęć: Liczba godzin/tydzień: wykład,

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)

Bardziej szczegółowo

Zastosowania analizy stochastycznej w finansach Application of Stochastic Models in Financial Analysis Kod przedmiotu: Poziom przedmiotu: II stopnia

Zastosowania analizy stochastycznej w finansach Application of Stochastic Models in Financial Analysis Kod przedmiotu: Poziom przedmiotu: II stopnia Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: wykład, ćwiczenia Zastosowania analizy stochastycznej w finansach

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 Nazwa w języku polskim: Analiza matematyczna.1 Nazwa w języku angielskim: Mathematical analysis.1 Kierunek

Bardziej szczegółowo

KARTA PRZEDMIOTU CELE PRZEDMIOTU

KARTA PRZEDMIOTU CELE PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr do ZW KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Analiza matematyczna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Inżynieria biomedyczna Linear algebra and analytical geometry forma studiów: studia stacjonarne Kod przedmiotu: IB_mp_ Rodzaj przedmiotu:

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Obliczenia symboliczne Symbolic computations Kierunek: Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Informatyka Rodzaj zajęć: wykład,

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Analiza matematyczna 2 Rok akademicki: 2014/2015 Kod: EME-1-202-s Punkty ECTS: 5 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Mikroelektronika w technice

Bardziej szczegółowo

Opis przedmiotu: Matematyka II

Opis przedmiotu: Matematyka II 24.09.2013 Karta - Matematyka II Opis : Matematyka II Kod Nazwa Wersja TR.NIK203 Matematyka II 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza matematyczna III (ANA023) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza matematyczna III (ANA023) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Analiza matematyczna III (ANA023) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/3 5. LICZBA PUNKTÓW ECTS: 11 6. LICZBA GODZIN: 60

Bardziej szczegółowo

Z-LOG-530I Analiza matematyczna II Calculus II

Z-LOG-530I Analiza matematyczna II Calculus II KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/18 Z-LOG-530I Analiza matematyczna II Calculus II A. USYTUOWANIE MODUŁU W

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Mechatronika Linear algebra and analytical geometry Kod przedmiotu: A01 Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Poziom

Bardziej szczegółowo

Z-ZIP-0530 Analiza Matematyczna II Calculus II

Z-ZIP-0530 Analiza Matematyczna II Calculus II KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-ZIP-0530 Analiza Matematyczna II Calculus II A. USYTUOWANIE MODUŁU

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30 WYDZIAŁ ARCHITEKTURY KARTA PRZEDMIOTU Nazwa w języku polskim Matematyka 1 Nazwa w języku angielskim Mathematics 1 Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów i forma:

Bardziej szczegółowo

SYLABUS/KARTA PRZEDMIOTU

SYLABUS/KARTA PRZEDMIOTU SYLABUS/KARTA PRZEDMIOTU. NAZWA PRZEDMIOTU Analiza i modelowanie systemów. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny. STUDIA kierunek stopień tryb język status przedmiotu AiR I Stacjonarne/Niestacjonarne

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 201/15 (1) Nazwa Rachunek różniczkowy i całkowy I (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Programowanie liniowe w technice Linear programming in engineering problems Kierunek: Rodzaj przedmiotu: obowiązkowy na kierunku matematyka przemysłowa Rodzaj zajęć: wykład, laboratorium,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Elementy teorii dyskusji i etyki pracy twórczej Theory of discussion and ethics Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: seminarium Matematyka

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Wstęp do matematyki finansowej Introduction to financial mathematics Kierunek: Kod przedmiotu: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa

Bardziej szczegółowo

Elementy teorii liczb i kryptografii Elements of Number Theory and Cryptography. Matematyka Poziom kwalifikacji: II stopnia

Elementy teorii liczb i kryptografii Elements of Number Theory and Cryptography. Matematyka Poziom kwalifikacji: II stopnia Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Kierunkowy dla specjalności: matematyka przemysłowa Rodzaj zajęć: wykład, ćwiczenia Elementy teorii liczb i kryptografii Elements of Number Theory and Cryptography

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Analiza matematyczna II Rok akademicki: 2013/2014 Kod: MIS-1-202-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Specjalność: - Poziom

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1 KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim Analiza matematyczna Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Inżynieria zarządzania

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2017 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Analiza matematyczna Kod przedmiotu/ modułu* Wydział (nazwa jednostki

Bardziej szczegółowo

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS)

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS) Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.3 A Nazwa w języku angielskim Mathematical Analysis Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod (4) Studia

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA. Nazwa w języku angielskim Mathematical Analysis. Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

MATEMATYKA MATHEMATICS. Forma studiów: studia niestacjonarne. Liczba godzin/zjazd: 3W E, 3Ćw. PRZEWODNIK PO PRZEDMIOCIE semestr 1

MATEMATYKA MATHEMATICS. Forma studiów: studia niestacjonarne. Liczba godzin/zjazd: 3W E, 3Ćw. PRZEWODNIK PO PRZEDMIOCIE semestr 1 Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Podstawowy obowiązkowy Rodzaj zajęć: wykład, ćwiczenia Inżynieria Materiałowa Poziom studiów: studia I stopnia MATEMATYKA MATHEMATICS Forma studiów: studia

Bardziej szczegółowo

Analiza matematyczna. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra

Analiza matematyczna. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Analiza matematyczna Nazwa modułu w języku angielskim Calculus Obowiązuje

Bardziej szczegółowo

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień

Bardziej szczegółowo

AiRZ-0531 Analiza matematyczna Mathematical analysis

AiRZ-0531 Analiza matematyczna Mathematical analysis KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2013/2014 AiRZ-0531 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA 1.1 A Nazwa w języku angielskim Mathematical Analysis 1A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty) SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/17 2019/20 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Analiza matematyczna Kod przedmiotu/ modułu* Wydział (nazwa jednostki

Bardziej szczegółowo

APLIKACJE KLIENT-SERWER Client-Server Applications Forma studiów: Stacjonarne Poziom kwalifikacji: I stopnia. Liczba godzin/tydzień: 2W, 2L

APLIKACJE KLIENT-SERWER Client-Server Applications Forma studiów: Stacjonarne Poziom kwalifikacji: I stopnia. Liczba godzin/tydzień: 2W, 2L Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Sieci komputerowe Rodzaj zajęć: wykład, laboratorium APLIKACJE KLIENT-SERWER Client-Server Applications Forma

Bardziej szczegółowo

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza matematyczna 1.1 A Nazwa w języku angielskim: Mathematical Analysis 1.1

Bardziej szczegółowo

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

ANALIZA SYLABUS. A. Informacje ogólne

ANALIZA SYLABUS. A. Informacje ogólne ANALIZA SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Wprowadzenie do handlu na rynku kapitałowym Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: wykład, ćwiczenia

Bardziej szczegółowo

Matematyka ubezpieczeń na życie Life Insurance Mathematics. Matematyka Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W E, 2C

Matematyka ubezpieczeń na życie Life Insurance Mathematics. Matematyka Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W E, 2C Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: przedmiot obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: wykład, ćwiczenia Matematyka ubezpieczeń na życie Life Insurance

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: przedmiot obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Logika matematyczna Mathematical Logic Poziom przedmiotu: II

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: systemy sterowania Rodzaj zajęć: wykład, laboratorium UKŁADY AUTOMATYKI PRZEMYSŁOWEJ Industrial Automatics Systems

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

KONTROLA JAKOŚCI MATERIAŁÓW I WYROBÓW QUALITY CONTROL OF MATERIALS AND PRODUCTS. Liczba godzin/tydzień: 1W, 2L PRZEWODNIK PO PRZEDMIOCIE

KONTROLA JAKOŚCI MATERIAŁÓW I WYROBÓW QUALITY CONTROL OF MATERIALS AND PRODUCTS. Liczba godzin/tydzień: 1W, 2L PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Przetwórstwo Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU KONTROLA JAKOŚCI

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania, Sieci komputerowe Rodzaj zajęć: wykład, laboratorium MODELOWANIE I SYMULACJA Modelling

Bardziej szczegółowo

Matematyka I i II - opis przedmiotu

Matematyka I i II - opis przedmiotu Matematyka I i II - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka I i II Kod przedmiotu Matematyka 02WBUD_pNadGenB11OM Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium PODSTAWY ROBOTYKI Fundamentals of Robotics Forma studiów: studia

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY ELEKTROTECHNIKI, ELEKTRONIKI I TECHNIK POMIAROWYCH Foundations of electrotechnics, electronics and measurement techniques Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Metodyka i metodologia badań naukowych Methodology of the scientific research Dyscyplina: Budowa i Eksploatacja Maszyn Rodzaj przedmiotu: Przedmiot fakultatywny Rodzaj zajęć: seminarium

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Załącznik nr do Uchwały Senatu nr 30/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2019 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Rachunek różniczkowy i całkowy

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: Kierunkowy ogólny Rodzaj zajęć: Wykład, ćwiczenia MECHANIKA Mechanics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:

Bardziej szczegółowo

OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów)

OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów) OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów) Nazwa modułu/ przedmiotu Przedmioty podstawowe - matematyka Przedmioty: Nazwa jednostki prowadzącej przedmiot Instytut Matematyki kierunek specjalność

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z własnościami

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, ćwiczenia I KARTA

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK

Bardziej szczegółowo

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44 Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły

Bardziej szczegółowo

Z-LOG-476I Analiza matematyczna I Calculus I. Przedmiot podstawowy Obowiązkowy polski Semestr I

Z-LOG-476I Analiza matematyczna I Calculus I. Przedmiot podstawowy Obowiązkowy polski Semestr I KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 Z-LOG-476I Analiza matematyczna I Calculus I A. USYTUOWANIE MODUŁU W

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Ubezpieczenia życiowe Kierunek: Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: Wykład i seminarium Matematyka Poziom kwalifikacji:

Bardziej szczegółowo

Metody optymalizacji Optimization methods Forma studiów: stacjonarne Poziom studiów II stopnia. Liczba godzin/tydzień: 1W, 1Ć

Metody optymalizacji Optimization methods Forma studiów: stacjonarne Poziom studiów II stopnia. Liczba godzin/tydzień: 1W, 1Ć Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści dodatkowych Rodzaj zajęć: wykład, ćwiczenia Metody Optimization methods Forma studiów: stacjonarne Poziom studiów

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: KINEMATYKA I DYNAMIKA MANIPULATORÓW I ROBOTÓW Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: Systemy sterowania Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU

Bardziej szczegółowo

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol) KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Geometria analityczna (GAN010) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2018 realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: Kierunkowy ogólny Rodzaj zajęć: Wykład, ćwiczenia, laboratorium WYTRZYMAŁOŚĆ MATERIAŁÓW Strenght of materials Forma studiów: stacjonarne Poziom

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: Systemy sterowania Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: SYSTEMY KOMUNIKACJI MIĘDZYKOMPUTEROWEJ Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M dr hab. inż. Stanisław Cudziło, prof. WAT Dziekan Wydziału Nowych Technologii i Chemii Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: MATEMATYKA Wersja anglojęzyczna:

Bardziej szczegółowo

WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Nazwa w języku angielskim ORDINARY DIFFERENTIAL EQUATIONS Kierunek studiów (jeśli dotyczy): Automatyka

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na kierunku Mechatronika Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU Modelowanie geometryczne i strukturalne

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium Automatyka Automatics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: ANALIZA, PROJEKTOWANIE I PROGRAMOWANIE OBIEKTOWE Analysis, design and object-oriented programming Kierunek: Forma studiów: Informatyka Stacjonarne Rodzaj przedmiotu: obowiązkowy w ramach

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium GRAFIKA KOMPUTEROWA I WIZUALIZACJA Computer

Bardziej szczegółowo

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jarosław Kotowicz, dr

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jarosław Kotowicz, dr SYLLABUS na rok akademicki 009/010 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr Rok I/ I i II semestr Specjalność Bez specjalności Kod

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, laboratorium PROGRAMOWANIE OBIEKTOWE Object-Oriented Programming

Bardziej szczegółowo

Zaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

Zaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ ****** KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE I FUNKCJE ZESPOLONE Nazwa w języku angielskim Differential equations and complex functions Kierunek studiów (jeśli

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na kierunku Mechanika i Budowa Maszyn Rodzaj zajęć: laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia

SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia SYLABUS Nazwa przedmiotu Analiza matematyczna Nazwa jednostki prowadzącej Wydział Matematyczno-Przyrodniczy, przedmiot Instytut Fizyki Kod przedmiotu Studia Kierunek studiów Poziom kształcenia Forma studiów

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

SYLABUS PRZEDMIOTU - Matematyka

SYLABUS PRZEDMIOTU - Matematyka SYLABUS PRZEDMIOTU - Matematyka I. Informacje ogólne 1. Nazwa przedmiotu: Matematyka 2. Kod przedmiotu: 02-MATB, 02-MATL, 02-MATLM 3. Rodzaj modułu kształcenia obowiązkowy 4. Kierunek studiów: Chemia (specjalności:

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na kierunku: Mechatronika Rodzaj zajęć: wykład, laboratorium PODSTAWY MECHATRONIKI Basis of mechatronics Forma studiów: stacjonarne

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Wprowadzenie do numerycznej mechaniki płynów Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Inżynieria cieplna i samochodowa Rodzaj zajęć: wykład,

Bardziej szczegółowo

WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU Zał. nr 4 do ZW Nazwa w języku polskim: FUNKCJE ZESPOLONE Nazwa w języku angielskim: Complex functions Kierunek studiów (jeśli dotyczy): Automatyka i Robotyka Specjalność

Bardziej szczegółowo

KARTA PRZEDMIOTU. w języku polskim Analiza Matematyczna 3 w języku angielskim Mathematical Analysis 3 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW

KARTA PRZEDMIOTU. w języku polskim Analiza Matematyczna 3 w języku angielskim Mathematical Analysis 3 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kod przedmiotu Nazwa przedmiotu KARTA PRZEDMIOTU AM3_M w języku polskim Analiza Matematyczna 3 w języku angielskim Mathematical Analysis 3 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek studiów Forma

Bardziej szczegółowo

Sylabus - Matematyka

Sylabus - Matematyka Sylabus - Matematyka 1. Metryczka Nazwa Wydziału: Program kształcenia: Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Farmacja, jednolite studia magisterskie Forma studiów: stacjonarne i niestacjonarne

Bardziej szczegółowo

Opis poszczególnych przedmiotów (Sylabus)

Opis poszczególnych przedmiotów (Sylabus) Opis poszczególnych przedmiotów (Sylabus) Nazwa Przedmiotu: Analiza matematyczna Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: podstawowy Rok studiów, semestr: rok pierwszy, semestr I

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści ogólnouczelnianych, moduł humanistyczny Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: ZAAWANSOWANE PROGRAMOWANIE INTERNETOWE Advanced Internet Programming Kierunek: Informatyka Forma studiów: Stacjonarne Rodzaj przedmiotu: Poziom kwalifikacji: moduł specjalności obowiązkowy:

Bardziej szczegółowo

SIECI BEZPRZEWODOWE Wireless networks. Forma studiów: Stacjonarne Poziom przedmiotu: I stopnia. Liczba godzin/tydzień: 1W E, 1L

SIECI BEZPRZEWODOWE Wireless networks. Forma studiów: Stacjonarne Poziom przedmiotu: I stopnia. Liczba godzin/tydzień: 1W E, 1L Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Sieci komputerowe Rodzaj zajęć: wykład, laboratorium SIECI BEZPRZEWODOWE Wireless networks Forma studiów: Stacjonarne

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: przedmiot obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: Projekt OCHRONA RADIOLOGICZNA Radiological Protection Forma studiów: studia

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PROGRAMOWANIE ROBOTÓW Programming of robots Kierunek: MECHATRONIKA Rodzaj przedmiotu: obowiązkowy na specjalności: SYSTEMY STEROWANIA, Rodzaj zajęć: wykład, laboratorium Forma studiów:

Bardziej szczegółowo