Sylabus - Matematyka

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sylabus - Matematyka"

Transkrypt

1 Sylabus - Matematyka 1. Metryczka Nazwa Wydziału: Program kształcenia: Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Farmacja, jednolite studia magisterskie Forma studiów: stacjonarne i niestacjonarne Profil ogólnoakademicki Rok akademicki: 2016/2017 Nazwa modułu/przedmiotu: Matematyka Kod przedmiotu: Jednostka/i prowadząca/e kształcenie: Kierownik jednostki/jednostek: Rok studiów: Zakład Chemii Fizycznej, Pracownia Matematyczna Prof. dr hab. Iwona Wawer I Semestr studiów: Semestry 1 i 2 Typ modułu/przedmiotu: Osoby prowadzące: Erasmus TAK/NIE: Osoba odpowiedzialna za sylabus: Podstawowy dr Jerzy Chmaj dr Justyna Kurkowiak mgr inż. Grzegorz Pucek mgr Krystian Gulik NIE dr Jerzy Chmaj Liczba punktów ECTS: 4 2. Cele kształcenia Student poznaje podstawy rachunku różniczkowego i całkowego. Student powinien umieć: badać własności funkcji i na ich podstawie naszkicować jej wykres, obliczać różniczkę zupełną i ocenić błąd maksymalny w obliczeniach laboratoryjnych, obliczać całki i stosować je do obliczania pól obszarów płaskich, rozwiązywać równania różniczkowe o zmiennych rozdzielonych, jednorodne i liniowe. Strona 1 z 6

2 3. Wymagania wstępne Student powinien znać matematykę elementarną z zakresu szkoły średniej. 4. Przedmiotowe efekty kształcenia Symbol przedmiotowego efektu kształcenia W1 U1 U2 U3 Lista efektów kształcenia Treść przedmiotowego efektu kształcenia Zna funkcje elementarne, elementy rachunku różniczkowego i całkowego oraz wybrane równania różniczkowe pierwszego rzędu Dokonuje opisu matematycznego procesów zachodzących w przyrodzie Wykorzystuje metody i modele matematyczne w farmacji Wykorzystuje metody matematyczne w opracowaniu i interpretacji wyników analiz i pomiarów Odniesienie do efektu kierunkowego (numer) B.W23 B.U11 B.U12 B.U13 5. Formy prowadzonych zajęć Forma Liczba godzin Liczba grup Minimalna liczba osób w grupie Wykład 30 1 nieobowiązkowe Seminarium - - nieobowiązkowe Ćwiczenia nieobowiązkowe 6. Tematy zajęć i treści kształcenia Semestr 1 (zimowy) W1 Funkcje. Podstawowe pojęcia. Funkcje liniowa i kwadratowa. W2 Funkcje wielomianowa i wymierna. Homografia. Potęgi i pierwiastki. W3 Potęgi c.d. Własności potęg. Funkcje potęgowa i wykładnicza. Logarytm. W4 Własności logarytmów. Funkcja logarytmiczna. Funkcje trygonometryczne. W5 Funkcje trygonometryczne kąta dowolnego i zmiennej rzeczywistej. Wykresy. W6 Wykresy funkcji trygonometrycznych c.d. Wzory redukcyjne. Złożenie funkcji. Funkcja różnowartościowa i odwrotna. W7 Funkcje cyklometryczne. Wykresy. Ciągi liczbowe. Pojęcia wstępne. Strona 2 z 6

3 W8 Granica ciągu. Działania na granicach. Twierdzenie o trzech ciągach. Ciągi ograniczone. W9 Ciąg monotoniczny i jego zbieżność. Liczba e. Logarytm naturalny. Granica funkcji. Definicje Heinego i Cauchy ego. Granice jednostronne. W10 Obliczanie granic. Twierdzenia o granicach. W11 Granice niewłaściwe i w nieskończoności. Asymptoty pionowe i poziome. Ciągłość funkcji. Punkty nieciągłości. Twierdzenia o funkcjach ciągłych. W12 Ciągłość funkcji odwrotnej. Ciągłość funkcji elementarnych. W13 Pochodna. Definicja. Obliczanie pochodnej wzory i pochodne funkcji podstawowych. W14 Pochodna funkcji odwrotnej. Pochodne funkcji złożonej. Interpretacja geometryczna pochodnej. Pochodne jednostronne. W15 Różniczkowalność funkcji. Różniczka funkcji. Aproksymacja liniowa. Pochodna logarytmiczna. Pochodne funkcji uwikłanych. Pochodne wyższych rzędów. C1 Funkcja liniowa. Wartość bezwzględna. C2 Funkcja kwadratowa. Wielomiany. C3 Wielomiany c.d. Funkcje wymierne. C4 Potęgi. Funkcje potęgowe. C5 Funkcje wykładnicze. Logarytmy. C6 Logarytmy c.d. Funkcja logarytmiczna. C7 Funkcje trygonometryczne. C8 Funkcje trygonometryczne c.d. Funkcje złożone. C9 Funkcje odwrotne. Funkcje cyklometryczne. C10 Ciągi liczbowe i ich granice. C11 Granice funkcji. C12 Granice funkcji niewłaściwe i w nieskończoności. C13 Ciągłość funkcji. C14 Pochodne funkcji. C15 Pochodne funkcji c.d. Semestr 2 (letni) W16 Całka nieoznaczona. Wzory podstawowe. Całkowanie przez części. W17 Całkowanie przez podstawienie. Całkowanie funkcji wymiernych. W18 Całka oznaczona definicja i własności. Twierdzenie podstawowe rachunku całkowego. W19 Obliczanie całek oznaczonych. Zastosowania całek oznaczonych W20 Całki niewłaściwe. Strona 3 z 6

4 W21 Zastosowania pochodnych. Twierdzenie Lagrange a. Wnioski. Ekstrema funkcji. Warunek konieczny. Punkty krytyczne. W22 Warunki wystarczające dla ekstremum funkcji. Wypukłość wykresu funkcji. Punkty przegięcia. W23 Badanie funkcji. W24 Funkcje wielu zmiennych. Pojęcia wstępne. Pochodne cząstkowe. W25 Różniczka zupełna i zastosowania. W26 Równania różniczkowe podstawowe pojęcia. W27 Rozwiązywanie równań różniczkowych I-go rzędu. C16 Pochodna logarytmiczna, pochodna funkcji uwikłanej. C17 Pochodne wyższych rzędów. Różniczkowalność funkcji. C18 Całki nieoznaczone. C19 Całki nieoznaczone c.d. C20 Całki funkcji wymiernych. C21 Całki oznaczone. C22 Całki oznaczone c.d. Całki niewłaściwe. C23 Ekstrema funkcji. Wypukłość wykresu funkcji. Punkty przegięcia. C24 Reguła de l Hôpitala. Badanie funkcji. C25 Badanie funkcji c.d. C26 Pochodne cząstkowe. C27 Różniczka zupełna i zastosowania. C28 Równania różniczkowe. C29 Równania różniczkowe c.d. Uwaga. Efekty kształcenia W1, U1, U2 i U3 są realizowane sukcesywnie na wykładach ćwiczeniach. 7. Sposoby weryfikacji efektów kształcenia Kontrola i ocena wyników nauczania (weryfikacja efektów kształcenia) w każdym semestrze prowadzona jest w formie 3 kolokwiów, tj. pisemnych sprawdzianów. 1-sze i 2-gie kolokwium (1 godzinne, śród-semestralne) obejmują część materiału, a 3-cie (3 godzinne, końcowe) całość materiału w semestrze. Nadto oceniane są kartkówki, tj. krótkie sprawdziany pisemne, odpowiedzi ustne i prace domowe. Terminy kolokwiów są ustalane na początku każdego semestru przez Radę Pedagogiczną w porozumieniu z przedstawicielami studentów. Strona 4 z 6

5 8. Kryteria oceniania Forma zaliczenia przedmiotu: zaliczenie (roczne) Warunki zaliczenia przedmiotu Kolokwia w semestrze Kolokwium 1 (śród-semestralne z części materiału) Kolokwium 2 (śród-semestralne z części materiału) Praca w semestrze (kartkówki, aktywność, prace domowe) Kolokwium semestralne (z całości materiału w semestrze) Uwaga 1. Kolokwiów śród-semestralnych poprawiać nie można. Razem: Punktacja 0 20 pkt 0 20 pkt 0 10 pkt 0 50 pkt pkt Uwaga 2. Przedmiot w semestrze zalicza uzyskanie minimum 50 pkt, a w tym co najmniej 25 pkt za kolokwium semestralne. Zaliczenie roczne przedmiotu uzyskuje się po zaliczeniu I i II semestru. 9. Literatura Skala ocen zaliczenia Ocena Liczba punktów w % Przedmiot nie zaliczony 0 49 LITERATURA OBOWIĄZKOWA ½ ½ Chmaj J.: Rachunek różniczkowy i całkowy. Teoria, przykłady, ćwiczenia. Wyd. II. Wydawnictwo Lekarskie PZWL, Warszawa Chmaj J.: Funkcje Pochodne Całki. Materiały do ćwiczeń (INTERNET). LITERATURA UZUPEŁNIAJĄCA 1. Chmaj J.: Matematyka dla studentów. Kolokwia zadania, rozwiązania, odpowiedzi. Wydawnictwo Lekarskie PZWL, Warszawa Strona 5 z 6

6 10. Kalkulacja punktów ECTS Forma aktywności Liczba godzin Liczba punktów ECTS Godziny kontaktowe z nauczycielem akademickim: Wykład 30 0,5 Seminarium - - Ćwiczenia 30 1 Samodzielna praca studenta Przygotowanie studenta do zajęć 15 0,5 Przygotowanie studenta do zaliczeń 30 2 Inne (jakie?) - - Razem Informacje dodatkowe Osoba odpowiedzialna za dydaktykę: dr Jerzy Chmaj, pokój 28 (parter gmachu Wydziału Farmaceutycznego), Konsultacje: według planu ogłoszonego na tablicy ogłoszeń Pracowni (przy sekretariacie Zakładu Chemii Fizycznej) oraz w siedzibie Pracowni. Miejsce wykładów i ćwiczeń: sale wykładowe i ćwiczeniowe gmachu Wydziału Farmaceutycznego. Regulamin Pracowni (zajęć) i warunki zaliczenia przedmiotu: Tablica ogłoszeń Pracowni, nadto podawane na pierwszym wykładzie nowego roku akademickiego. Terminy kolokwiów: Zgodnie z planem uzgodnionym na posiedzeniach Rady Pedagogicznej Podpis osoby odpowiedzialnej za sylabus Podpis Kierownika Jednostki Strona 6 z 6

Zastosowania matematyki w analityce medycznej

Zastosowania matematyki w analityce medycznej Zastosowania matematyki w analityce medycznej 1. Metryczka Nazwa Wydziału: Program kształcenia (kierunek studiów, poziom i profil kształcenia, forma studiów, np. Zdrowie publiczne I stopnia profil praktyczny,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza matematyczna 1.1 A Nazwa w języku angielskim: Mathematical Analysis 1.1

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 201/15 (1) Nazwa Rachunek różniczkowy i całkowy I (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)

Bardziej szczegółowo

Analiza matematyczna. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra

Analiza matematyczna. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Analiza matematyczna Nazwa modułu w języku angielskim Calculus Obowiązuje

Bardziej szczegółowo

Matematyka I i II - opis przedmiotu

Matematyka I i II - opis przedmiotu Matematyka I i II - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka I i II Kod przedmiotu Matematyka 02WBUD_pNadGenB11OM Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim Analiza matematyczna Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Inżynieria zarządzania

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

AiRZ-0531 Analiza matematyczna Mathematical analysis

AiRZ-0531 Analiza matematyczna Mathematical analysis KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2013/2014 AiRZ-0531 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Matematyka I Mathematics I Kierunek: biotechnologia Rodzaj przedmiotu: Poziom przedmiotu: obowiązkowy dla wszystkich I stopnia specjalności Rodzaj zajęć: Liczba godzin/tydzień: wykład,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza matematyczna I Mathematical analysis I Kierunek: Kod przedmiotu: Matematyka Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Poziom kwalifikacji:

Bardziej szczegółowo

SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia

SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia SYLABUS Nazwa przedmiotu Analiza matematyczna Nazwa jednostki prowadzącej Wydział Matematyczno-Przyrodniczy, przedmiot Instytut Fizyki Kod przedmiotu Studia Kierunek studiów Poziom kształcenia Forma studiów

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA 1.1 A Nazwa w języku angielskim Mathematical Analysis 1A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Analiza matematyczna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty) SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/17 2019/20 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Analiza matematyczna Kod przedmiotu/ modułu* Wydział (nazwa jednostki

Bardziej szczegółowo

ANALIZA SYLABUS. A. Informacje ogólne

ANALIZA SYLABUS. A. Informacje ogólne ANALIZA SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30 WYDZIAŁ ARCHITEKTURY KARTA PRZEDMIOTU Nazwa w języku polskim Matematyka 1 Nazwa w języku angielskim Mathematics 1 Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów i forma:

Bardziej szczegółowo

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

Z-LOG-476I Analiza matematyczna I Calculus I. Przedmiot podstawowy Obowiązkowy polski Semestr I

Z-LOG-476I Analiza matematyczna I Calculus I. Przedmiot podstawowy Obowiązkowy polski Semestr I KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 Z-LOG-476I Analiza matematyczna I Calculus I A. USYTUOWANIE MODUŁU W

Bardziej szczegółowo

Z-ETI-1002-W1 Analiza Matematyczna I Calculus I. stacjonarne (stacjonarne / niestacjonarne) Katedra Matematyki dr Marcin Stępień

Z-ETI-1002-W1 Analiza Matematyczna I Calculus I. stacjonarne (stacjonarne / niestacjonarne) Katedra Matematyki dr Marcin Stępień Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego Z-ETI-1002-W1

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA. Nazwa w języku angielskim Mathematical Analysis. Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011 PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS Obowiązuje od roku akademickiego: 2010/2011 Instytut Ekonomiczny Kierunek studiów: Ekonomia Kod kierunku: 04.9 Specjalność: brak 1. PRZEDMIOT NAZWA

Bardziej szczegółowo

Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Matematyka A (0310-CH-S1-001)

Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Matematyka A (0310-CH-S1-001) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Matematyka A (001) 1. Informacje ogólne koordynator modułu rok akademicki 2013/2014 semestr forma studiów

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Załącznik nr do Uchwały Senatu nr 30/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2019 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Rachunek różniczkowy i całkowy

Bardziej szczegółowo

Z-EKO-476 Analiza matematyczna Calculus. Ekonomia. I stopień ogólnoakademicki. studia stacjonarne Wszystkie Katedra Matematyki dr Mateusz Masternak

Z-EKO-476 Analiza matematyczna Calculus. Ekonomia. I stopień ogólnoakademicki. studia stacjonarne Wszystkie Katedra Matematyki dr Mateusz Masternak KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 Z-EKO-476 Analiza matematyczna Calculus A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod (4) Studia

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Analiza matematyczna 2 Rok akademicki: 2014/2015 Kod: EME-1-202-s Punkty ECTS: 5 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Mikroelektronika w technice

Bardziej szczegółowo

WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS

WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS Nazwa przedmiotu: Matematyka Profil 1 : ogólnoakademicki Cel przedmiotu: Zapoznanie studentów z pewnymi

Bardziej szczegółowo

WYDZIAŁ ***** KARTA PRZEDMIOTU

WYDZIAŁ ***** KARTA PRZEDMIOTU 9815Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1 KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30

Bardziej szczegółowo

Z-LOG-530I Analiza matematyczna II Calculus II

Z-LOG-530I Analiza matematyczna II Calculus II KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/18 Z-LOG-530I Analiza matematyczna II Calculus II A. USYTUOWANIE MODUŁU W

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Informatyki i Nauki o Materiałach. opis efektu kształcenia

Uniwersytet Śląski w Katowicach str. 1 Wydział Informatyki i Nauki o Materiałach. opis efektu kształcenia Uniwersytet Śląski w Katowicach str.. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 207/208Z 3. Poziom kształcenia studia pierwszego stopnia (inżynierskie) 4. Profil kształcenia ogólnoakademicki 5. Forma

Bardziej szczegółowo

Z-ZIP-0530 Analiza Matematyczna II Calculus II

Z-ZIP-0530 Analiza Matematyczna II Calculus II KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-ZIP-0530 Analiza Matematyczna II Calculus II A. USYTUOWANIE MODUŁU

Bardziej szczegółowo

Koordynator przedmiotu dr Artur Bryk, wykł., Wydział Transportu Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu

Koordynator przedmiotu dr Artur Bryk, wykł., Wydział Transportu Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.NIK102 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne

Bardziej szczegółowo

Sylabus- Farmacja praktyczna w aptece

Sylabus- Farmacja praktyczna w aptece Sylabus- Farmacja praktyczna w aptece 1. Metryczka Nazwa Wydziału Program kształcenia Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Przedmiot obowiązkowy Kierunek: farmacja Poziom: jednolite

Bardziej szczegółowo

Sylabus - Identyfikacja Związków Organicznych

Sylabus - Identyfikacja Związków Organicznych Sylabus - Identyfikacja Związków Organicznych 1. Metryczka Nazwa Wydziału: Program kształcenia (kierunek studiów, poziom i profil kształcenia, forma studiów, np. Zdrowie publiczne I stopnia profil praktyczny,

Bardziej szczegółowo

Opis przedmiotu: Matematyka I

Opis przedmiotu: Matematyka I 24.09.2013 Karta - Matematyka I Opis : Matematyka I Kod Nazwa Wersja TR.NIK102 Matematyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza Matematyczna III Mathematical Analysis III Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom przedmiotu: I

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów)

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów) Przedmiot: Matematyka I Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów) Kod przedmiotu: E05_1_D Typ przedmiotu/modułu: obowiązkowy X obieralny Rok: pierwszy Semestr: pierwszy

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)

Bardziej szczegółowo

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.SIK103 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne

Bardziej szczegółowo

SYLABUS PRZEDMIOTU - Matematyka

SYLABUS PRZEDMIOTU - Matematyka SYLABUS PRZEDMIOTU - Matematyka I. Informacje ogólne 1. Nazwa przedmiotu: Matematyka 2. Kod przedmiotu: 02-MATB, 02-MATL, 02-MATLM 3. Rodzaj modułu kształcenia obowiązkowy 4. Kierunek studiów: Chemia (specjalności:

Bardziej szczegółowo

WYDZIAŁ CHEMICZNY POLITECHNIKI GDAŃSKIEJ Kierunek Chemia. Semestr 1 Godziny 3 3 Punkty ECTS 11 w c l p S BRAK

WYDZIAŁ CHEMICZNY POLITECHNIKI GDAŃSKIEJ Kierunek Chemia. Semestr 1 Godziny 3 3 Punkty ECTS 11 w c l p S BRAK WYDZIAŁ CHEMICZNY POLITECHNIKI GDAŃSKIEJ Nazwa przedmiotu MATEMATYKA I Kod CH 1.1 Semestr 1 Godziny 3 3 Punkty ECTS 11 w c l p S Sposób zaliczenia E Katedra Centrum Nauczania Matematyki i Kształcenia na

Bardziej szczegółowo

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44 Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły

Bardziej szczegółowo

MATEMATYKA SYLABUS. A. Informacje ogólne

MATEMATYKA SYLABUS. A. Informacje ogólne MATEMATYKA SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów

Bardziej szczegółowo

E-N-1112-s1 MATEMATYKA Mathematics

E-N-1112-s1 MATEMATYKA Mathematics KARTA MODUŁU / KARTA PRZEDMIOTU E-N-1112-s1 MATEMATYKA Mathematics Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Matematyka - opis przedmiotu

Matematyka - opis przedmiotu Matematyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka Kod przedmiotu 11.1-WZ-EkoP-M-W-S14_pNadGenAT6Y9 Wydział Kierunek Wydział Ekonomii i Zarządzania Ekonomia Profil ogólnoakademicki

Bardziej szczegółowo

Opis poszczególnych przedmiotów (Sylabus)

Opis poszczególnych przedmiotów (Sylabus) Opis poszczególnych przedmiotów (Sylabus) Nazwa Przedmiotu: Analiza matematyczna Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: podstawowy Rok studiów, semestr: rok pierwszy, semestr I

Bardziej szczegółowo

KARTA PRZEDMIOTU CELE PRZEDMIOTU

KARTA PRZEDMIOTU CELE PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr do ZW KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 Nazwa w języku polskim: Analiza matematyczna.1 Nazwa w języku angielskim: Mathematical analysis.1 Kierunek

Bardziej szczegółowo

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jarosław Kotowicz, dr

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jarosław Kotowicz, dr SYLLABUS na rok akademicki 009/010 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr Rok I/ I i II semestr Specjalność Bez specjalności Kod

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

SPIS TREŚCI PRZEDMOWA... 13

SPIS TREŚCI PRZEDMOWA... 13 SPIS TREŚCI PRZEDMOWA... 13 CZĘŚĆ I. ALGEBRA ZBIORÓW... 15 ROZDZIAŁ 1. ZBIORY... 15 1.1. Oznaczenia i określenia... 15 1.2. Działania na zbiorach... 17 1.3. Klasa zbiorów. Iloczyn kartezjański zbiorów...

Bardziej szczegółowo

Kierunek i poziom studiów: Informatyka, pierwszy Sylabus modułu: Analiza Matematyczna Nazwa wariantu modułu (opcjonalnie):

Kierunek i poziom studiów: Informatyka, pierwszy Sylabus modułu: Analiza Matematyczna Nazwa wariantu modułu (opcjonalnie): Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Informatyka, pierwszy Sylabus modułu: Analiza Matematyczna Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M dr hab. inż. Stanisław Cudziło, prof. WAT Dziekan Wydziału Nowych Technologii i Chemii Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: MATEMATYKA Wersja anglojęzyczna:

Bardziej szczegółowo

KIERUNEK STUDIÓW: ELEKTROTECHNIKA

KIERUNEK STUDIÓW: ELEKTROTECHNIKA 1. PROGRAM NAUCZANIA KIERUNEK STUDIÓW: ELEKTROTECHNIKA PRZEDMIOT: MATEMATYKA (Stacjonarne: 105 h wykład, 120 h ćwiczenia rachunkowe) S t u d i a I s t o p n i a semestr: W Ć L P S I 2 E 2 II 3 E 4 III

Bardziej szczegółowo

Opis przedmiotu: Matematyka II

Opis przedmiotu: Matematyka II 24.09.2013 Karta - Matematyka II Opis : Matematyka II Kod Nazwa Wersja TR.NIK203 Matematyka II 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów

Bardziej szczegółowo

REPETYTORIUM Z ANALIZY MATEMATYCZNEJ FUNKCJE JEDNEJ ZMIENNEJ

REPETYTORIUM Z ANALIZY MATEMATYCZNEJ FUNKCJE JEDNEJ ZMIENNEJ MONIKA FABIJAŃCZYK ANNA WARĘŻAK REPETYTORIUM Z ANALIZY MATEMATYCZNEJ FUNKCJE JEDNEJ ZMIENNEJ DEFINICJE TWIERDZENIA PRZYKŁADY I KOMENTARZE Skrypt dla studentów przygotowujących się do egzaminu licencjackiego

Bardziej szczegółowo

MATEMATYKA MATHEMATICS. Forma studiów: studia niestacjonarne. Liczba godzin/zjazd: 3W E, 3Ćw. PRZEWODNIK PO PRZEDMIOCIE semestr 1

MATEMATYKA MATHEMATICS. Forma studiów: studia niestacjonarne. Liczba godzin/zjazd: 3W E, 3Ćw. PRZEWODNIK PO PRZEDMIOCIE semestr 1 Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Podstawowy obowiązkowy Rodzaj zajęć: wykład, ćwiczenia Inżynieria Materiałowa Poziom studiów: studia I stopnia MATEMATYKA MATHEMATICS Forma studiów: studia

Bardziej szczegółowo

Sylabus - FARMAKOKINETYKA

Sylabus - FARMAKOKINETYKA Sylabus - FARMAKOKINETYKA 1. Metryczka Nazwa Wydziału: Program kształcenia (kierunek studiów, poziom i profil kształcenia, forma studiów, np. Zdrowie publiczne I stopnia profil praktyczny, studia stacjonarne):

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 4

KARTA KURSU. Kod Punktacja ECTS* 4 Załącznik nr 4 do Zarządzenia Nr.. KARTA KURSU Nazwa Analiza matematyczna 3 Nazwa w j. ang. Mathematical Analysis 3 Kod Punktacja ECTS* 4 Koordynator Prof. M. C. Zdun Zespół dydaktyczny dr Z. Powązka,

Bardziej szczegółowo

SYLABUS/KARTA PRZEDMIOTU

SYLABUS/KARTA PRZEDMIOTU SYLABUS/KARTA PRZEDMIOTU. NAZWA PRZEDMIOTU Analiza i modelowanie systemów. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny. STUDIA kierunek stopień tryb język status przedmiotu AiR I Stacjonarne/Niestacjonarne

Bardziej szczegółowo

Język angielski. Analityka medyczna Jednolite magisterskie. Język angielski. Zimowy i letni. Podstawowy. Mgr Jolanta Budzyńska Mgr Magdalena Dycha

Język angielski. Analityka medyczna Jednolite magisterskie. Język angielski. Zimowy i letni. Podstawowy. Mgr Jolanta Budzyńska Mgr Magdalena Dycha Język angielski 1. Metryczka Nazwa Wydziału: Program kształcenia (kierunek studiów, poziom i profil kształcenia, forma studiów, np. Zdrowie publiczne I stopnia profil praktyczny, studia stacjonarne): Wydział

Bardziej szczegółowo

WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU Zał. nr 4 do ZW Nazwa w języku polskim: FUNKCJE ZESPOLONE Nazwa w języku angielskim: Complex functions Kierunek studiów (jeśli dotyczy): Automatyka i Robotyka Specjalność

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Analiza zespolona (03-MO2S-12-AZes) 1. Informacje ogólne koordynator modułu rok akademicki

Bardziej szczegółowo

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień

Bardziej szczegółowo

Spis treści. O autorach 13. Wstęp 15. Przedmowa do wydania szóstego 19

Spis treści. O autorach 13. Wstęp 15. Przedmowa do wydania szóstego 19 Matematyka dla kierunków ekonomicznych : przykłady i zadania wraz z repetytorium ze szkoły średniej / Henryk Gurgul, Marcin Suder. wyd. 6 uzup. i popr., uwzględniające podstawowy program matematyki również

Bardziej szczegółowo

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Analiza matematyczna 1A (03-MO1S-12-AMa1A) 1. Informacje ogólne koordynator

Bardziej szczegółowo

Sylabus Prawo farmaceutyczne

Sylabus Prawo farmaceutyczne Sylabus Prawo farmaceutyczne 1. Metryczka Nazwa Wydziału: Program kształcenia (kierunek studiów, poziom i profil kształcenia, forma studiów, np. Zdrowie publiczne I stopnia profil praktyczny, studia stacjonarne):

Bardziej szczegółowo

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne. Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Zaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

Zaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ ****** KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE I FUNKCJE ZESPOLONE Nazwa w języku angielskim Differential equations and complex functions Kierunek studiów (jeśli

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: ANALIZA MATEMATYCZNA M3 Nazwa w języku angielskim: MATHEMATICAL ANALYSIS M3 Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza matematyczna III (ANA023) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza matematyczna III (ANA023) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Analiza matematyczna III (ANA023) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/3 5. LICZBA PUNKTÓW ECTS: 11 6. LICZBA GODZIN: 60

Bardziej szczegółowo

Genomika praktyczna. Genomika praktyczna. Zakład Biochemii i Farmakogenomiki. prof. dr hab. Grażyna Nowicka. Rok IV. Semestr 8.

Genomika praktyczna. Genomika praktyczna. Zakład Biochemii i Farmakogenomiki. prof. dr hab. Grażyna Nowicka. Rok IV. Semestr 8. Genomika praktyczna 1. Metryczka Nazwa Wydziału: Program kształcenia (kierunek studiów, poziom i profil kształcenia, forma studiów, np. Zdrowie publiczne I stopnia profil praktyczny, studia stacjonarne):

Bardziej szczegółowo

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne SYLABUS 1.Nazwa Matematyka 2.Nazwa jednostki prowadzącej Katedra Metod Ilościowych i Informatyki przedmiot Gospodarczej 3.Kod E/I/A.3 4.Studia Kierunek studiów/specjalność Poziom Forma studiów Ekonomia

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza matematyczna II (ANA012) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza matematyczna II (ANA012) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Analiza matematyczna II (ANA012) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 11 6. LICZBA GODZIN: 60

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

Matematyka. WE-ST1-EK-Em-12/13Z-MATE. WE-ST1-EK-Sb-12/13Z-MATE. WE-ST1-EK-Pi-12/13Z-MATE. WE-ST1-EK-Zd-12/13Z-MATE. WE-ST1-EK-Ss-12/13Z-MATE

Matematyka. WE-ST1-EK-Em-12/13Z-MATE. WE-ST1-EK-Sb-12/13Z-MATE. WE-ST1-EK-Pi-12/13Z-MATE. WE-ST1-EK-Zd-12/13Z-MATE. WE-ST1-EK-Ss-12/13Z-MATE Karta przedmiotu Wydział: Wydział Ekonomii i Stosunków Międzynarodowych Kierunek: Ekonomia I. Informacje podstawowe Nazwa przedmiotu Matematyka Nazwa przedmiotu w j. ang. Język prowadzenia przedmiotu polski

Bardziej szczegółowo

Nr postępowania: ZP/366/055/U/13 ZAKRESY NATERIAŁU

Nr postępowania: ZP/366/055/U/13 ZAKRESY NATERIAŁU Załącznik nr 2 do SIWZ Nr postępowania: ZP/366/055/U/13 ZAKRESY NATERIAŁU Zakres materiału Z-1; sem. 1 1. Funkcje jednej zmiennej i ich własności: a) Wartość bezwzględna definicja, rozwiązywanie równań

Bardziej szczegółowo

Sylabus - Biofarmacja

Sylabus - Biofarmacja Sylabus - Biofarmacja 1. Metryczka Nazwa Wydziału Program kształcenia Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Rok akademicki 2016/2017 Kierunek: farmacja Poziom: jednolite studia magisterskie

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Załącznik nr 1 do procedury nr W_PR_12 Nazwa przedmiotu: Matematyka II Mathematics II Kierunek: inżynieria środowiska Rodzaj przedmiotu: Poziom kształcenia: nauk ścisłych, moduł 1 I stopnia Rodzaj zajęć:

Bardziej szczegółowo

SYLABUS. Cele zajęć z przedmiotu

SYLABUS. Cele zajęć z przedmiotu Załącznik nr 1 do Zarządzenia Rektora UR Nr 4/2012 z dnia 20.01.2012r. SYLABUS Nazwa przedmiotu Nazwa jednostki prowadzącej przedmiot Analiza matematyczna Wydział Matematyczno-Przyrodniczy, Instytut Fizyki

Bardziej szczegółowo

KARTA KURSU. Mathematics

KARTA KURSU. Mathematics KARTA KURSU Nazwa Nazwa w j. ang. Matematyka Mathematics Kod Punktacja ECTS* 4 Koordynator Dr Maria Robaszewska Zespół dydaktyczny dr Maria Robaszewska Opis kursu (cele kształcenia) Celem kursu jest zapoznanie

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ Geoinżynierii, Górnictwa i Geologii KARTA PRZEDMIOTU Nazwa w języku polskim Wstęp do analizy i algebry Nazwa w języku angielskim Introduction to analysis and algebra Kierunek studiów

Bardziej szczegółowo

Analiza instrumentalna

Analiza instrumentalna Analiza instrumentalna 1. Metryczka Nazwa Wydziału: Program kształcenia (kierunek studiów, poziom i profil kształcenia, forma studiów, np. Zdrowie publiczne I stopnia profil praktyczny, studia stacjonarne):

Bardziej szczegółowo

Sylabus Etyka zawodu

Sylabus Etyka zawodu Sylabus Etyka zawodu 1. Metryczka Nazwa Wydziału Program kształcenia Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Farmacja, jednolite studia magisterskie, forma studiów: stacjonarne i niestacjonarne,

Bardziej szczegółowo

WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Nazwa w języku angielskim ORDINARY DIFFERENTIAL EQUATIONS Kierunek studiów (jeśli dotyczy): Automatyka

Bardziej szczegółowo

Warszawski Uniwersytet Medyczny Dziekanat II Wydziału Lekarskiego

Warszawski Uniwersytet Medyczny Dziekanat II Wydziału Lekarskiego Warszawski Uniwersytet Medyczny Dziekanat II Wydziału Lekarskiego 1. Metryczka Nazwa Wydziału: II Wydział Lekarski Program kształcenia Fizjoterapia studia licencjackie I stopnia, profil praktyczny, studia

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2017 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Analiza matematyczna Kod przedmiotu/ modułu* Wydział (nazwa jednostki

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1 Student ma wiedzę z matematyki wyższej Kolokwium Wykład, ćwiczenia L_K01(+) doskonalącą profesjonalny L_K03(+) warsztat logistyka.

KARTA PRZEDMIOTU. 1 Student ma wiedzę z matematyki wyższej Kolokwium Wykład, ćwiczenia L_K01(+) doskonalącą profesjonalny L_K03(+) warsztat logistyka. (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MATEMATYKA 2. Kod przedmiotu: ROZ-L1-3 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia: studia pierwszego stopnia

Bardziej szczegółowo

Chemia bionieorganiczna

Chemia bionieorganiczna Chemia bionieorganiczna 1. Metryczka Nazwa Wydziału: Program kształcenia (kierunek studiów, poziom i profil kształcenia, forma studiów, np. Zdrowie publiczne I stopnia profil praktyczny, studia stacjonarne):

Bardziej szczegółowo

WARSZAWSKI UNIWERSYTET MEDYCZNY WYDZIAŁ FARMACJI Z ODDZIAŁEM MEDYCYNY LABORATORYJNEJ

WARSZAWSKI UNIWERSYTET MEDYCZNY WYDZIAŁ FARMACJI Z ODDZIAŁEM MEDYCYNY LABORATORYJNEJ WARSZAWSKI UNIWERSYTET MEDYCZNY WYDZIAŁ FARMACJI Z ODDZIAŁEM MEDYCYNY LABORATORYJNEJ 1. Metryczka Nazwa Wydziału: Program kształcenia (kierunek studiów, poziom i profil kształcenia, forma studiów, np.

Bardziej szczegółowo

KARTA PRZEDMIOTU. w języku polskim Analiza Matematyczna 3 w języku angielskim Mathematical Analysis 3 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW

KARTA PRZEDMIOTU. w języku polskim Analiza Matematyczna 3 w języku angielskim Mathematical Analysis 3 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kod przedmiotu Nazwa przedmiotu KARTA PRZEDMIOTU AM3_M w języku polskim Analiza Matematyczna 3 w języku angielskim Mathematical Analysis 3 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek studiów Forma

Bardziej szczegółowo