Inżynieria Chemiczna i Bioprocesowa IBP W 3-4

Wielkość: px
Rozpocząć pokaz od strony:

Download "Inżynieria Chemiczna i Bioprocesowa IBP W 3-4"

Transkrypt

1 Inżyniia Chmiczna i Bioocsowa IBP W -4 Pawo Nwtona - lkość ynamiczna / kinmatyczna Płyny nwtonowski / ni-nwtonowski Analiza wymiaowa - Pojęci liczb kytialnych Pawo Bnoili go z wzglęninim ooów zływ la zływ łynów lkich zz zwoy ow Ooy lokaln wi mtoy ois Pomy omowani łynów of. M. Kamiński w części - na ostawi zntacji inż. I. Hołowacz - PG - Gańsk - 06

2 Pojęci lkości i awo Nwtona kość - taci wwnętzn łyn Płaszczyzna choma F F A y y Płaszczyzna nichoma x F A y. γ ównani Nwtona - naężni styczn, N/m = Pa - szybkość ścinania, s - - wsółczynnik oocjonalności nazywany wsółczynnikim lkości ynamicznj (lkość ynamiczna)

3 - wsółczynnik lkości ynamicznj Jnostka lkości ynamicznj w kłazi SI: [kg / m s]=[ Pa s ] Inn jnostki : P (az) cp (cntiaz) kość woy i owitza w 0 C: HO cp, ow cp cp= Pa s/000 = m Pa s - wsółczynnik lkości kinmatycznj (lkość kinmatyczna) Miano w kłazi SI [m /s] St - stoks St = cm /s

4 Płyny nwtonowski - cicz stosjąc się o ównania Nwtona Pękość ścinania w ciczach nwtonowskich jst ównoznaczna z gaintm ękości wastwki łyn - wsółczynnik lkości ynamicznj ni zalży o wilkości naężnia styczngo tg= y. γ inia łynięcia ciczy nwtonowskich

5 Płyny ni słniając ównania Nwtona to łyny ninwtonowski. Zajmj się nimi ologia tj. naka o okształcniach i zływi matiałów. Płyny ninwtonowski cicz, któych własności ologiczn ni zminiają się w czasi - ękość ścinania jst fnkcją naężnia ścinającgo: - cicz binghamowska ( cicz lastyczna) - cicz, któa zaczyna łynąć oio wówczas, gy naężni styczn mięzy wima wastwkami ciczy zkoczy wną watość ganiczną g. Po zkoczni g stkta wwnętzna lga zniszczni i cicz zachowj się jak cicz nwtonowska. Gy naężni styczn zmnijszy się oniżj g to stkta wwnętzna zostaj obowana. (asty, zawisiny it.) - cicz solastyczna (ozzzana ścinanim) - ni ma ganicy łynięcia, lkość ozona malj z wzostm ękości ścinania. Cicz o nisymtycznj bowi (n. o wyłżonym kształci liniowym), mlsj. W miaę zwiększania ękości ścinania cząstki t zyjmją oząkowan łożni zmnijszają się ooy tacia malj lkość ozona. - cicz ylatancyjna (zagęszczan ścinanim) - ni ma ganicy łynięcia. kość ozona ośni w miaę wzost ękości ścinania (stężon zawisiny). Poczas szybkigo ścinania zawisiny, cicz słniająca olę sma mięzy cząstkami zawisiny zostaj wyata i ooy ścinania osną. cicz, któych własności ologiczn zminiają się w czasi - ękość ścinania jst fnkcją naężnia ścinającgo i czas: cicz tiksotoowa - o wływm ścinania nastęj oza stkty wwnętznj. Cicz oksyjn - o wływm ścinania nastęj twozni stkty wwnętznj. cicz lkosężyst, wykazjąc oócz własności lkościowych i fkty sężyst n. żywic, smoły, asfalty

6 Mol otęgowy Ostwala- Wal'a k n a Kzyw łynięcia ciczy ninwtonowskich - cicz binghamowska, - cicz solastyczna, - cicz nwtonowska, 4 - cicz ylatancyjna a k n k - wsółczynnikim konsystncji. Jst on miaą lkości ozonj a. n - wskaźnik łynięcia. Jst miaą ochylnia ciczy o ciczy nwtonowskij: la n= obazm gaficznym owyższj fnkcji jst linia osta, a cicz jst ciczą nwtonowską, k = la ciczy solastycznych n la ciczy ylatancyjnych n

7 I ównani Bnolligo la łynów zczywistych h H g 0 łyn zczywisty- w czasi ch oawany jst ziałani sił masowych, sił owizchniowych i sił tacia wwnętzngo (lkości) - założnia o owacalności ocs, bak yssyacji ngii są niaktaln α - wsółczynnik Coiolisa wzglęniający niównominy ozkła ękości w zkoj stminia. Fizyczny sns wsółczynnika Coiolisa jst taki, ż zstawia on stosnk zczywistj kinmatycznj ngii masy stminia ciczy zływającj w jnostc czas zz ozatywany zkój o mownj śnij kintycznj ngii, obliczanj la śnij ękości.

8 ównani Bnolligo la łynów zczywistych H g g h g g h P g h g h gzi: H - - oó hyaliczny łyn na ocink -, m P - - sak ciśninia łyn na ocink -, Pa

9 H - ; P - - niowacaln staty ciśninia, któych znajomość jst nizbęna o obo oowinich zązń omjących i ocny konomicznj ocs W szczgólnym zyak zływ bz zmiany oziomów wlot i wylot (h =h ) w stałym zkoj, czyli bz zmiany ękości liniowj ( = ) : g H, H, g Oó hyaliczny jst ównoznaczny óżnicy ciśninia łyn W innych kłaach nalży ozwiązywać łn. Bnolligo: sak ciśninia bęzi zalżał ni tylko o ooów, al tż o zmian ękości i oziomów

10 Pawo Bnolligo w konwncji smy ngii, o ozilni zz gęstość zg const cicz oskonała (ni-lka) cicz zczywista (lka) Oó tacia lkigo (zaminiany w ciło) owoj obniżni oziomów zaznaczonych (z zsaą) - na czwono Pawo Bnolligo w konwncji smy wysokości sła ciczy g g z H

11 Zasay analizy wymiaowj Wyznaczani stat ciśninia łyn (ooów zływ) w oaci o analizę wymiaową: P f,,,, - śnica zwo, m - łgość zwo, na któj nastąił sak ciśninia łyn, m - śnia liniowa ękość zływ łyn, m/s - gęstość łyn, kg/m - lkość ynamiczna łyn, Pas

12 c b a A P c b a s m kg m kg s m m m A s m kg Zasay analizy wymiaowj szkaną zalżność zstawia się w ostaci iloczyn otęg wszystki symbol nalży ozmić jako wymiay fizyczn a ni wilkości ocsow

13 s m kg A : s m kg m kg s m m m A s m kg c b a s m kg s m kg m kg s m m m A c c b a zy m zy s zy kg 0 c b a c c b a 0 b a b a

14 D D A P b : A P b, f P c b a A P b b A P 0 b a b a c

15 P f, E P oobiństwo gomtyczn, simlks gomtyczny iczba kytialna Ela, oobiństwo hyoynamiczn: stosnk sił ciśninia (Δ wyaża óżnicę ciśniń w wóch owolnych nktach stminia) o sił bzwłaności (ciśnini ynamiczn oowiaając ngii kintycznj jnostki objętości łyn), czyli okśla oobiństwo zływ łyn w óżnych kłaach o ziałanim óżnicy ciśniń Δ. iczba kytialna ynolsa, oobiństwo hyoynamiczn: wyaża stosnk sił bzwłaności o sił lkości (tacia wwnętzngo) i okśla oobiństwo hyoynamiczn ( oobiństwo fizyczn ) w zyak zływ łyn zczywistgo.

16 Ooy zływ łyn lkigo zz zwoy P f f, f - bzwymiaowy wsółczynnik ooów jst fnkcją liczny ynolsa i szostkości y P P H g,pa,m ównani Dacy - Wisbacha

17 ównani Dacy - Wisbacha P,Pa wymia gomtyczny, chaaktystyczny la wanków zływ A h O 4 4 h A O A ol zkoj ozczngo zwo, któym zływa łyn, m O obwó zwo omywany zz łyn, m h omiń hyaliczny, m śnica zastęcza, m

18 iczba ynolsa - jj watość mówi nam o chaaktz zływ -- W zyak zływ łyn zz zwoy ow / kanały -- la 00 ch laminany (lki, wastwiony) la 000 < 00 ch zjściowy la 000 ch bzliwy (tblntny)

19 Pzływ laminany Wyznaczani wsółczynnika oo f, - szostkość ociąg / kanal ni ogywa oli i zalżność na bzwymiaowy wsółczynnik oo zyjmj ostać: 00 a Watość aamt a: 64 la zkojów kołowych 57 la zkojów kwaatowych 96 la zkojów iściniowych

20 Pzływ laminany : P P 64 ównani Poisilla P

21 Pzływ bzliwy Wyznaczani wsółczynnika oo f, a a, b, n stał, chaaktystyczn la óżnych zaksów liczb ynolsa b n 0, 64 0, 5 Wzó Blasisa , , 6 0, 00 0, 6 0, 0, 7 Wzó Gnax Wzó Nikaas

22 Uogólnion zalżności wsółczynnika oo o liczby ynolsa lg lg

23

24 Ooy lokaln Sak ciśninia oczas zływ łyn wzłż zwo jst sowoowany ni tylko zz okśloną łgość, al takż ma mijsc na tzw., ooach lokalnych - zmianach zkoj ociąg (nagł zwężnia lb ozszznia), zmiany kink zływ (n. kolanka), lmnty aaaty i amaty zamontowan na zwozi (zawoy, kki, zaswy, zływomiz it.) Łączny oó zływ (łączny sak ciśninia) wyażamy jako smę ooów na oszczgólnych ocinkach ociąg o okślonych śnicach oaz tzw. ooów lokalnych P P t P ol ΔP Całkowity oó zływ ΔP t Łączny oó zływ sowoowany zz ocinki zwo o okślonj śnicy i łgości ΔP l Łączny oó zływ sowoowany zz tzw. ooy lokaln

25 Ooy lokaln wyażon jako kotność śnicy zwo. Sak ciśninia łyn na ooach lokalnych łgość zastęcza zwo ostgo o tj samj śnicy, jak zwó, na któym znajj się okślony oó lokalny, tzn., sak ciśninia łyn na ocink jst taki sam jak na anym ooz lokalnym [m] n P ol P n Uwaga! Oblicznia owinny otyczyć ozilni ocinków zwo o óżnych śnicach, oniważ każj śnicy oowiaa inna ękość zływ

26 P P g h g h ozszzon ównani Bnolligo z wzglęninim oo zływ na ocink - o śnicy zwo z ękością śnią łyn g D D H, H g g h g g h w konwncji sak ciśninia w konwncji wysokości onosznia

27 Ooy lokaln wyażon z zastosowanim smy wsółczynników oo Sak ciśninia łyn na ooach lokalnych wsółczynnik oo lokalngo, chaaktystyczny la ango oo lokalngo, - ozaj oo Wsółczynnik ξ Wsółczynnik n wlot 0,5 5 wylot 50 nagł ozszzni zwo (A / A ol zkoj węższj /szszj części) A kolanko 90 o 0,7 5 kolanko 45 o 0, 5 zawó, 50 zaswa 0,5 7 kk o obiania ób A P ol i Uwaga! Oblicznia owinny otyczyć ozilni ocinków zwo o óżnych śnicach, oniważ każj śnicy oowiaa inna ękość zływ

28 ozkła ękości łyn w zwozi:. Pzływ laminany: Pofil ozkła ękości łyn w zwozi oczas zływ chm laminanym

29 Siła acia łyn Siła tacia P P P = =0 = ozkła naężń ścinających

30 P P 0 P P 4 ękość lokalna w olgłości o osi zwo W osi zwo = 0 max P 4

31 . Pzływ bzliwy: Pofil ozkła ękości łyn w zwozi oczas zływ chm bzliwym max /n max / 7

32 . Pzływ bzliwy:

33 A V A V A V VI Pękość śnia. Pzływ laminany: P 4 4 P

34 P P P P P 4 P max max

35 . Pzływ bzliwy: max , 8 max

36 P 8V 5 gjąc z tgo wyażnia za omocą 8V P V Dysonjąc wyksm λ=f(), możmy łatwo skonstować nowy wyks λ 5 =f(). f,

37 Ilstacja wanków laminango / bzliwgo zływ łyn lkigo w zwoach owych

38 Pomy / Wntylatoy

39 Pomy, wntylatoy. h - Wysokość ssania. h - Wysokość onosznia zkój 0 - la zwiciała ciczy zkój - z omą P h P 0, P 0 h P h 0 h 0 h 0 0 g H 0 h 0 ganiczna watość wysokości ssania Dla P 0 = P atm, la woy h 0 m H O

40 Czynniki wływając na sak watość h :. Wahania ciśninia atmosfyczngo - ok. m sła woy. Na żych wysokościach zmnijsza się watość ciśninia atmosfyczngo. Wysokość ssania malj z wzostm szybkości omowania h h h 0 0 g H 0 4. tmaty ciczy - ciśnini z omą P ni moż saść oniżj ężności ay nasyconj Kawitacja - wzni ciczy w zwozi na sktk sak ciśninia, oniżj ężności ay nasyconj - owazi to o zakłócń lb zwania acy omy. 5. Z wzostm tmaty ośni ężność ay, a cięża właściwy ciczy niznaczni malj.

41 . Ciśnini wytwazan zz omę H h h g H g h h H h h H H H - całkowit ciśnini wytwazan zz omę, wyażon w m sła zsyłanj ciczy na ocink ssawnym omy na ocink tłocznym omy

42 H H P H h h H c g H g H P g H P c i t s P g H P t s - óżnica ciśniń łyn w mijsc tłocznia i ssania, wyażona w m sła łyn H - gomtyczna wysokość tłocznia, m H - ciśnini zżywan na okonani wszystkich ooów w zwozi tłocznym i ssawnym, m P Całkowit ciśnini wytwazan zz omę, wysokość omowania

43 . P - Ciśnini wytwazan zz omę / ciśnini onosznia omy

44 . Moc omy N N P c V H c V P c V aca omy na jnostkę czas - iloczyn óżnicy ciśniń na omi i natężnia objętościowgo zływ sawność omy

45 4. Wyajność omy n n H H c c H H P H c Kzywa a - chaaktystyka sici V f H V f H c Kzywa b - chaaktystyka omy n n V V n n N N P H Pnkt acy omy n=const

46 Inżyniia chmiczna H H H >H P H

Inżynieria chemiczna. Przepływ płynów rzeczywistych

Inżynieria chemiczna. Przepływ płynów rzeczywistych rzływ łynów rzczywistyc kość - tarci wwnętrzn łyn łaszczyzna rcoma F F A y y łaszczyzna nircoma x t F A y. γ ównani Nwtona t - narężni styczn, N/m = a - szybkość ścinania, s - - wsółczynnik roorcjonalności

Bardziej szczegółowo

OPERACJE JEDNOSTKOWE w CHEMII BUDOWLANEJ

OPERACJE JEDNOSTKOWE w CHEMII BUDOWLANEJ OPERACJE JEDNOSTKOWE w CEMII BUDOWLANEJ Postawow ojęcia, finicj, rawa i zasay oracji jnostkowych o charaktrz hyroynamicznym rof. Marian Kamiński Pojęcia i wilkości ostawow - ich o-wilokrotności (cy /0,

Bardziej szczegółowo

Techniki Rozdzielania

Techniki Rozdzielania Tchniki Rozzilania -- powtórzni wybranych zasa inżynirii procsowj prof. M. Kaioski 017-18 sstr ziowy Przpływ płyn w rrociągach / warstwach porowatych -- opory przpływ / ysprsja asy -- w części przyponini,

Bardziej szczegółowo

Przykłady procesów nieodwracalnych: wyrównywanie się temperatur, gęstości i różnicy potencjałów.

Przykłady procesów nieodwracalnych: wyrównywanie się temperatur, gęstości i różnicy potencjałów. modynamika pocsów niodwacalnych modynamika klasyczna - tmostatyka - opis pocsów odwacalnych Ni można na podstawi otzymać wniosków dotyczących pzbigu w czasi pocsów niodwacalnych Pzykłady pocsów niodwacalnych:

Bardziej szczegółowo

POLE ELEKTROSTATYCZNE W PRÓŻNI - CD. Dipol charakteryzuje się przez podanie jego dipolowego momentu elektrycznego p (5.1)

POLE ELEKTROSTATYCZNE W PRÓŻNI - CD. Dipol charakteryzuje się przez podanie jego dipolowego momentu elektrycznego p (5.1) POL LKTROTATYCZN W PRÓŻNI - CD Dio ktyczny q + q Dio ktyczny to ukła ównych co o watości unktowych łaunków ktycznych zciwngo znaku ozmiszczonych w stałj ogłości o sibi Dio chaaktyzuj się zz oani jgo ioowgo

Bardziej szczegółowo

Fizyka Pogody i Klimatu

Fizyka Pogody i Klimatu Fizyka Pogoy i Kliatu Hanna Pawłowska Instytut Gofizyki Uniwsytt Waszawski hanna.awlowska awlowska@igf.fuw.u.l Fizyka Pogoy i Kliatu Hanna Pawłowska Wykła oynaika atosfy wilgotn owitz Fizyka Pogoy i Kliatu

Bardziej szczegółowo

PLAN WYKŁADU. Opis pary wodnej w atmosferze Opis wilgotnego, nienasyconego powietrza 1 /22

PLAN WYKŁADU. Opis pary wodnej w atmosferze Opis wilgotnego, nienasyconego powietrza 1 /22 PLAN WYKŁADU Oi ay wonj w atofz Oi wilgotngo, ninayongo owitza /22 Poęzniki Salby, Chat 4 C&W, Chat 4 &Y, Chat 2 2 /22 OPIS PAY WODNEJ W AOSFEZE 3 /22 aua.naa.go 4 /22 Dla tatu i iśniń otykanyh w atofz,

Bardziej szczegółowo

Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny

Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny Eikonał Optyczny.doc Stona z 6 Eikonał Optyczny µ µ Rozpatzmy ośodk bz ładunków i pądów z polm o pulsacji ω Uwaga: ni zakłada się jdnoodności ośodka: ε ε xyz,,, Równania Maxwlla: H iωε ε E ikc ε ε E E

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka i astronomia Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka i astronomia Poziom rozszerzony Pan z stny www.sqdia. KRYTERIA OCENIANIA ODPOWIEDZI Póna Matua z OPERONEM Fizyka i astnia Pzi zszzny Listad 0 W ni nij szy sc a ci c nia nia za dań twa tyc są zn t wa n zy kła d w aw n d wi dzi. W t -

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektotechniki i utomatyki Kateda Inżynieii Systemów Steowania KOMPUTEROWE SYSTEMY STEROWNI (sem. 6) Steowanie otymalizacyjne. Mateiały omocnicze Temin T8 Oacowanie: Tomasz

Bardziej szczegółowo

Obieg pary wodnej w atmosferze nie powoduje wymiany masy, ale transfer ciepła z oceanu do atmosfery.

Obieg pary wodnej w atmosferze nie powoduje wymiany masy, ale transfer ciepła z oceanu do atmosfery. Dla tatu i ciśniń otykanych w atofz, ciśnini ay nayconj zako zkacza watość 60 hpa, a tounk zizania 30 g kg -, czyli 0.03. Paa wona wytęuj w atofz tylko w ilościach ślaowych. Zgoni z ównani Clauiua-Clayona

Bardziej szczegółowo

Ł Ź Ż ć Ą Ż ć Ż Ż Ż ć ć Ż Ż ć Ż ć Ź Ź ć Ż Ż Ż Ę Ę Ż ć ć ć Ż Ż ć ć ć ć Ż ć ć Ż ć Ż Ż Ż Ź Ź Ż Ż Ż ć Ż Ż Ó Ż Ż ć Ż Ż ć Ż ć Ż ć Ż ć ć Ź ć Ć Ż Ż Ż Ż Ż Ż Ż Ż ć Ż Ź Ż ć Ż Ż Ż Ż Ż ć ć ć Ż ć Ł Ź ć Ź Ź Ź ć Ż Ż Ż

Bardziej szczegółowo

Wykład 2: Atom wodoru

Wykład 2: Atom wodoru Wykład : Ato wodou Równani Schödinga Kwantowani ngii Wida atoow wodou Kwantowani ontu pędu Liczby kwantow Część adialna i kątowa funkcji falowj Radialny ozkład gęstości pawdopodobiństwa Kontuy obitali

Bardziej szczegółowo

Elementarne przepływy potencjalne (ciąg dalszy)

Elementarne przepływy potencjalne (ciąg dalszy) J. Szanty Wykład n 4 Pzepływy potencjalne Aby wytwozyć w pzepływie potencjalnym siły hydodynamiczne na opływanych ciałach konieczne jest zyskanie pzepływ asymetycznego.jest to możliwe pzy wykozystani kolejnego

Bardziej szczegółowo

Lista A) Proszę pokazać, że przy padaniu prostopadłym na granicę ośrodka próżnia(dielektryk)-metal,

Lista A) Proszę pokazać, że przy padaniu prostopadłym na granicę ośrodka próżnia(dielektryk)-metal, Lista 1. A) Poszę okazać ż zy adaniu ostoadłym na ganicę ośodka óżnia(dilktyk)-mtal n11 n N 1 wsółczynnik odbicia fali lktomagntycznj (FEM) R. Ws-ka: Andix A książki N 1 n `1 n M. Foxa Otical otis of Solids

Bardziej szczegółowo

Wartość ciśnienia wiatru działającego na powierzchnie zewnętrzne (w e ) i wewnętrzne (w i ) konstrukcji.

Wartość ciśnienia wiatru działającego na powierzchnie zewnętrzne (w e ) i wewnętrzne (w i ) konstrukcji. Zbrani obciążń a) Stał: Ciężar własny okrycia dachu: Pokryci dachówką kariówką odwójni. Przyjęto ciężar okrycia wraz z konstrukcją dachu: g 0,95 ; b) Zinn: Śnig wg EC: s ) C i i C s t k,gdzi: s wartość

Bardziej szczegółowo

Arkusze maturalne poziom podstawowy

Arkusze maturalne poziom podstawowy Akusze matualne poziom postawowy zaania zamknięte N zaania 5 7 8 9 0 Pawiłowa opowieź a c a b c b a Liczba punktów zaania otwate N zaania Pawiłowa opowieź Punkty Q mg 00 N Z III zasay ynamiki wynika, że

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5 INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKUTYWACJI aboratorium z mechaniki płynów ĆWICZENIE NR 5 POMIAR WSPÓŁCZYNNIKA STRAT PRZEPŁYWU NA DŁUGOŚCI. ZASTOSOWANIE PRAWA HAGENA POISEU A 1. Cel

Bardziej szczegółowo

Przejścia międzypasmowe

Przejścia międzypasmowe Pzjścia iędzypasow Funcja diltyczna Pzjścia iędzypasow związan są z polayzacją cuy ltonowj wwnątz dzni atoowyc - są odpowidzialn za część funcji diltycznj ε Wóćy do foalizu funcji diltycznj: ε las N (

Bardziej szczegółowo

CHARAKTERYSTYKA OBCIĄŻENIOWA

CHARAKTERYSTYKA OBCIĄŻENIOWA Opracowani: dr inż. Ewa Fudalj-Kostrzwa CHARAKTERYSTYKA OBCIĄŻENIOWA Charaktrystyki obciążniow są wyznaczan w ramach klasycznych statycznych badań silników zarówno dla silników o zapłoni iskrowym jak i

Bardziej szczegółowo

MODELOWANIE OPTYCZNEGO ELEMENTU PRZEŁĄCZNICY OXC OPARTEGO NA KĄTOWYM NAPĘDZIE ELEKTROSTATYCZNYM MEMS

MODELOWANIE OPTYCZNEGO ELEMENTU PRZEŁĄCZNICY OXC OPARTEGO NA KĄTOWYM NAPĘDZIE ELEKTROSTATYCZNYM MEMS Rnata SULIMA MODELOWANIE OPTYCZNEGO ELEMENTU PRZEŁĄCZNICY OXC OPARTEGO NA KĄTOWYM NAPĘDZIE ELEKTROSTATYCZNYM MEMS STRESZCZENIE Pzłączniki optyczn MEMS wypiają otychczasow pzłączniki lktoniczn. Ninijszy

Bardziej szczegółowo

Wynik finansowy transakcji w momencie jej zawierania jest nieznany z uwagi na zmienność ceny przedmiotu transakcji, czyli instrumentu bazowego

Wynik finansowy transakcji w momencie jej zawierania jest nieznany z uwagi na zmienność ceny przedmiotu transakcji, czyli instrumentu bazowego .Istmety ochoe otaty temiowe azywae sa istmetami ochoymi (eivatives. otat temiowy zobowiazje wie stoy o zeowazeia w zyszłosci ewej tasacji a wczesiej staloych waach. Jea stoa otatów (abywca - te, co je

Bardziej szczegółowo

Ł Ą ż ż Ś Ą ż ż Ń Ę ż Ą ż ż Ą ć Ą ż ż Ą Ń ż ż Ę ż ż ż ż ćż ż Ś Ź ż Ź ć ż ż ż ż ż ć ż ż ć ż ć ż ż Ś ż ć ż ż ż ć ż ż ż ż ż ż ż Ź ż ć ż ż ż ć Ź ćż ż ć ż ż ż ż Ż Ń ż ż ż ż Ź ć ż ć ż ć ż ż ż ż ż ć ż ż ż Ź ć

Bardziej szczegółowo

Ą Ą Ż Ż ś Ś ś ń ń Ę Ż Ę ś Ż ś Ę ś ź ń ź ś ś Ó ś ś Ż Ś ń Ę Ę Ą Ż Ę ś ś Ę ś Ę ś ść Ż Ć ź Ę ń Ć Ż Ę ź ś Ź Ż ź ś Ę ś śń Ż ś ń Ż ń Ą Ż Ż Ę ś ź ŻŻ ś ś ń Ż ń Ó ś Ż ń Ż ś Ę ń Ż Ż Ę ń Ż Ę Ż ź ś ń ś Ę ś ś Ż ń Ś

Bardziej szczegółowo

ź ż ć ć Ę ż ż ż ż ż ż ż ć ż ź Ę ć ż ż ż Ę ż ż ż ż ż ż ż ź ź ż ż ć ź ź ż ź ź ć ź ż ź ć ź ź ć ź Ę ź ż ź ż ć Ę ż ż ż ć ż ż ż ź ż ż ż ż ż ż ż ć ć ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ć ć ć ć ć ć Ę ż Ę ż ż

Bardziej szczegółowo

Ż ż Ź ż ż ć ż ż ż ż ć ż Ź ż ż ż ć Ś ż Ś ć ż ć ż ż ż ć ć ż Ź ż ćż ż ż ż Ż ż Ą ż żć ż ż Ś ż ż ż ć ż ż ż ż ż ż ż ć Ć ż Ą Ż Ż ć Ś ż ż Ś Ś Ęż ż ć ż Ż Żż Ć ż ż ż ż ż ć Ż ż Ćż Ż ż ż ż Ą ż ż ć ż ć ż ż ć ż ż ż

Bardziej szczegółowo

Uogólnione wektory własne

Uogólnione wektory własne Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

4πε0ε w. q dl. a) V m 2

4πε0ε w. q dl. a) V m 2 Rozwiązania są moje, Batka i jeszcze te któe znaazłem w A. Niestety nie mogę zagwaantować, że są popawne :( Jeżei twoje opowiezi óżnią się o tych, to napisz o mnie (najepiej z wyjaśnienie ską bieze się

Bardziej szczegółowo

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Ł Ą Ń

Ł Ą Ń Ł Ą Ń Ł Ł ź ź Ż Ż Ą Ł ź ź Ł Ź Ż Ź ź Ż Ż Ż ź Ć Ą ź Ł Ć Ż Ż Ż Ź Ć ź Ń Ż Ż Ć Ć ź Ż Ć ź Ź Ć Ć ź Ź Ć Ź Ż ź Ź Ż Ć ź Ń Ź Ć Ć ź Ż Ź Ź Ż Ć Ź Ż Ż Ż Ż Ż Ń Ą Ź ź Ć Ż Ż Ż Ż Ż ź Ż Ż Ź ź Ć Ć Ź Ż Ł Ą Ń ź Ń Ż Ć Ą Ź Ą

Bardziej szczegółowo

Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych.

Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych. Temat 8 Ogólny opis konstkcji 06 8. Wstęp Istnieje wiele typów i ozwiązań konstkcyjnych. Mniejsza wiedza dotycząca zjawisk pzepływowych Niski koszt podkcji Kótki cykl pojektowy Solidna konstkcja pod względem

Bardziej szczegółowo

Termodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ Trodynaika Część 1 Elnty fizyki statystycznj klasyczny gaz doskonały Janusz Brzychczyk, Instytut Fizyki UJ Użytczn całki ax2 dx = 1 2 a x ax2 dx = 1 2a ax2 dx = a a x 2 ax2 dx = 1 4a a x 3 ax2 dx = 1 2a

Bardziej szczegółowo

MECHANIKA PŁYNÓW LABORATORIUM

MECHANIKA PŁYNÓW LABORATORIUM MECHANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 2 Wyznaczanie współczynnika oporów liniowych i współczynnika strat miejscowych w ruchu turbulentnym. Celem ćwiczenia jest zapoznanie się z laboratoryjną metoą

Bardziej szczegółowo

= ± Ne N - liczba całkowita.

= ± Ne N - liczba całkowita. POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9

Bardziej szczegółowo

ĆWICZENIE 5. Badanie przekaźnikowych układów sterowania

ĆWICZENIE 5. Badanie przekaźnikowych układów sterowania ĆWICZENIE 5 Badanie zekaźnikowych układów steowania 5. Cel ćwiczenia Celem ćwiczenia jest badanie zekaźnikowych układów steowania obiektem całkującoinecyjnym. Ćwiczenie dotyczy zekaźników dwu- i tójołożeniowych

Bardziej szczegółowo

W Wymiana ciepła. Opór r cieplny Przewodzenie ciepła Konwekcja Promieniowanie Ekranowanie ciepła. Termodynamika techniczna

W Wymiana ciepła. Opór r cieplny Przewodzenie ciepła Konwekcja Promieniowanie Ekranowanie ciepła. Termodynamika techniczna W0 56 Opó ciplny Pzwodzni cipła Konwkcja Pominiowani Ekanowani cipła w0 Waunkim pzpływu cipła a między dwoma ośodkami o jst óŝnica tmpatu Cipło o pzpływa z ośodka o o tmpatuz wyŝszj do ośodka o o tmpatuz

Bardziej szczegółowo

Inżynieria chemiczna i bioprocesowa

Inżynieria chemiczna i bioprocesowa Inżynieria chemiczna i biorocesowa W- Postawowe jenostki fizyczne Natężenie rzeływ / strmień / rękość rzeływ Równanie ciąłości stri Płyn oskonały Prawa ois ynamiki łynów oskonałych Pomiar natężenia / rękości

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

Model klasyczny gospodarki otwartej

Model klasyczny gospodarki otwartej Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli

Bardziej szczegółowo

Krystyna Gronostaj Maria Nowotny-Różańska Katedra Chemii i Fizyki, FIZYKA Uniwersytet Rolniczy do użytku wewnętrznego ĆWICZENIE 4

Krystyna Gronostaj Maria Nowotny-Różańska Katedra Chemii i Fizyki, FIZYKA Uniwersytet Rolniczy do użytku wewnętrznego ĆWICZENIE 4 Kystyna Gonostaj Maia Nowotny-Różańska Katea Cheii i Fizyki, FIZYKA Uniwesytet Rolniczy o użytku wewnętznego ĆWICZENIE 4 WYZNACZANIE GĘSTOŚCI CIAŁ STAŁYCH I CIECZY PRZY POMOCY PIKNOMETRU Kaków, 2004-2012

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Rozdział 2. Informacja o trybie i stosowaniu przepisów Rozdział 3. Przedmiot zamówienia

Rozdział 1. Nazwa i adres Zamawiającego Rozdział 2. Informacja o trybie i stosowaniu przepisów Rozdział 3. Przedmiot zamówienia Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 0 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f S p r z» t a n i e i u t r z y m a n i e c z y s t o c i g d y

Bardziej szczegółowo

Ń Ą Ę Ł Ł Ł Ł ź Ł Ł Ł Ł Ł Ł ź Ł Ł Ł Ł Ś Ś źć Ą ź ź ć ź ć Ś ć Ą ć Ż ć ć Ę ć Ą Ł Ł Ł ź Ś Ą ź Ą Ą Ł Ś Ą Ż Ą Ł Ł ć Ż Ś ź Ó ź Ó ć Ć ź Ś ć Ł ć ć ć ć ć ć Ą Ą Ą Ł Ą ć ć ć ć Ą Ł ź ć ćź ć ć ź Ś ć ć Ą Ą Ą ć Ą ć Ż

Bardziej szczegółowo

ć ć ć ć ć ć ć źć ć ć ć ć ć ć ź Ś ź ć ć ć Ż ć Ę ć ć ć ć ć ć Ę Ę ć ć ć Ż ź ź ź ć ć ć ć ć Ś ć ć ć ć ć Ż ćż ć ć ć ć ć ć Ż ć ć ć ć ź ć ź Ę ć ć ź ć ć Ś Ż ć ć ć Ą Ż ć ć ć Ę ć ć Ż ć ć ć Ś ć ć ć ć ć ć ć ć ć ć ć

Bardziej szczegółowo

DOBÓR ZESTAWU HYDROFOROWEGO

DOBÓR ZESTAWU HYDROFOROWEGO DOBÓR ZESTAWU YDROFOROWEGO Pierwszym etaem doboru Z jest wyznaczenie obliczeniowego unktu racy urządzenia: 1. Wymaganego ciśnienia odnoszenia zestawu = + min min ss 2. Obliczeniowej wydajności Q o Q 0

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.

Bardziej szczegółowo

Mechanika płynów. Wykład 9. Wrocław University of Technology

Mechanika płynów. Wykład 9. Wrocław University of Technology Wykład 9 Wrocław University of Technology Płyny Płyn w odróżnieniu od ciała stałego to substancja zdolna do rzeływu. Gdy umieścimy go w naczyniu, rzyjmie kształt tego naczynia. Płyny od tą nazwą rozumiemy

Bardziej szczegółowo

J. Szantyr Wykład nr 25 Przepływy w przewodach zamkniętych I

J. Szantyr Wykład nr 25 Przepływy w przewodach zamkniętych I J. Szantyr Wykład nr 5 Przeływy w rzewodach zamkniętych I Przewód zamknięty kanał o dowonym kształcie rzekroju orzecznego, ograniczonym inią zamkniętą, całkowicie wyełniony łynem (bez swobodnej owierzchni)

Bardziej szczegółowo

J. Szantyr Wykład nr 16 Przepływy w przewodach zamkniętych

J. Szantyr Wykład nr 16 Przepływy w przewodach zamkniętych J. Szantyr Wykład nr 6 Przeływy w rzewodach zamkniętych Przewód zamknięty kanał o dowolnym kształcie rzekroju orzecznego, ograniczonym linią zamkniętą, całkowicie wyełniony łynem (bez swobodnej owierzchni)

Bardziej szczegółowo

10 RUCH JEDNOSTAJNY PO OKRĘGU

10 RUCH JEDNOSTAJNY PO OKRĘGU Włodzimiez Wolczyński Miaa łukowa kąta 10 RUCH JEDNOSTAJNY PO OKRĘGU 360 o =2π ad = = 2 s 180 o =π ad 90 o =π/2 ad = jednostka adian [1 = 1 = 1] Π ad 180 o 1 ad - x o = 180 57, 3 57 18, Ruch jednostajny

Bardziej szczegółowo

TECHNIKI INFORMATYCZNE W ODLEWNICTWIE

TECHNIKI INFORMATYCZNE W ODLEWNICTWIE ECHNIKI INFORMAYCZNE W ODLEWNICWIE Janusz LELIO Paweł ŻAK Michał SZUCKI Faculty of Foundy Engineeing Depatment of Foundy Pocesses Engineeing AGH Univesity of Science and echnology Kakow Data ostatniej

Bardziej szczegółowo

Inżynieria chemiczna

Inżynieria chemiczna Literatra ostawowa. M. Serwiński: Zasay inżynierii cemicznej. WNT 98.. J. Ciborowski: Postawy inżynierii cemicznej. WNT 965... Selecki, L. Graoń: Postawowe rocesy rzemysł cemiczneo. WNT 985. 4. P. Lewicki:

Bardziej szczegółowo

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym 1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.

Bardziej szczegółowo

Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers

Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia

Bardziej szczegółowo

Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice.

Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice. Wykład 6 Pochodna, całka i równania różniczkow w prakycznych zasosowaniach w lkrochnic. Przypomnini: Dfinicja pochodnj: Granica ilorazu różnicowgo-przyros warości funkcji do przyrosu argumnów-przy przyrości

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się

Bardziej szczegółowo

DYNAMIKA WÓD PODZIEMNYCH

DYNAMIKA WÓD PODZIEMNYCH DYNAMIKA WÓD PODZIEMNYCH ównanie Benullieg Spadek hydauliczny Współczynnik filtacji Paw Dacy`eg Pędkść filtacji, pędkść skuteczna Dpływ d wu Dpływ d studni zpatujemy 2 schematy: Dpływ z wastwy wdnśnej

Bardziej szczegółowo

Metodyka obliczenia natężenia przepływu za pomocą anemometru skrzydełkowego.

Metodyka obliczenia natężenia przepływu za pomocą anemometru skrzydełkowego. ZAŁĄCZNIK Metoyka obliczenia natężenia rzełyu za omocą anemometru skrzyełkoego. Prękość oietrza osi symetrii kanału oblicza się ze zoru: S max τ gzie: S roga rzebyta rzez gaz ciągu czasu trania omiaru

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

Ą Ą Ą Ą Ą Ł Ż Ż Ą Ż Ż Ż ź Ż ź ź Ż ź ć ć Ą Ż Ż Ż Ż Ż ź Ż ź Ż Ż Ż Ż Ą Ż Ż ŻŻ Ż Ż Ż Ą ŻŻ Ż ŻŻ ć ŻŻ ŻŻ Ż ć Ń Ł ŻŻ Ż ŻŻ ć ŻŻ Ż Ż Ż ć ŻŻ Ż Ż ź Ą ŻŻ Ż ć ć ŻŻ Ś Ż Ż Ś Ą Ż Ą Ż Ż Ż ź Ż ć Ż ć Ś Ż ć ć Ż ź Ż ć ź Ż

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

PLAN WYKŁADU. Równanie Clausiusa-Clapeyrona 1 /21

PLAN WYKŁADU. Równanie Clausiusa-Clapeyrona 1 /21 PAN WYKŁADU Równani Clausiusa-Clapyrona 1 /1 Podręczniki Salby, Chaptr 4 C&W, Chaptr 4 R&Y, Chaptr /1 p (mb) 1 C Fusion iquid Solid 113 6.11 Vapor 1 374 (ºC) Kropl chmurow powstają wtdy kidy zostani osiągnięty

Bardziej szczegółowo

Wykład 9. Model ISLM: część I

Wykład 9. Model ISLM: część I Makoekonomia 1 Wykład 9 Model ISLM: część I Gabiela Gotkowska Kateda Makoekonomii i Teoii Handlu Zaganicznego Plan wykładu Model ISLM Równowaga gaficzna Równowaga algebaiczna Skutki zmian paametów egzogenicznych

Bardziej szczegółowo

Płyny newtonowskie (1.1.1) RYS. 1.1

Płyny newtonowskie (1.1.1) RYS. 1.1 Miniskrypt: Płyny newtonowskie Analizujemy cienką warstwę płynu zawartą pomiędzy dwoma równoległymi płaszczyznami, które są odległe o siebie o Y (rys. 1.1). W warunkach ustalonych następuje ścinanie w

Bardziej szczegółowo

ń Ż ć Ą Ę Ę ń Ą Ż ń Ż ń Ę Ę Ę ń Ż ń Ś ń ć Ś ń ń ń ń ń Ę Ę Ą ń Ą Ń Ę ń Ż Ń ń Ź ń Ż Ś ń Ż ń ń ń Ź Ż Ą ń ń Ż ń ć Ś ń ń ź ń ń Ź ń Ś Ź ń ń ń Ż ń ć Ś ń ń ć Ż Ę ń ć Ś Ś Ż ń Ź Ż ń ń Ą ń Ś Ść Ń ń ń ź ń Ż ń Ż Ż

Bardziej szczegółowo

ć ć Ż ć Ż ć ć ź ć ć ć ć ć ć ć ć ć ź ć ć ź Ę ć ć ź ć ź ć ć ć ć ć ć ć Ę ć ć ź ć ć ź ź ź ź ź ź Ę Ę ź Ę ć ź ć ź ź ć ć ć Ę ć ź ź ć ź ć ć ź Ą ć ź ź ź ź ć ć ć Ę ź ź ć ć ć ć ć ć ź ź ć ć ć ć ć ć ć ć ć ć ć ź ź ć

Bardziej szczegółowo

Ś Ę Ż Ż Ł ź ź Ę ź Ę Ą Ę ź ć Ś Ą ć Ą ź ć Ó Ę ć ć Ś ć ć Ń ć Ż Ź Ż ć Ś ć Ę Ę Ę Ł ź ć Ś Ś ź Ł ć Ę ć Ł ć ź Ł ć Ż ć Ą Ś Ę ź Ę ć ź ć Ł Ń Ę ć Ś ź ć Ł Ł Ń ć ć ć ć Ę Ę ć ć Ż Ń Ń ŻŻ Ż Ę Ż ć ć Ę Ż Ó ć Ł Ą ć Ś Ę ć

Bardziej szczegółowo

Ą ń Ż Ź Ś Ż ź Ł Ż Ż ź ź Ż Ż Ż Ż ź ź ź ż Ż ź Ż ż ń Ż ż ć ń ż ż ż Ż ź Ż Ż ź Ż ż Ż ć ż Ż Ś ż Ś Ż ź ń ń Ż ń Ż ń Ż ź ń ń ż ż ń Ą ń Ą ń ń ń ń ń ź ń Ź ż ć ż Ż ć ź Ż ć ż ć ć ż Ą ć ń ń ć Ł ż ż ć Ż Ż ż ż Ż Ż Ż ń

Bardziej szczegółowo

Ł Ś Ą Ł Ę ź Ł Ł Ę Ł ź Ł Ł Ś Ł Ł ż Ł Ś Ł Ł Ś Ł ź Ę ź Ł Ł Ł Ł Ł Ł ź ć ż Ę ż Ł ż ż ć ć ć ć ć ć ż Ę ć ć ć ć ć ć ż ż ć ż ż ż ż Ł Ś Ł ż ż ć ć ć ż ć ć ć ć ż ż ż Ł Ś Ł ż Ł Ł Ł ż Ł Ś Ł Ł Ś Ł ż Ł Ś Ł ź ż Ę ż ż ź

Bardziej szczegółowo

ź Ę ć Ż Ż ń ć Ż Ę Ż ć ć ć Ż ć ć ź Ż ć Ż Ż ć ć ń Ż ć Ś Ę Ż ń Ż ć Ż ć Ż ć Ż Ż Ę ć Ż Ż Ż Ą Ę Ą ć Ż ć ć Ż Ą Ż ć ń ń Ż ń Ż Ę Ż ć Ż Ż Ł Ą źź ź ć Ż Ż Ż Ż Ę ź ź ź ź Ż Ż ń Ż Ż Ó ń Ś ć ń Ą Ę Ą Ż Ą Ę Ś Ę Ż ć Ę Ś

Bardziej szczegółowo

Ł Ń Ł Ł ź Ż ź Ł Ż Ó ż ż Ą ź Ą Ó Ń Ą Ł Ł Ą Ż Ś Ą ź Ż Ż ź Ż Ż ż Ą Ł Ż Ź Ź ź Ó ź Ł Ą ź Ń ź Ó Ł ż ć Ś Ś Ą Ł Ś ż ź ź Ą Ż Ł Ś Ś Ł Ż Ń Ń Ł Ó Ś Ś ć Ś Ó Ć ć ć Ś ż Ó Ó ź Ó Ó Ś Ó Ą Ą ć Ą Ą Ł Ą Ł Ą Ł ż Ł ź ć Ł Ą

Bardziej szczegółowo

Ż ń ń Ł Ą ń Ą Ż Ą Ż ń Ą ń ń ń ń Ł Ą ń ń ń ń ń Ą ń ń ń ń ń ń ń ć ń Ż ń ń Ą Ś Ą Ś Ą ń Ą Ś Ę ń Ś ń ń Ą ń Ż ń ź ź ń Ś ń ń Ś Ę Ś Ź Ś ń ń ć Ż ń ń Ą ń Ś Ż ń Ż Ż Ć Ż Ś Ś ć Ż Ż ć Ą ń Ą ń Ż ń ń ń Ż ć Ż Ż ń ń Ś Ż

Bardziej szczegółowo

Ł Ż Ł Ł Ł Ł ż ż ć ź ć ż ż Ż ż Ż ż Ż ć Ż Ł Ż ć ŻŻ ź ż Ł ż ż ż Ż ć Ł Ł ż ż ż ż Ż ż ż ź ć Ż ż ż Ż ż Ż ć ż ć Ż ź ż ż ć ć Ż ż Ź ż ż ż ź ż ż ź ż ż ż ż ż ź Ż Ż ź ż ć ż ż Ł ż ć ż ż ż ć ż ż ć Ż Ż ż ż ż ź ć ż ż

Bardziej szczegółowo

Ą Ę ą Ś ą ć Ą ą ą ą ą ŻŻ ŻŻ Ą Ż ą ą ą ą ą ą ą ą ą Ą ą ą Ęć ą ą ą ą ą ć Ę Ś Ą ć ą ć Ś ą Ą ć Ą ą Ą ź Ę ź ą ć ć ą ą Ę ą ą Ę ą ą ą ą ą ą ć ą ą ą ą ć ą ą ą Ę ą ą ą ą ą ą ą ą ć ć ź ą Ą ą ć Ę Ł Ł Ę ą ą Ą ą ą

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Chemia Poziom ozszezony Listopad W niniejszym schemacie oceniania zadań otwatych są pezentowane pzykładowe popawne odpowiedzi. W tego typu ch należy

Bardziej szczegółowo

J. Szantyr - Wykład 3 Równowaga płynu

J. Szantyr - Wykład 3 Równowaga płynu J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Prztwarzani sygnałów biomdycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowik- najlpsza inwstycja Projkt współfinansowany przz Unię Europjską w ramach Europjskigo Funduszu Społczngo Wykład XI Filtracja

Bardziej szczegółowo

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,

Bardziej szczegółowo

Pędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika.

Pędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika. ZASADY ZACHOWANIA W FIZYCE ZASADY ZACHOWANIA: Enegii Pęd Moent pęd Ładnk Liczby baionowej ZASADA ZACHOWANIA ENERGII W = E calk Paca siły zewnętznej Jeżeli W=0 to E calk =0 Ziana enegii całkowitej Ziana

Bardziej szczegółowo

Makroekonomia Gospodarki Otwartej Wykład 6 Model Dornbuscha przestrzelenia kursu walutowego

Makroekonomia Gospodarki Otwartej Wykład 6 Model Dornbuscha przestrzelenia kursu walutowego Makrokonomia Gosodarki Otwartj Wykład 6 Modl Dornbuscha rzstrzlnia kursu walutowgo Lszk Wincnciak Wydział Nauk Ekonomicznych UW 2/25 Plan wykładu: Założnia modlu Formaln rzdstawini modlu Równowaga na rynku

Bardziej szczegółowo

ĆWICZENIE LABORATORYJNE nr 1. Wyznaczanie współczynnika wydatku otworów z przystawkami oraz otworów zatopionych

ĆWICZENIE LABORATORYJNE nr 1. Wyznaczanie współczynnika wydatku otworów z przystawkami oraz otworów zatopionych ĆWICZENIE LABORATORYJNE nr Wyznaczanie współczynnika wyatku otworów z przystawkami oraz otworów zatopionych Kolejność czynności:. Pomierzyć wymiary geometryczne stanowiska oraz śrenice otworów w płycie

Bardziej szczegółowo

1. Dane : DANE OGÓLNE PROJEKTU. Poziom odniesienia: 0,00 m.

1. Dane : DANE OGÓLNE PROJEKTU. Poziom odniesienia: 0,00 m. 1. Dane : DANE OGÓLNE PROJEKTU Poziom odniesienia: 0,00 m. 4 2 0-2 -4 0 2. Fundamenty Liczba fundamentów: 1 2.1. Fundament nr 1 Klasa fundamentu: ława, Typ konstrukcji: ściana, Położenie fundamentu względem

Bardziej szczegółowo

Kryteria samorzutności procesów fizyko-chemicznych

Kryteria samorzutności procesów fizyko-chemicznych Kytea samozutnośc ocesów fzyko-chemcznych 2.5.1. Samozutność ównowaga 2.5.2. Sens ojęce ental swobodnej 2.5.3. Sens ojęce eneg swobodnej 2.5.4. Oblczane zman ental oaz eneg swobodnych KRYERIA SAMORZUNOŚCI

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ W METALACH

WYZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ W METALACH Ć w i c z n i 34 WYZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ W METALACH 34.1 Opis tortyczny Prominiowani γ jst prominiowanim towarzyszącym przmianom prominiotwórczym α i β. Są to kwanty prominiowania

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki płynów ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH . Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

Szczególna i ogólna teoria względności (wybrane zagadnienia)

Szczególna i ogólna teoria względności (wybrane zagadnienia) Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności

Bardziej szczegółowo

PLAN WYKŁADU. Sposoby dochodzenia do stanu nasycenia. Procesy związane z ruchem pionowym 1 /25

PLAN WYKŁADU. Sposoby dochodzenia do stanu nasycenia. Procesy związane z ruchem pionowym 1 /25 PAN WYKŁADU Sooby ohoznia o tanu naynia Poy związan z uhm ionowym 1 /5 Poęzniki Saby, Chat 5 C&W, Chat 4 &Y, Chat /5 EMODYNAMIKA ZWIĄZANA Z UCHEM PIONOWYM Położni unktu konnaji C (iftin onnation ) Zminność

Bardziej szczegółowo

Doświadczenie B O Y L E

Doświadczenie B O Y L E Wprowadzenie teoretyczne Doświadczenie Równanie Clapeyrona opisuje gaz doskonały. Z dobrym przybliżeniem opisuje także gazy rzeczywiste rozrzedzone. p V = n R T Z równania Clapeyrona wynika prawo Boyle'a-Mario

Bardziej szczegółowo

DYSZE NAWIEWNE DYSZE NAWIEWNE V[-1. Dysza nawiewna V[-1

DYSZE NAWIEWNE DYSZE NAWIEWNE V[-1. Dysza nawiewna V[-1 V[-1 Dysza nawiewna V[-1 R Zastosowanie: Dysze nawiewne V[-1 stosujey o nawiewu powietrza o poieszczeü, w ktörych wyagane sä: wysoki pozio rozzia u powietrza i niski pozio ha asu. Dzi ki o`liwo{ci zestawiania

Bardziej szczegółowo

MECHANIKA BUDOWLI 12

MECHANIKA BUDOWLI 12 Olga Koacz, Kzysztof Kawczyk, Ada Łodygowski, Michał Płotkowiak, Agnieszka Świtek, Kzysztof Tye Konsultace naukowe: of. d hab. JERZY RAKOWSKI Poznań /3 MECHANIKA BUDOWLI. DRGANIA WYMUSZONE, NIETŁUMIONE

Bardziej szczegółowo

ź Ł ć Ę ź ć Ą Ó Ą Ó Ą Ą ć ń ć Ą ć ź ń ń Ó ź ć ć ź ź ć ń ć ń ć ć ć ć ć ć ć ź Ą ć ć ć ć ć ć ź ć ź ć ć ć ć ć ń ć ć ć Ł ć ń ń ń ź ń ź ń Ę Ę Ę ń ź ź ć ć Ąć Ą ć ń ź ź Ą ź Ś ń ź ń ź ń Ł Ę Ł ń Ń ć ć ć ć ć ć Ś

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego

Bardziej szczegółowo