J. Szantyr Wykład nr 16 Przepływy w przewodach zamkniętych

Wielkość: px
Rozpocząć pokaz od strony:

Download "J. Szantyr Wykład nr 16 Przepływy w przewodach zamkniętych"

Transkrypt

1 J. Szantyr Wykład nr 6 Przeływy w rzewodach zamkniętych Przewód zamknięty kanał o dowolnym kształcie rzekroju orzecznego, ograniczonym linią zamkniętą, całkowicie wyełniony łynem (bez swobodnej owierzchni) Do oisu ruchu łynu w kanałach zamkniętych stosuje się uroszczony model rzeływu jednowymiarowego. Zakłada się, że oś kanału jest rawie rosta, a rzeływ rzez rzekrój S odbywa się z rędkością rerezentatywną, czyli jakąś rędkością średnią u ~

2 Najrostszy rzyadek: rzewód o stałym rzekroju kołowym ułożony oziomo. Przeływ stacjonarny łynu nieściśliwego. Równanie zachowania masy (m-masowe natężenie rzeływu): l ~ ~ ~ m S ~~ fs ( us) 0 us m const u const Równanie zachowania ędu: ( us ) S C gdzie C obwód rzekroju S τ D Dt ~~ - lekościowe narężenia styczne ~ l C C 0 S d τc τ τ dl l l S S Przy stałych narężeniach wzdłuż kanału o rzekroju kołowym mamy: τ 4l d τ

3 Na skutek działania sił lekości wzdłuż kanału wystęuje sadek ciśnienia wrost roorcjonalny do l i τ oraz odwrotnie roorcjonalny do d. W rzyadku w ełni rozwiniętego rzeływu laminarnego, czyli o odcinku oczątkowym l w 0,03 Re d można uzyskać analityczne rozwiązanie równania Naviera-Stokesa, które rowadzi do wzorów: rędkość lokalna: ( ) ( u r r ) 0 r 4 µ l rędkość r średnia: u~ 8µ l Wzór na rędkość średnią można rzekształcić do wzoru Darcy-Weisbacha: ~ l λ d u gdzie λ wsółczynnik ooru, lub wsółczynnik strat liniowych 0

4 W rzeływie laminarnym: W rzeływie turbulentnym rzez rury hydrodynamicznie gładkie: W ogólnym rzyadku należy uwzględnić wływ chroowatości ci ścian: λ λ 64 Re 0,364 4 Re λ λ Re, r 0 k Henri Darcy Julius Weisbach Turbulentny rofil rędkości w rzewodzie

5 Przyadek trudniejszy: rzewód nachylony od kątem α Jeżeli założymy rzeływ stacjonarny, to równanie zachowania ędu rzyjmie ostać: S C gz u l S C l f l u u l τ τ ~ ~ ~ gdzie odstawiono składową siły masowej wzdłuż l: dl dz g g f l α sin Po scałkowaniu omiędzy dwoma rzekrojami kanału otrzymujemy równanie Bernoulliego dla rzeczywistego rzeływu ze stratami: równanie Bernoulliego dla rzeczywistego rzeływu ze stratami: ~ ~ dl S C gz u gz u τ albo: const H h z g g u z g g u s ~ ~ gdzie - wysokość strat h s Daniel Bernoulli

6 Wysokość strat możemy odzielić na dwa składniki: -wysokość strat liniowych związanych z tarciem łynu o ścianki rzewodu rostoliniowego o stałym rzekroju, -wysokość strat lokalnych związanych z obecnością zaworów, kolan, zwężeń, rozgałęzień i innych elementów. Wysokość strat liniowych wyraża się wzorem: Wysokość strat lokalnych wyraża się wzorem: h s ~ u l λ g d u~ u ~ h ς s g ς g Gdzie ζ jest wsółczynnikiem strat lokalnych, który może być określony w odniesieniu do rędkości rzed elementem lub rędkości za elementem. Wsółczynniki ζ są określane ekserymentalnie i można je znaleźć w odowiednich tablicach. Poniżej odano kilka rzykładowych wartości wsółczynników strat lokalnych.

7 Wsółczynniki strat lokalnych Rodzaj straty lokalnej Wlot ze zbiornika Załamanie rzewodu o φ Zwiększenie rzekroju Kurek otwarcie 5 stoni Kurek otwarcie 45 stoni Wlot ssania omy Wsółczynnik straty ς 0,5 ς 0,946sin ϕ,05sin 4 ϕ ς ( A A ) ς ( A A ) ς 0,05 ς 3, ς 0,0

8 W rzyadku gdy rzeływ odbywa się w rzewodach o znacznej średnicy, równanie Bernoulliego owinno być jeszcze uzuełnione o wsółczynnik Coriolisa (lub de Saint-Venanta) α α u~ α u~ z z hs H const g g g g Wynika to z faktu, że rzeczywista energia strumienia niejednorodnego różni się od energii obliczonej według średniej rędkości wydatkowej dla tego strumienia. Wobec tego mamy: Gasard Coriolis α A u u~ 3 3 da Wsółczynnik α jest tym większy im bardziej niejednorodne jest ole rędkości rzeływu. A Adhemar de Saint Venant

9 Przyadek rzewodów o rzekroju niekołowym lub częściowo wyełnionych W rzyadku rzewodów o rzekroju innym niż kołowy oraz w rzyadku rzewodów częściowo wyełnionych łynem istotnym arametrem jest romień hydrauliczny, czyli stosunek ola rzekroju strumienia łynu do obwodu zwilżonego: F r h L W takich rzyadkach liczbę Reynoldsa obliczamy według wzoru: u 4r Re h υ z

10 Obliczenie rurociągu rostego Linia iezometryczna okazuje zmiany ciśnienia wzdłuż osi rzewodu. Takie ciśnienie okazałyby manometry w odowiednich unktach rurociągu. Linia sadku energii okazuje liniowe i lokalne straty energii wzdłuż osi rzewodu.

11 Komentarze do linii iezometrycznej Przyjmujemy oś rurociągu jako oziom odniesienia wysokości ciśnienia a g czyli na wlocie ciśnienie wynosi gh Tuż za wlotem do rurociągu wysokość ciśnienia jest jest mniejsza o: V stratę na wlocie ς g V część zamienioną na energię kinetyczną łynącej cieczy g Na ierwszym odcinku rurociągu wysokość ciśnienia sada liniowo zgodnie z wielkością strat liniowych: V λ g Komentarze do linii sadku energii Linia ta okazuje tylko wysokości liniowych i lokalnych strat energii, nie uwzględniając energii kinetycznej łynącej cieczy, czyli leży ona wyżej od linii iezometrycznej o wielkość: V i g a

12 Obliczenie rurociągu rostego z omą Rurociąg czerie wodę ze studni A i tłoczy ją do zbiornika B. Energia dostarczona rzez omę w jednostce czasu jest zużywana na odniesienie wody od oziomu A do oziomu B oraz na okonanie strat liniowych wzdłuż rzewodu oraz strat lokalnych. Na odcinku 3-4 oznaczamy tylko rzyrost ciśnienia wywołany racą omy bez uwzględniania strat na odcinkach rurociągu należących do omy.

13 Wysokość odnoszenia omy: H g Poziom odniesienia na wysokości wlotu do rurociągu. Wysokość ciśnienia wynosi tam: l a g Rurociąg ma stały rzekrój, wobec czego rędkość rzeływu jest stała w całym rurociągu.

14 Przeływy w sieciach rurociągów W raktyce mamy do czynienia z mniej lub bardziej złożonymi rurociągami. Jeżeli strumień łynu nie ulega rozgałęzieniu, mówimy o rurociągu rostym. W rzeciwnym rzyadku mamy do czynienia z siecią rurociągów. Sieci dzielimy na rozgałęzione (gdy sieć nie tworzy obwodów zamkniętych oraz na ierścieniowe (gdy wystęują obwody zamknięte). Obliczenie hydrauliczne sieci olega na wyznaczeniu arametrów we wszystkich elementach tworzących sieć. Obliczenia hydrauliczne są wykonywane dla sytuacji stacjonarnej jeżeli liczba Strouhala jest mniejsza od jedności: tchar Sh < t zm t char - czas rzeływu rzez odcinek rurociągu t zm - czas zmiany warunków na wlocie do odcinka

15 Obliczenie sieci rozgałęzionej Dana jest sieć rozgałęziona zasilana ze zbiornika o stałym nadciśnieniu H50 [m]. W unktach 4, 5, 7, 9, 0 nastęuje wyływ wody do atmosfery. Obliczyć natężenia rzeływu w odcinkach sieci oraz wyznaczyć linie iezometryczne. Pominąć straty lokalne. Sieć składa się z 9 odcinków, 4 węzłów oraz 6 unktów końcowych ( zasilający i 5 zasilanych). Niewiadome to 9 wydatków na odcinkach oraz 4 wartości nadciśnienia w węzłach. Mamy do dysozycji 9 równań Bernoulliego i 4 równania ciągłości rzeływu w węzłach.

16 Zastosujemy inną ostać wzoru na straty liniowe w odcinkach sieci: Q i h li li gdzie: [ ] 3 K 0,06 m s Ki charakterystyka rzewodu Na odstawie równania Bernoulliego otrzymujemy nastęujące równania: H H Q 7 l K H H3 Q 6 l K 3 H H 6 Q 3 l K 6 H 6 H8 Q 4 l K 68 H 3 Q l K 34 H 3 Q 3 l K 35 H 6 Q 3 l K 67 H 8 Q 3 l K 89 H 8 Q l K 8,0 Na odstawie równania ciągłości rzeływu w węzłach otrzymujemy nastęujące równania: 68 Q89 Q8,0 Q 6 Q67 Q68 Q 3 Q34 Q35 Q Q3 Q6 Q Wyniki rozwiązania tego układu równań okazane są na rysunku.

17 Uderzenie hydrauliczne Uderzenie hydrauliczne jest silnie dynamicznym zjawiskiem wystęującym n. rzy nagłym zamknięciu rzewodu w trakcie rzeływu. Obliczeniowa analiza uderzenia hydraulicznego wymaga wzięcia od uwagę elastyczności ścianek rzewodu oraz (zwykle omijanej) ściśliwości cieczy. Nagłe zamknięcie rzewodu owoduje owstanie fali obniżonego ciśnienia rozrzestrzeniającej się zgodnie z kierunkiem ierwotnego rzeływu oraz fali odwyższonego ciśnienia, rozrzestrzeniającej się od rąd rzeływu ierwotnego.

18 Prędkość roagacji fali ciśnienia: a gdzie: δ grubość ścianki rurociągu d średnica rurociągu 0 E c E s 0 - oczątkowa gęstość cieczy - moduł srężystości cieczy - moduł srężystości materiału rurociągu Podwyższone ciśnienie: Obniżone ciśnienie: 0ua 0 0 0ua E d δ c E s Fala obniżonego ciśnienia może rowadzić do wystąienia kawitacji i erozyjnego niszczenia ścianek rurociągu oniżej rzegrody, a fala odwyższonego ciśnienia może rozsadzić rurociąg owyżej rzegrody.

19 Przykład Przewodem stalowym o średnicy d600 [mm] i grubości ścianek δ [mm] rzeływa woda z rędkością u3,0 [m/s]. Wyznaczyć rzyrost ciśnienia w chwili nagłego zamknięcia zaworu, jeżeli 5 4 E s,06 0 MPa oraz E c 0, 0 [ MPa] [ ] a 60 0,6 000,0 0 0, 0 0,0,06 0 [ m s] [ Pa] 3, [ MPa] ua 000,0 3,0 60,

J. Szantyr Wykład nr 25 Przepływy w przewodach zamkniętych I

J. Szantyr Wykład nr 25 Przepływy w przewodach zamkniętych I J. Szantyr Wykład nr 5 Przeływy w rzewodach zamkniętych I Przewód zamknięty kanał o dowonym kształcie rzekroju orzecznego, ograniczonym inią zamkniętą, całkowicie wyełniony łynem (bez swobodnej owierzchni)

Bardziej szczegółowo

J. Szantyr Wykład nr 26 Przepływy w przewodach zamkniętych II

J. Szantyr Wykład nr 26 Przepływy w przewodach zamkniętych II J. Szantyr Wykład nr 6 Przepływy w przewodach zamkniętych II W praktyce mamy do czynienia z mniej lub bardziej złożonymi rurociągami. Jeżeli strumień płynu nie ulega rozgałęzieniu, mówimy o rurociągu prostym.

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 2

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 2 INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki łynów ĆWICZENIE NR OKREŚLENIE WSPÓLCZYNNIKA STRAT MIEJSCOWYCH PRZEPŁYWU POWIETRZA W RUROCIĄGU ZAKRZYWIONYM 1.

Bardziej szczegółowo

J. Szantyr - Wykład nr 30 Podstawy gazodynamiki II. Prostopadłe fale uderzeniowe

J. Szantyr - Wykład nr 30 Podstawy gazodynamiki II. Prostopadłe fale uderzeniowe Proagacja zaburzeń o skończonej (dużej) amlitudzie. W takim rzyadku nie jest możliwa linearyzacja równań zachowania. Rozwiązanie ich w ostaci nieliniowej jest skomlikowane i rowadzi do nastęujących zależności

Bardziej szczegółowo

PŁYN Y RZECZYWISTE Przepływy rzeczywiste różnią się od przepływów idealnych obecnością tarcia (lepkości): przepływy laminarne/warstwowe - różnią się

PŁYN Y RZECZYWISTE Przepływy rzeczywiste różnią się od przepływów idealnych obecnością tarcia (lepkości): przepływy laminarne/warstwowe - różnią się PŁYNY RZECZYWISTE Płyny rzeczywiste Przeływ laminarny Prawo tarcia Newtona Przeływ turbulentny Oór dynamiczny Prawdoodobieństwo hydrodynamiczne Liczba Reynoldsa Politechnika Oolska Oole University of Technology

Bardziej szczegółowo

Mechanika płynów. Wykład 9. Wrocław University of Technology

Mechanika płynów. Wykład 9. Wrocław University of Technology Wykład 9 Wrocław University of Technology Płyny Płyn w odróżnieniu od ciała stałego to substancja zdolna do rzeływu. Gdy umieścimy go w naczyniu, rzyjmie kształt tego naczynia. Płyny od tą nazwą rozumiemy

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0.0. Podstawy hydrodynamiki. Podstawowe ojęcia z hydrostatyki Ciśnienie: F N = = Pa jednostka raktyczna (atmosfera fizyczna): S m Ciśnienie hydrostatyczne:

Bardziej szczegółowo

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne 1. adanie rzelewu o ostrej krawędzi Wrowadzenie Przelewem nazywana jest cześć rzegrody umiejscowionej w kanale, onad którą może nastąić rzeływ.

Bardziej szczegółowo

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy

Bardziej szczegółowo

Mechanika płynp. Wykład 9 14-I Wrocław University of Technology

Mechanika płynp. Wykład 9 14-I Wrocław University of Technology Mechanika łyn ynów Wykład 9 Wrocław University of Technology 4-I-0 4.I.0 Płyny Płyn w odróŝnieniu od ciała stałego to substancja zdolna do rzeływu. Gdy umieścimy go w naczyniu, rzyjmie kształt tego naczynia.

Bardziej szczegółowo

Dobór zestawu hydroforowego Instalacje wodociągowe i kanalizacyjne 2. Wrocław 2014

Dobór zestawu hydroforowego Instalacje wodociągowe i kanalizacyjne 2. Wrocław 2014 Instalacje wodociągowe i kanalizacyjne 2 Wrocław 2014 Wyznaczenie unktu racy Wyznaczenie obliczeniowego unktu racy urządzenia 1. Wymagane ciśnienie odnoszenia zestawu min min ss 2. Obliczeniowa wydajność

Bardziej szczegółowo

[ ] 1. Zabezpieczenia instalacji ogrzewań wodnych systemu zamkniętego. 1. 2. Przeponowe naczynie wzbiorcze. ν dm [1.4] 1. 1. Zawory bezpieczeństwa

[ ] 1. Zabezpieczenia instalacji ogrzewań wodnych systemu zamkniętego. 1. 2. Przeponowe naczynie wzbiorcze. ν dm [1.4] 1. 1. Zawory bezpieczeństwa . Zabezieczenia instalacji ogrzewań wodnych systemu zamkniętego Zabezieczenia te wykonuje się zgodnie z PN - B - 0244 Zabezieczenie instalacji ogrzewań wodnych systemu zamkniętego z naczyniami wzbiorczymi

Bardziej szczegółowo

Mechanika cieczy. Ciecz jako ośrodek ciągły. 1. Cząsteczki cieczy nie są związane w położeniach równowagi mogą przemieszczać się na duże odległości.

Mechanika cieczy. Ciecz jako ośrodek ciągły. 1. Cząsteczki cieczy nie są związane w położeniach równowagi mogą przemieszczać się na duże odległości. Mecanika cieczy Ciecz jako ośrodek ciągły. Cząsteczki cieczy nie są związane w ołożeniac równowagi mogą rzemieszczać się na duże odległości.. Cząsteczki cieczy oddziałują ze sobą, lecz oddziaływania te

Bardziej szczegółowo

Opis techniczny. Strona 1

Opis techniczny. Strona 1 Ois techniczny Strona 1 1. Założenia dla instalacji solarnej a) lokalizacja inwestycji: b) średnie dobowe zużycie ciełej wody na 1 osobę: 50 [l/d] c) ilość użytkowników: 4 osób d) temeratura z.w.u. z sieci

Bardziej szczegółowo

5. Jednowymiarowy przepływ gazu przez dysze.

5. Jednowymiarowy przepływ gazu przez dysze. CZĘŚĆ II DYNAMIKA GAZÓW 9 rzeływ gazu rzez dysze. 5. Jednowymiarowy rzeływ gazu rzez dysze. Parametry krytyczne. 5.. Dysza zbieżna. T = c E - back ressure T c to exhauster Rys.5.. Dysza zbieżna. Równanie

Bardziej szczegółowo

9.1 Wstęp Analiza konstrukcji pomp i sprężarek odśrodkowych pozwala stwierdzić, że: Ciśnienie (wysokość) podnoszenia pomp wynosi zwykle ( ) stopnia

9.1 Wstęp Analiza konstrukcji pomp i sprężarek odśrodkowych pozwala stwierdzić, że: Ciśnienie (wysokość) podnoszenia pomp wynosi zwykle ( ) stopnia 114 9.1 Wstę Analiza konstrukcji om i srężarek odśrodkowych ozwala stwierdzić, że: Stosunek ciśnień w srężarkach wynosi zwykle: (3-5):1 0, 3 10, ρuz Ciśnienie (wysokość) odnoszenia om wynosi zwykle ( )

Bardziej szczegółowo

A - przepływ laminarny, B - przepływ burzliwy.

A - przepływ laminarny, B - przepływ burzliwy. PRZEPŁYW CZYNNIK ŚCIŚLIWEGO. Definicje odstaoe Rys... Profile rędkości rurze. - rzeły laminarny, B - rzeły burzliy. Liczba Reynoldsa Re D [m/s] średnia rędkość kanale D [m] średnica enętrzna kanału ν [m

Bardziej szczegółowo

MECHANIKA PŁYNÓW. Materiały pomocnicze do wykładów. opracował: prof. nzw. dr hab. inż. Wiesław Grzesikiewicz

MECHANIKA PŁYNÓW. Materiały pomocnicze do wykładów. opracował: prof. nzw. dr hab. inż. Wiesław Grzesikiewicz MECHANIKA PŁYNÓW Materiały omocnicze do wykładów oracował: ro. nzw. dr hab. inż. Wiesław Grzesikiewicz Warszawa aździernik - odkształcalne ciało stałe Mechanika łynów dział mechaniki materialnych ośrodków

Bardziej szczegółowo

POLITECHNIKA KRAKOWSKA Instytut Inżynierii Cieplnej i Procesowej Zakład Termodynamiki i Pomiarów Maszyn Cieplnych

POLITECHNIKA KRAKOWSKA Instytut Inżynierii Cieplnej i Procesowej Zakład Termodynamiki i Pomiarów Maszyn Cieplnych Laboratorium Termodynamiki i Pomiarów Maszyn Cielnych Przeływomierze zwężkowe POLITECHNIKA KRAKOWSKA Instytut Inżynierii Cielnej i Procesowej Zakład Termodynamiki i Pomiarów Maszyn Cielnych LABORATORIUM

Bardziej szczegółowo

WYKŁAD 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH

WYKŁAD 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH WYKŁA 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH PRZEPŁYW HAGENA-POISEUILLE A (LAMINARNY RUCH W PROSTOLINIOWEJ RURZE O PRZEKROJU KOŁOWYM) Prędkość w rurze wyraża się wzorem: G p w R r, Gp const 4 dp dz

Bardziej szczegółowo

Opory przepływu powietrza w instalacji wentylacyjnej

Opory przepływu powietrza w instalacji wentylacyjnej Wentylacja i klimatyzacja 2 -ćwiczenia- Opory przepływu powietrza w instalacji wentylacyjnej Przepływ powietrza w przewodach wentylacyjnych Powietrze dostarczane jest do pomieszczeń oraz z nich usuwane

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki płynów ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH . Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSYUU ECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI POLIECHNIKI ŚLĄSKIEJ INSRUKCJA LABORAORYJNA emat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA WNIKANIA CIEPŁA DLA KONWEKCJI WYMUSZONEJ W RURZE

Bardziej szczegółowo

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne 1. Badanie rzelewu o ostrej krawędzi Wrowadzenie Przelewem nazywana jest cześć rzegrody umiejscowionej w kanale, onad którą może nastąić rzeływ.

Bardziej szczegółowo

WPŁYW POWŁOKI POWIERZCHNI WEWNĘTRZNEJ RUR PRZEWODOWYCH NA EKSPLOATACJĘ RUROCIĄGU. Przygotował: Dr inż. Marian Mikoś

WPŁYW POWŁOKI POWIERZCHNI WEWNĘTRZNEJ RUR PRZEWODOWYCH NA EKSPLOATACJĘ RUROCIĄGU. Przygotował: Dr inż. Marian Mikoś WPŁYW POWŁOKI POWIERZCHNI WEWNĘTRZNEJ RUR PRZEWODOWYCH NA EKSPLOATACJĘ RUROCIĄGU Przygotował: Dr inż. Marian Mikoś Kocierz, 3-5 wrzesień 008 Wstęp Przedmiotem opracowania jest wykazanie, w jakim stopniu

Bardziej szczegółowo

ĆWICZENIE BADANIE BEZPIECZEŃSTWA UŻYTKOWEGO SILOSÓW WIEŻOWYCH

ĆWICZENIE BADANIE BEZPIECZEŃSTWA UŻYTKOWEGO SILOSÓW WIEŻOWYCH ĆWICZENIE BADANIE BEZPIECZEŃSTWA UŻYTKOWEGO SILOSÓW WIEŻOWYCH 1. Cel ćwiczenia Celem bezośrednim ćwiczenia jest omiar narężeń ionowych i oziomych w ścianie zbiornika - silosu wieżowego, który jest wyełniony

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia: KONWEKCJA SWOBODNA W POWIETRZU OD RURY Konwekcja swobodna od rury

Bardziej szczegółowo

Cieplne Maszyny Przepływowe. Temat 7 Turbiny. α 2. Część I Podstawy teorii Cieplnych Maszyn Przepływowych. 7.1 Wstęp

Cieplne Maszyny Przepływowe. Temat 7 Turbiny. α 2. Część I Podstawy teorii Cieplnych Maszyn Przepływowych. 7.1 Wstęp 87 7.1 Wstę Zmniejszenie ola rzekroju rzeływu rowadzi do: - wzrostu rędkości czynnika, - znacznego obciążenia łoatki o stronie odciśnieniowej, - większego odchylenia rzeływu rzez wieniec łoatek, n.: turbiny

Bardziej szczegółowo

DOBÓR ZESTAWU HYDROFOROWEGO

DOBÓR ZESTAWU HYDROFOROWEGO DOBÓR ZESTAWU YDROFOROWEGO Pierwszym etaem doboru Z jest wyznaczenie obliczeniowego unktu racy urządzenia: 1. Wymaganego ciśnienia odnoszenia zestawu = + min min ss 2. Obliczeniowej wydajności Q o Q 0

Bardziej szczegółowo

Płytowe wymienniki ciepła. 1. Wstęp

Płytowe wymienniki ciepła. 1. Wstęp Płytowe wymienniki cieła. Wstę Wymienniki łytowe zbudowane są z rostokątnych łyt o secjalnie wytłaczanej owierzchni, oddzielonych od siebie uszczelkami. Płyty są umieszczane w secjalnej ramie, gdzie są

Bardziej szczegółowo

Wykład 2. Przemiany termodynamiczne

Wykład 2. Przemiany termodynamiczne Wykład Przemiany termodynamiczne Przemiany odwracalne: Przemiany nieodwracalne:. izobaryczna = const 7. dławienie. izotermiczna = const 8. mieszanie. izochoryczna = const 9. tarcie 4. adiabatyczna = const

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ

INSTRUKCJA DO ĆWICZEŃ UNIWERSYTET KZIMIERZ WIELKIEGO Instytut Mechaniki Środowiska i Informatyki Stosowanej PRCOWNI SPECJLISTYCZN INSTRUKCJ DO ĆWICZEŃ Nr ćwiczenia TEMT: Wyznaczanie rzeuszczalności ziarnistych materiałów orowatych

Bardziej szczegółowo

MECHANIKA PŁYNÓW Płyn

MECHANIKA PŁYNÓW Płyn MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez

Bardziej szczegółowo

ŁĄCZENIA CIERNE POŁĄ. Klasyfikacja połączeń maszynowych POŁĄCZENIA. rozłączne. nierozłączne. siły przyczepności siły tarcia.

ŁĄCZENIA CIERNE POŁĄ. Klasyfikacja połączeń maszynowych POŁĄCZENIA. rozłączne. nierozłączne. siły przyczepności siły tarcia. POŁĄ ŁĄCZENIA CIERNE Klasyfikacja ołączeń maszynowych POŁĄCZENIA nierozłączne rozłączne siły sójności siły tarcia siły rzyczeności siły tarcia siły kształtu sawane zgrzewane lutowane zawalcowane nitowane

Bardziej szczegółowo

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości LABORATORIUM MECHANIKI PŁYNÓW Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości dr inż. Jerzy Wiejacha ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA, WYDZ. BMiP, PŁOCK

Bardziej szczegółowo

13) Na wykresie pokazano zależność temperatury od objętości gazu A) Przemianę izotermiczną opisują krzywe: B) Przemianę izobaryczną opisują krzywe:

13) Na wykresie pokazano zależność temperatury od objętości gazu A) Przemianę izotermiczną opisują krzywe: B) Przemianę izobaryczną opisują krzywe: ) Ołowiana kula o masie kilograma sada swobodnie z wysokości metrów. Który wzór służy do obliczenia jej energii na wysokości metrów? ) E=m g h B) E=m / C) E=G M m/r D) Q=c w m Δ ) Oblicz energię kulki

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła

Bardziej szczegółowo

J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1

J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 Warstwa przyścienna jest to część obszaru przepływu bezpośrednio sąsiadująca z powierzchnią opływanego ciała. W warstwie przyściennej znaczącą rolę

Bardziej szczegółowo

Układ jednostek miar SI

Układ jednostek miar SI Układ jednostek miar SI Wielkości i jednostki odstawowe Wielkość fizyczna Symbol Jednostka Długość l [m] metr Czas t [s] sekunda Masa m,m [kg] kilogram Temeratura termodynamiczna (temeratura bezwzględna)

Bardziej szczegółowo

WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO

WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO 1. Cel ćwiczenia Doświadczalne wyznaczenie zaleŝności współczynnika oporu linioweo przepływu

Bardziej szczegółowo

Pierwsze prawo Kirchhoffa

Pierwsze prawo Kirchhoffa Pierwsze rawo Kirchhoffa Pierwsze rawo Kirchhoffa dotyczy węzłów obwodu elektrycznego. Z oczywistej właściwości węzła, jako unktu obwodu elektrycznego, który: a) nie może być zbiornikiem ładunku elektrycznego

Bardziej szczegółowo

MODELOWANIE POŻARÓW. Ćwiczenia laboratoryjne. Ćwiczenie nr 1. Obliczenia analityczne parametrów pożaru

MODELOWANIE POŻARÓW. Ćwiczenia laboratoryjne. Ćwiczenie nr 1. Obliczenia analityczne parametrów pożaru MODELOWANIE POŻARÓW Ćwiczenia laboratoryjne Ćwiczenie nr Obliczenia analityczne arametrów ożaru Oracowali: rof. nadzw. dr hab. Marek Konecki st. kt. dr inż. Norbert uśnio Warszawa Sis zadań Nr zadania

Bardziej szczegółowo

Parametry układu pompowego oraz jego bilans energetyczny

Parametry układu pompowego oraz jego bilans energetyczny Parametry układu pompowego oraz jego bilans energetyczny Układ pompowy Pompa może w zasadzie pracować tylko w połączeniu z przewodami i niezbędną armaturą, tworząc razem układ pompowy. W układzie tym pompa

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21

POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21 POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21 Ćwiczenie nr 5. POMIARY NATĘŻENIA PRZEPŁYWU GAZÓW METODĄ ZWĘŻOWĄ 1. Cel ćwiczenia

Bardziej szczegółowo

POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji

POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji POLITECHNIKA CZĘSTOCHOWSKA Instytut Maszyn Cieplnych Optymalizacja Procesów Cieplnych Ćwiczenie nr 3 Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji Częstochowa 2002 Wstęp. Ze względu

Bardziej szczegółowo

Ćwiczenie H-2 WPŁYW UKŁADU ZASILANIA NA MIKROPRZEMIESZCZENIA W DWUSTRONNEJ PODPORZE HYDROSTATYCZNEJ (DPH)

Ćwiczenie H-2 WPŁYW UKŁADU ZASILANIA NA MIKROPRZEMIESZCZENIA W DWUSTRONNEJ PODPORZE HYDROSTATYCZNEJ (DPH) POLITECHNIKA ŁÓDZKA INSTYTUT OBABIAEK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie H-2 Temat: WPŁYW UKŁADU ZASILANIA NA MIKOPZEMIESZCZENIA W DWUSTONNEJ PODPOZE HYDOSTATYCZNEJ (DPH) Konsultacja i oracowanie: Zatwierdził:

Bardziej szczegółowo

RÓWNANIE MOMENTÓW PĘDU STRUMIENIA

RÓWNANIE MOMENTÓW PĘDU STRUMIENIA RÓWNANIE MOMENTÓW PĘDU STRUMIENIA Przepływ osiowo-symetryczny ustalony to przepływ, w którym parametry nie zmieniają się wzdłuż okręgów o promieniu r, czyli zależą od promienia r i długości z, a nie od

Bardziej szczegółowo

Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO

Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO . Cel ćwiczenia Doświadczalne wyznaczenie rozkładu ciśnienia piezometrycznego w zwęŝce Venturiego i porównanie go z

Bardziej szczegółowo

WYKŁAD 14 PROSTOPADŁA FALA UDERZENIOWA

WYKŁAD 14 PROSTOPADŁA FALA UDERZENIOWA WYKŁAD 4 PROSTOPADŁA FALA UDERZENIOWA PROSTOPADŁA FALA UDERZENIOWA. ADIABATA HUGONIOTA. S 0 normal shock wave S Gazodynamika doszcza istnienie silnych nieciągłości w rzeływach gaz. Najrostszym rzyadkiem

Bardziej szczegółowo

Projekt 9 Obciążenia płata nośnego i usterzenia poziomego

Projekt 9 Obciążenia płata nośnego i usterzenia poziomego Projekt 9 Obciążenia łata nośnego i usterzenia oziomego Niniejszy rojekt składa się z dwóch części:. wyznaczenie obciążeń wymiarujących skrzydło,. wyznaczenie obciążeń wymiarujących usterzenie oziome,

Bardziej szczegółowo

Obliczanie pali obciążonych siłami poziomymi

Obliczanie pali obciążonych siłami poziomymi Obliczanie ali obciążonych siłami oziomymi Obliczanie nośności bocznej ali obciążonych siłą oziomą Srawdzenie sztywności ala Na to, czy dany al można uznać za sztywny czy wiotki, mają wływ nie tylko wymiary

Bardziej szczegółowo

WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH

WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH Pomiar strumienia masy i strumienia objętości metoda objętościowa, (1) q v V metoda masowa. (2) Obiekt badań Pomiar

Bardziej szczegółowo

1. Parametry strumienia piaskowo-powietrznego w odlewniczych maszynach dmuchowych

1. Parametry strumienia piaskowo-powietrznego w odlewniczych maszynach dmuchowych MATERIAŁY UZUPEŁNIAJACE DO TEMATU: POMIAR I OKREŚLENIE WARTOŚCI ŚREDNICH I CHWILOWYCH GŁÓWNYCHORAZ POMOCNICZYCH PARAMETRÓW PROCESU DMUCHOWEGO Józef Dańko. Wstę Masa wyływająca z komory nabojowej strzelarki

Bardziej szczegółowo

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer 2 Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny

Bardziej szczegółowo

Ćw. 11 Wyznaczanie prędkości przepływu przy pomocy rurki spiętrzającej

Ćw. 11 Wyznaczanie prędkości przepływu przy pomocy rurki spiętrzającej Ćw. Wyznaczanie rędkości rzeływu rzy omocy rurki siętrzającej. Cel ćwiczenia Celem ćwiczenia jest zaoznanie się z metodą wyznaczania rędkości rzeływu za omocą rurek siętrzających oraz wykonanie charakterystyki

Bardziej szczegółowo

STRATY ENERGII. (1) 1. Wprowadzenie.

STRATY ENERGII. (1) 1. Wprowadzenie. STRATY ENERGII. 1. Wprowadzenie. W czasie przepływu płynu rzeczywistego przez układy hydrauliczne lub pneumatyczne następuje strata energii płynu. Straty te dzielimy na liniowe i miejscowe. Straty liniowe

Bardziej szczegółowo

J. Szantyr - Wykład 3 Równowaga płynu

J. Szantyr - Wykład 3 Równowaga płynu J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania

Bardziej szczegółowo

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech emeratura i cieło E=E K +E P +U Energia wewnętrzna [J] - ieło jest energią rzekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temeratur na sosób cielny rzez chaotyczne

Bardziej szczegółowo

Efektywność energetyczna systemu ciepłowniczego z perspektywy optymalizacji procesu pompowania

Efektywność energetyczna systemu ciepłowniczego z perspektywy optymalizacji procesu pompowania Efektywność energetyczna systemu ciełowniczego z ersektywy otymalizacji rocesu omowania Prof. zw. dr hab. Inż. Andrzej J. Osiadacz Prof. ndz. dr hab. inż. Maciej Chaczykowski Dr inż. Małgorzata Kwestarz

Bardziej szczegółowo

Straty energii podczas przepływu wody przez rurociąg

Straty energii podczas przepływu wody przez rurociąg 1. Wprowadzenie Ć w i c z e n i e 11 Straty energii podczas przepływu wody przez rurociąg Celem ćwiczenia jest praktyczne wyznaczenie współczynników strat liniowych i miejscowych podczas przepływu wody

Bardziej szczegółowo

BADANIA SYMULACYJNE PROCESU IMPULSOWEGO ZAGĘSZCZANIA MAS FORMIERSKICH. W. Kollek 1 T. Mikulczyński 2 D.Nowak 3

BADANIA SYMULACYJNE PROCESU IMPULSOWEGO ZAGĘSZCZANIA MAS FORMIERSKICH. W. Kollek 1 T. Mikulczyński 2 D.Nowak 3 VI KONFERENCJA ODLEWNICZA TECHNICAL 003 BADANIA SYMULACYJNE PROCESU IMPULSOWEGO ZAGĘSZCZANIA MAS FORMIERSKICH BADANIA SYMULACYJNE PROCESU IMPULSOWEGO ZAGĘSZCZANIA MAS FORMIERSKICH W. Kollek 1 T. Mikulczyński

Bardziej szczegółowo

Kalorymetria paliw gazowych

Kalorymetria paliw gazowych Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cielnych W9/K2 Miernictwo energetyczne laboratorium Kalorymetria aliw gazowych Instrukcja do ćwiczenia nr 7 Oracowała: dr inż. Elżbieta Wróblewska Wrocław,

Bardziej szczegółowo

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny o

Bardziej szczegółowo

Prezentacja do wykładu: Układy Naędowe I rof. dr hab. Inż. Wacław Kollek Zakład Naędów i Automatyki Hydraulicznej Instytut Konstrukcji i Eksloatacji Maszyn I-6 Politechnika Wrocławska Sis treści. Wrowadzenie

Bardziej szczegółowo

Przepływ w korytach otwartych. kanał otwarty przepływ ze swobodną powierzchnią

Przepływ w korytach otwartych. kanał otwarty przepływ ze swobodną powierzchnią Przepływ w korytach otwartych kanał otwarty przepływ ze swobodną powierzchnią Przepływ w korytach otwartych Przewody otwarte dzielimy na: Naturalne rzeki strumienie potoki Sztuczne kanały komunikacyjne

Bardziej szczegółowo

Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych.

Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych. Termodynamika II ćwiczenia laboratoryjne Ćwiczenie nr 3 Temat: Wyznaczanie wsółczynnika Joule a-tomsona wybranyc gazów rzeczywistyc. Miejsce ćwiczeń: Laboratorium Tecnologii Gazowyc Politecniki Poznańskiej

Bardziej szczegółowo

Rys.1. Zwężki znormalizowane: a) kryza, b) dysza, c) dysza Venturiego [2].

Rys.1. Zwężki znormalizowane: a) kryza, b) dysza, c) dysza Venturiego [2]. WYZNACZANIE WSPÓŁCZYNNIKA PRZEPŁYWU W ZWĘŻKACH POMIAROWYCH DLA GAZÓW 1. Wprowadzenie Najbardziej rozpowszechnioną metodą pomiaru natężenia przepływu jest użycie elementów dławiących płyn. Stanowią one

Bardziej szczegółowo

Rys.1 Do obliczeń przyjąć następujące dane:

Rys.1 Do obliczeń przyjąć następujące dane: Instrukcja rzygotowania i realizacji scenariusza dotyczącego ćwiczenia T3 z rzedmiotu "Wytrzymałość materiałów", rzeznaczona dla studentów II roku studiów stacjonarnych I stonia w kierunku Energetyka na

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie H-1 OKREŚLENIE CHARAKTERYSTYK DŁAWIKÓW HYDRAULICZNYCH

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie H-1 OKREŚLENIE CHARAKTERYSTYK DŁAWIKÓW HYDRAULICZNYCH POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie H-1 Temat: OKREŚLENIE CHARAKTERYSTYK DŁAWIKÓW HYDRAULICZNYCH Konsutacja i oracowanie: dr ab. inż. Donat Lewandowski, rof. PŁ

Bardziej szczegółowo

OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH

OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH ĆWICZENIE II OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą określania oporów przepływu w przewodach. 2. LITERATURA 1. Informacje z wykładów i ćwiczeń

Bardziej szczegółowo

Zastosowania Równania Bernoullego - zadania

Zastosowania Równania Bernoullego - zadania Zadanie 1 Przez zwężkę o średnicy D = 0,2 m, d = 0,05 m przepływa woda o temperaturze t = 50 C. Obliczyć jakie ciśnienie musi panować w przekroju 1-1, aby w przekroju 2-2 nie wystąpiło zjawisko kawitacji,

Bardziej szczegółowo

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,

Bardziej szczegółowo

J. Szantyr Wykład nr 17 Przepływy w kanałach otwartych

J. Szantyr Wykład nr 17 Przepływy w kanałach otwartych J. Szantyr Wykład nr 7 Przepływy w kanałac otwartyc Przepływy w kanałac otwartyc najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy cieczy

Bardziej szczegółowo

III r. EiP (Technologia Chemiczna)

III r. EiP (Technologia Chemiczna) AKADEMIA GÓRNICZO HUTNICZA WYDZIAŁ ENERGETYKI I PALIW III r. EiP (Technologia Chemiczna) INŻYNIERIA CHEMICZNA I PROCESOWA (przenoszenie pędu) Prof. dr hab. Leszek CZEPIRSKI Kontakt: A4, p. 424 Tel. 12

Bardziej szczegółowo

( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) 0, Dobór zestawu hydroforowego PN-9/B-176 Wyznaczenie obliczeniowego unktu racy urzdzenia: 1. Wydajnoci / strumienia rzeływu wody Q O Obl ( ) 45 3 3, 68 14; dm s, m h Q = q =, Σ q, ( ), 1 3 3 Q = q = 1, 7

Bardziej szczegółowo

Wykres linii ciśnień i linii energii (wykres Ancony)

Wykres linii ciśnień i linii energii (wykres Ancony) Wyres linii ciśnień i linii energii (wyres Ancony) W wyorzystywanej przez nas do rozwiązywania problemów inżyniersich postaci równania Bernoulliego występuje wysoość prędości (= /g), wysoość ciśnienia

Bardziej szczegółowo

BADANIE OPORÓW PRZEPŁYWU PŁYNÓW W PRZEWODACH

BADANIE OPORÓW PRZEPŁYWU PŁYNÓW W PRZEWODACH Ćwiczenie 3: BADANIE OPORÓW PRZEPŁYWU PŁYNÓW W PRZEWODACH 1. CEL ĆWICZENIA Celem ćwiczenia jest wyznaczenie wartości liniowych i miejscowych oporów przepływu w rurze w zależności od wielkości strumienia

Bardziej szczegółowo

nieciągłość parametrów przepływu przyjmuje postać płaszczyzny prostopadłej do kierunku przepływu

nieciągłość parametrów przepływu przyjmuje postać płaszczyzny prostopadłej do kierunku przepływu CZĘŚĆ II DYNAMIKA GAZÓW 4 Rozdział 6 Prostoadła fala 6. Prostoadła fala Podstawowe własności: nieciągłość arametrów rzeływu rzyjmuje ostać łaszczyzny rostoadłej do kierunku rzeływu w zbieżno - rozbieżnym

Bardziej szczegółowo

Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ]

Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ] Mechanika płynów Płyn każda substancja, która może płynąć, tj. dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje oraz może swobodnie się przemieszczać (przepływać), np. przepompowywana

Bardziej szczegółowo

DYNAMIKA PŁYNÓW. Przepływ płynów Strumień płynu Płyn idealny Linie prądu Równanie ciągłości strugi Prawo Bernoulli ego Zastosowania R.C.S. i PR.B.

DYNAMIKA PŁYNÓW. Przepływ płynów Strumień płynu Płyn idealny Linie prądu Równanie ciągłości strugi Prawo Bernoulli ego Zastosowania R.C.S. i PR.B. DYNAMIKA PŁYNÓW Przeływ łynów rumień łynu Płyn idealny Linie rądu Równanie ciągłości srugi Prawo Bernoulli ego Zasosowania R.C.. i PR.B. PRZEPŁYW PŁYNÓW Przedmioem badań dynamiki łynów (hydrodynamiki i

Bardziej szczegółowo

Instrukcja do laboratorium z fizyki budowli. Ćwiczenie: Pomiar i ocena hałasu w pomieszczeniu

Instrukcja do laboratorium z fizyki budowli. Ćwiczenie: Pomiar i ocena hałasu w pomieszczeniu nstrukcja do laboratorium z fizyki budowli Ćwiczenie: Pomiar i ocena hałasu w omieszczeniu 1 1.Wrowadzenie. 1.1. Energia fali akustycznej. Podstawowym ojęciem jest moc akustyczna źródła, która jest miarą

Bardziej szczegółowo

OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH

OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH ĆWICZENIE II OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą określania oporów przepływu w przewodach. 2. LITERATURA 1. Informacje z wykładów i ćwiczęń

Bardziej szczegółowo

Stan wilgotnościowy przegród budowlanych. dr inż. Barbara Ksit

Stan wilgotnościowy przegród budowlanych. dr inż. Barbara Ksit Stan wilgotnościowy rzegród budowlanych dr inż. Barbara Ksit barbara.ksit@ut.oznan.l Przyczyny zawilgocenia rzegród budowlanych mogą być nastęujące: wilgoć budowlana wrowadzona rzy rocesach mokrych odczas

Bardziej szczegółowo

Zadanie 1. Zadanie 2.

Zadanie 1. Zadanie 2. Zadanie 1. Określić nadciśnienie powietrza panujące w rurociągu R za pomocą U-rurki, w której znajduje się woda. Różnica poziomów wody w U-rurce wynosi h = 100 cm. Zadanie 2. Określić podciśnienie i ciśnienie

Bardziej szczegółowo

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Bangkok, Thailand, March 011 W-3 (Jaroszewicz) 0 slajdów Na odstawie rezentacji rof. J. Rutkowskiego Fizyka kwantowa fale rawdoodobieństwa funkcja falowa aczki falowe materii zasada nieoznaczoności równanie

Bardziej szczegółowo

Laboratorium. Hydrostatyczne Układy Napędowe

Laboratorium. Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,

Bardziej szczegółowo

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje

Bardziej szczegółowo

Prace wst pne Wytyczenie sieci gazowej na mapie geodezyjnej

Prace wst pne Wytyczenie sieci gazowej na mapie geodezyjnej Prace wstne 1. Lokalizacja budynków w zaoatrywanych w aliwo gazowe 2. Proozycja usytuowania stacji redukcyjnej lub unktu redukcyjnego z zachowaniem wymaganych stref zagroenia wybuchem 3. Zarojektowanie

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów ANALIZA PRZEKAZYWANIA CIEPŁA I FORMOWANIA SIĘ PROFILU TEMPERATURY DLA NIEŚCIŚLIWEGO, LEPKIEGO PRZEPŁYWU LAMINARNEGO W PRZEWODZIE ZAMKNIĘTYM Cel ćwiczenia Celem ćwiczenia będzie obserwacja procesu formowania

Bardziej szczegółowo

SZEREGOWY SYSTEM HYDRAULICZNY

SZEREGOWY SYSTEM HYDRAULICZNY LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 1 SZEREGOWY SYSTEM HYDRAULICZNY 1. Cel ćwiczenia Sporządzenie wykreu Ancony na podtawie obliczeń i porównanie zmierzonych wyokości ciśnień piezometrycznych z obliczonymi..

Bardziej szczegółowo

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23 Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy

Bardziej szczegółowo

WYMAGANIA TECHNICZNE DLA PŁYTOWYCH WYMIENNIKÓW CIEPŁA DLA CIEPŁOWNICTWA

WYMAGANIA TECHNICZNE DLA PŁYTOWYCH WYMIENNIKÓW CIEPŁA DLA CIEPŁOWNICTWA WYMAAA TECHCZE DLA PŁYTOWYCH WYMEKÓW CEPŁA DLA CEPŁOWCTWA iniejsza wersja obowiązuje od dnia 02.11.2011 Stołeczne Przedsiębiorstwo Energetyki Cielnej SA Ośrodek Badawczo Rozwojowy Ciełownictwa ul. Skorochód-Majewskiego

Bardziej szczegółowo

PROJEKT NR 2 Współpraca pompy z rurociągiem

PROJEKT NR 2 Współpraca pompy z rurociągiem PROJEKT NR 2 Współpraca pompy z rurociągiem Z otwartego zbiornika wodnego o dużej pojemności pompowana jest woda chłodząca do górnego zbiornika ciśnieniowego przez rurociąg z rur stalowych przedstawiony

Bardziej szczegółowo

INTERPRETACJA WYNIKÓW BADANIA WSPÓŁCZYNNIKA PARCIA BOCZNEGO W GRUNTACH METODĄ OPARTĄ NA POMIARZE MOMENTÓW OD SIŁ TARCIA

INTERPRETACJA WYNIKÓW BADANIA WSPÓŁCZYNNIKA PARCIA BOCZNEGO W GRUNTACH METODĄ OPARTĄ NA POMIARZE MOMENTÓW OD SIŁ TARCIA Górnictwo i Geoinżynieria Rok 3 Zeszyt 008 Janusz aczmarek* INTERPRETACJA WYNIÓW BADANIA WSPÓŁCZYNNIA PARCIA BOCZNEGO W GRUNTACH METODĄ OPARTĄ NA POMIARZE MOMENTÓW OD SIŁ TARCIA 1. Wstę oncecję laboratoryjnego

Bardziej szczegółowo

Zajęcia laboratoryjne

Zajęcia laboratoryjne Zajęcia laboratoryjne Napęd Hydrauliczny Instrukcja do ćwiczenia nr 3 Metody ograniczenia strat mocy w układach hydraulicznych Opracowanie: Z. Kudźma, P. Osiński, U. Radziwanowska, J. Rutański, M. Stosiak

Bardziej szczegółowo