J. Szantyr Wykład 5 Turbulentna warstwa przyścienna

Wielkość: px
Rozpocząć pokaz od strony:

Download "J. Szantyr Wykład 5 Turbulentna warstwa przyścienna"

Transkrypt

1 J. Szantr Wkład 5 Turbulentna warstwa przścienna Warstwa przścienna jest to część obszaru przepłwu bezpośrednio sąsiadująca z powierzchnią opłwanego ciała. W warstwie przściennej znaczącą rolę odgrwają sił lepkości i wstępują tam znaczne poprzeczne gradient prędkości przepłwu. Poza warstwą przścienną przepłw może bć praktcznie uważan za nie lepki. Za opłwanm ciałem warstwa przechodzi w tzw. ślad. Przepłw w warstwie może bć laminarn lub turbulentn. Umowną grubość warstw δ określa osiągnięcie prędkości u 0, 99u

2 Tpowa warstwa przścienna na ściance opłwanego obiektu składa się ze stref przepłwu laminarnego prz krawędzi natarcia, z rejonu przejściowego i ze stref turbulentnej. W strefie turbulentnej wstępuje bardzo cienka podwarstwa lepka prz samej ściance, dalej od ścianki - rejon przejściow i dominując rejon w pełni turbulentn.

3 Powiększanie liczb Renoldsa prowadzi do utrat stabilności laminarnej warstw przściennej i do stopniowego rozwoju turbulencji aż do wstąpienia w pełni rozwiniętej turbulentnej warstw przściennej Schemat procesu turbulizacji warstw przściennej. Wizualizacja procesu powstawania turbulencji

4 Położenie punktu przejścia laminarnej warstw przściennej w turbulentną zależ zarówno od liczb Renoldsa jak i od gradientu ciśnienia wzdłuż warstw. Rsunek pokazuje to zjawisko na smetrcznm profilu ustawianm pod różnmi kątami natarcia, co zmienia gradient ciśnienia. Linie przerwane pokazują położenie punktów przejścia laminarnoturbulentnego prz różnch wartościach liczb Renoldsa

5 Turbulentna warstwa przścienna Równania analogiczne do równań Prandtla dla dwuwmiarowej turbulentnej warstw przściennej można wprowadzić z równań Renoldsa, traktując wszstkie parametr opisujące ruch płnu jako efekt superpozcji ich wartości średnich (wolnozmiennch) i fluktuacji turbulentnch. 0 V x U równanie zachowania mas 1 u x u U x U x P U V x U U 1 u x V x V P V V x V U kierunek x kierunek

6 Przeprowadzenie podobnego oszacowania wielkości poszczególnch wrazów powższch równań pozwala na wprowadzenie uproszczeń (pominięcie wrazów względnie małch), co ostatecznie daje równania opisujące przepłw w turbulentnej warstwie przściennej: U x V 0 U U 1 P U U V x x P 0 kierunek równanie zachowania mas u Podobnie jak w przpadku laminarnej warstw przściennej średnie ciśnienie pozostaje stałe w poprzek warstw. Człon turbulentnch naprężeń Renoldsa wmaga zastosowanie odpowiedniego modelu turbulencji dla zamknięcia powższego układu równań. kierunek x

7 Wstąpienie dodatniego gradientu ciśnienia wzdłuż warstw przściennej (czli wzrostu ciśnienia w kierunku przepłwu), może prowadzić do tzw. oderwania warstw przściennej. Element płnu prz samej ściance jest hamowan siłami lepkości i siłami ciśnienia, co powoduje jego zatrzmanie, a następnie ruch w kierunku przeciwnm do przepłwu. W punkcie oderwania A mam: u 0 Ponadto zeruje się tam naprężenie lepkościowe na ścianie 0 w 0 Rozwój oderwania w czasie

8 Oderwanie może wstąpić zarówno w laminarnej jak i w turbulentnej warstwie przściennej (w turbulentnej wstępuje później, czli prz wższm dodatnim gradiencie ciśnienia). Oderwanie warstw przściennej jest zjawiskiem niekorzstnm, zakłóca pracę maszn i urządzeń przepłwowch oraz obniża ich sprawność. Maszn i urządzenia przepłwowe powinn bć projektowane w taki sposób, ab unikać oderwania przepłwu prznajmniej w ich projektowch warunkach prac. Pęcherz oderwaniow <Oderwanie warstw przściennej na profilu lotniczm prz dużm kącie natarcia (rsunek doln)

9 Przkład przepłwów laminarnch i turbulentnch w warstwach przściennch i śladach

10 Warstwa przścienna w atmosferze Ziemi Wpłw turbulentn z krateru wulkanu <- Ślad turbulentn za płaską płtą obliczon metodą LES (Large Edd Simulation)

11 Struktura turbulentnej warstw przściennej W turbulentnej warstwie przściennej można wdzielić kilka stref różniącch się dominującmi mechanizmami kształtującmi przepłw. Ogólnie warstwę można podzielić na obszar wewnętrzn o grubości około 0,δ oraz obszar zewnętrzn. W obszarze zewnętrznm dominują sił bezwładności. Obszar wewnętrzn dzieli się na podwarstwę lepką o grubości około 0,0δ, gdzie sił lepkości i bezwładności są podobnego rzędu i funkcjonuje przede wszstkim lepkościow mechanizm wmian pędu i energii, oraz obszar przejściow i logartmiczn, gdzie dominują naprężenia turbulentne i turbulentn mechanizm wmian mas, pędu i energii.

12 Theodore von Karman wprowadził do opisu przepłwu w warstwie przściennej bezwmiarową prędkość przepłwu i bezwmiarową odległość od ścian: gdzie: u u u u bezwmiarowa odległość od ścian u w bezwmiarowa prędkość przepłwu gdzie: ρ gęstość płnu ν - kinematczn współcznnik lepkości płnu Theodore von Karman naprężenia lepkościowe na ścianie w

13 W podwarstwie lepkiej mam wted: W obszarze logartmicznm mam wted: u u 1 ln C Von Karman pierwotnie ustalił ekspermentalnie wartości stałch: 0,41 C 5, 0 (dla ścian gładkich) W obszarze przejściowm żadna z powższch relacji nie zgadza się z rzeczwistością. Graniczną wartością bezwmiarowej odległości od ścian jest: 11,0 Poniżej tej wartości lepiej oddaje rzeczwistość wzór dla podwarstw lepkiej, powżej tej wartości wzór logartmiczn.powższe zależności są podstawą tzw. prawa ścian, użwanego do korgowania stosowanch w obliczeniach numercznch modeli turbulencji w obszarze bezpośrednio przlegającm do opłwanch obiektów.

14 Na skutek łącznego działania lepkościowego i turbulentnego mechanizmu wmian pędu profil prędkości w warstwie turbulentnej jest pełniejsz niż w warstwie laminarnej. W turbulentnej warstwie przściennej wstępują silne trójwmiarowe fluktuacje prędkości, które osiągają maksimum w pobliżu ścian, czli w obszarze maksmalnego gradientu prędkości średniej.

15 Na drodze teoretczno-empircznej wprowadzono szereg praktcznie użtecznch wzorów: C fturb 0,074 5 Re dla liczb Renoldsa Re turb ,37 L 5 Re C fturb 0,455 A,58 log Re Re dla Re 10 9 gdzie stałą A określa się na podstawie (górnej) wartości krtcznej liczb Renoldsa według tabeli: Podane wżej wzor na współcznnik tarcia obowiązują dla ścian gładkiej. W przepłwie turbulentnm współcznnik ten zależ również od chropowatości ścian Re krt A

16 Miarą chropowatości powierzchni jest średnia wsokość chropowatości k s Z punktu widzenia oporu tarcia istotna jest relacja średniej wsokości chropowatości do grubości podwarstw lepkiej w turbulentnej warstwie przściennej. Jeżeli chropowatość mieści się w tej podwarstwie, to chropowatość nie wwołuje zmian profilu prędkości w warstwie i nie wpłwa na opór tarcia - powierzchnię nazwam hdrodnamicznie gładką. Natomiast jeżeli wsokość chropowatości wkracza poza tę podwarstwę, to jej obecność zmienia profil prędkości w warstwie i wpłwa na wzrost oporu tarcia.

17 Wkres pokazuje zależność współcznnika oporu tarcia od odwrotności chropowatości względnej (czli odniesionej do charakterstcznego wmiaru liniowego L). Naniesiono również liczb Renoldsa oparte na wsokości chropowatości. Istnieją zależności empirczne pozwalające wznaczć współcznnik oporu tarcia na powierzchni chropowatej w turbulentnej warstwie przściennej, np.: gdzie: C fchrop 1,89 1,6 log l k s,5 prz l k s

18 Przkład nr 1 Cienka płaska płta o wmiarach 0.1*0.5 [m] została umieszczona z zerowm kątem natarcia w przepłwie wod o prędkości 10.0 [m/s]. Wznaczć opór tarcia płt w dwóch przpadkach: a) gd dłuższ bok jest prostopadł do kierunku prędkości, b) gd krótsz bok jest prostopadł do prędkości. Dane: kinematczn współcznnik lepkości ν=0, m / s gęstość wod ρ= kg/ m Przpadek a u L 10,0 0,1 Re 0, C f 0,074 5 Re 5 0, , Rf C f SV 0,004670,5 1000,0 0,1 0,5 10,0 3, 35 N

19 Przpadek b Re u L 10,0 0,5 0, C f 0,074 5 Re 5 0, ,00338 R f C f 1 V S 0,003380,5 1000,0 0,1 10,0 16,9[ N] Wniosek: zmiana ustawienia płtki względem przepłwu, prz zachowaniu pozostałch parametrów, może spowodować istotną zmianę oporu tarcia

20 Przkład nr Cienką płtę o wmiarach 1,0*1,0 [m] umieszczono pod zerowm kątem natarcia w przepłwie wod o prędkości 10 [m/s]. Wznaczć wielkość oporu tarcia w dwóch przpadkach: a) dla płt gładkiej, b) dla płt o chropowatości względnej 0,0001. Dane: Przpadek a Re C fturb ul współcznnik lepkości kinematcznej ν=0, gęstość wod ρ=1000,0 kg 3 m 10,0 1, , ,455 A 0,455,58 Re 7 log Re log10 m Wsoka wartość liczb Renoldsa wmaga wkorzstania bardziej złożonego wzoru ,58 0,0063 s

21 R fturb C fturb 1 u S 0,00640,5 1000,0 10,0,0 64[ N] Przpadek b C fchrop,5 1,89 1,6log , R fchrop C fchrop 1 u S 0,004940,5 1000,0 10,0,0 494[ N] Wniosek: chropowatość powierzchni ma poważn wpłw na wielkość oporu tarcia w turbulentnej warstwie przściennej i może doprowadzić do nawet ponad dwukrotnego wzrostu oporu w stosunku do powierzchni gładkiej.

22 Przkład nr 3 Na płcie o długości L=1 [m] w przepłwie prz Re= wstępuje alternatwnie laminarna i turbulentna warstwa przścienna. Jakie są grubości obu tpów warstw na końcu płt? Warstwa laminarna: lam 5L Re ,0158[ m] Warstwa turbulentna: turb 0,37L 5 Re 0, ,037[ m] Wniosek: prz porównwalnch warunkach przepłwu turbulentna warstwa przścienna jest ponad dwukrotnie grubsza od warstw laminarnej. Jest to konsekwencją bardziej intenswnej wmian pędu i energii płnu w warstwie turbulentnej.

23 Temperaturowa warstwa przścienna W niektórch problemach (np. w wmiennikach ciepła) istotne jest wznaczenie rozkładu temperatur w warstwie przściennej. Prz założeniu, że przepłw jest stacjonarn i liczba Renoldsa jest większa od 1000, można wprowadzić zależność: T T u c w prz Pr 1, 0 (liczba Prandtla) Tw T u gdzie: θ bezwmiarowa temperatura T w - temperatura na ścianie - temperatura daleko od ścian T Jeżeli w przepłwie stacjonarnm liczba Prandtla jest równa 1, to profil bezwmiarowej temperatur θ w warstwie przściennej jest identczn z profilem bezwmiarowej prędkości. Prz Pr>1 gradient temperatur w wewnętrznm obszarze warstw jest większ od gradientu prędkości, a prz Pr<1 mniejsz.

J. Szantyr Wykład 8 Warstwy przyścienne i ślady 1

J. Szantyr Wykład 8 Warstwy przyścienne i ślady 1 J. Szantr Wkład 8 Warstw przścienne i ślad 1 Warstwa przścienna jest to część obszar przepłw bezpośrednio sąsiadjąca z powierzchnią opłwanego ciała. W warstwie przściennej znaczącą rolę odgrwają sił lepkości

Bardziej szczegółowo

J. Szantyr Wykład nr 20 Warstwy przyścienne i ślady 2

J. Szantyr Wykład nr 20 Warstwy przyścienne i ślady 2 J. Szantyr Wykład nr 0 Warstwy przyścienne i ślady W turbulentnej warstwie przyściennej można wydzielić kilka stref różniących się dominującymi mechanizmami kształtującymi przepływ. Ogólnie warstwę można

Bardziej szczegółowo

J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1

J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 Warstwa przyścienna jest to część obszaru przepływu bezpośrednio sąsiadująca z powierzchnią opływanego ciała. W warstwie przyściennej znaczącą rolę

Bardziej szczegółowo

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy

Bardziej szczegółowo

Aerodynamika I Efekty lepkie w przepływach ściśliwych.

Aerodynamika I Efekty lepkie w przepływach ściśliwych. Aerodynamika I Efekty lepkie w przepływach ściśliwych. przepłw wokół profilu RAE-2822 (M = 0.85, Re = 6.5 10 6, α = 2 ) Efekty lepkie w przepływach ściśliwych Równania ruchu lepkiego płynu ściśliwego Całkowe

Bardziej szczegółowo

W przypadku przepływu potencjalnego y u z. nieściśliwego równanie zachowania masy przekształca się w równanie Laplace a: = + + t

W przypadku przepływu potencjalnego y u z. nieściśliwego równanie zachowania masy przekształca się w równanie Laplace a: = + + t J. Szantr Wkład nr 3 Przepłw potencjalne 1 Jeżeli przepłw płn jest bezwirow, czli wszędzie lb prawie wszędzie w pol przepłw jest rot 0 to oznacza, że istnieje fnkcja skalarna ϕ,, z, t), taka że gradϕ.

Bardziej szczegółowo

OPŁYW PROFILU. Ciała opływane. profile lotnicze łopatki. Rys. 1. Podział ciał opływanych pod względem aerodynamicznym

OPŁYW PROFILU. Ciała opływane. profile lotnicze łopatki. Rys. 1. Podział ciał opływanych pod względem aerodynamicznym OPŁYW PROFILU Ciała opływane Nieopływowe Opływowe walec kula profile lotnicze łopatki spoilery sprężarek wentylatorów turbin Rys. 1. Podział ciał opływanych pod względem aerodynamicznym Płaski np. z blachy

Bardziej szczegółowo

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:

Bardziej szczegółowo

J. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne

J. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne J. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i turbulentnego, odkrył Osborne Reynolds (1842 1912) w swoim znanym eksperymencie

Bardziej szczegółowo

J. Szantyr Wykład 4 Podstawy teorii przepływów turbulentnych Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i

J. Szantyr Wykład 4 Podstawy teorii przepływów turbulentnych Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i J. Szantyr Wykład 4 Podstawy teorii przepływów turbulentnych Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i turbulentnego, odkrył Osborne Reynolds (1842 1912) w swoim znanym

Bardziej szczegółowo

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu

Bardziej szczegółowo

Ć w i c z e n i e K 2 b

Ć w i c z e n i e K 2 b Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena:

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika

Bardziej szczegółowo

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem

Bardziej szczegółowo

Pierwiastki kwadratowe z liczby zespolonej

Pierwiastki kwadratowe z liczby zespolonej Pierwiastki kwadratowe z liczb zespolonej Pierwiastkiem kwadratowm z liczb w C nazwam każdą liczbę zespoloną z C, dla której z = w. Zbiór wszstkich pierwiastków oznaczam smbolem w. Innmi słow w = {z C

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez

Bardziej szczegółowo

PRÓBNA MATURA. ZADANIE 1 (1 PKT) Wskaż liczbę, której 4% jest równe 8. A) 200 B) 100 C) 3,2 D) 32

PRÓBNA MATURA. ZADANIE 1 (1 PKT) Wskaż liczbę, której 4% jest równe 8. A) 200 B) 100 C) 3,2 D) 32 PRÓBNA MATURA ZADANIE ( PKT) Wskaż liczbę, której % jest równe 8. A) B) C), D) ZADANIE ( PKT) Odległość liczb od liczb -8 na osi liczbowej jest równa A) 8 B) + 8 C) + 8 D) 8 ZADANIE ( PKT) Wskaż rsunek,

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma

Bardziej szczegółowo

f x f y f, jest 4, mianowicie f = f xx f xy f yx

f x f y f, jest 4, mianowicie f = f xx f xy f yx Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

POMIAR STRUMIENIA PRZEPŁYWU PŁYNÓW I OPORÓW PRZEPŁYWU

POMIAR STRUMIENIA PRZEPŁYWU PŁYNÓW I OPORÓW PRZEPŁYWU POMIAR STRUMIENIA PRZEPŁYWU PŁYNÓW I OPORÓW PRZEPŁYWU CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą pomiaru prędkości płynu przy pomocy rurki Prandtla oraz określanie oporów przepływu w przewodach

Bardziej szczegółowo

Ruch po równi pochyłej

Ruch po równi pochyłej Sławomir Jemielit Ruch po równi pochłej Z równi pochłej o kącie nachlenia do poziomu α zsuwa się ciało o masie m. Jakie jest przspieszenie ciała, jeśli współcznnik tarcia ciała o równię wnosi f? W jakich

Bardziej szczegółowo

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej 1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm

Bardziej szczegółowo

Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp

Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp Wnikanie ciepła przy konwekcji swobodnej 1. Wstęp Współczynnik wnikania ciepła podczas konwekcji silnie zależy od prędkości czynnika. Im prędkość czynnika jest większa, tym współczynnik wnikania ciepła

Bardziej szczegółowo

Wykład 10. Funkcje wielu zmiennych

Wykład 10. Funkcje wielu zmiennych Wkład 1. Funkcje wielu zmiennch dr Mariusz Grządziel 6 maja 1 (ostatnie poprawki: 1 maja 1) Funkcje wielu zmiennch Przestrzeń dwuwmiarowa, oznaczana w literaturze matematcznej smbolem R, może bć utożsamiona

Bardziej szczegółowo

AERODYNAMIKA I WYKŁAD 4 ELEMENTY TEORII WARSTWY PRZYŚCIENNEJ CZĘŚĆ 1

AERODYNAMIKA I WYKŁAD 4 ELEMENTY TEORII WARSTWY PRZYŚCIENNEJ CZĘŚĆ 1 WYKŁAD 4 ELEMENTY TEORII WARSTWY PRZYŚCIENNEJ CZĘŚĆ 1 Pojęcie warstwy przyściennej w płynie. Równania Prandtla Warstwa przyścienna (WP) warstwa płynu przylegająca do powierzchni opływanego ciała, charakteryzującą

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów ANALIZA PRZEKAZYWANIA CIEPŁA I FORMOWANIA SIĘ PROFILU TEMPERATURY DLA NIEŚCIŚLIWEGO, LEPKIEGO PRZEPŁYWU LAMINARNEGO W PRZEWODZIE ZAMKNIĘTYM Cel ćwiczenia Celem ćwiczenia będzie obserwacja procesu formowania

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

Klucz odpowiedzi i schemat punktowania do próbnego zestawu egzaminacyjnego z zakresu przedmiotów matematyczno-przyrodniczych

Klucz odpowiedzi i schemat punktowania do próbnego zestawu egzaminacyjnego z zakresu przedmiotów matematyczno-przyrodniczych Klucz odpowiedzi i schemat punktowania do próbnego zestawu egzaminacjnego z zakresu przedmiotów matematczno-przrodniczch Z a d a n i a z a m k n i ę t e Numer zadania 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3

Bardziej szczegółowo

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu

Bardziej szczegółowo

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7 ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe

Bardziej szczegółowo

Numeryczna symulacja opływu wokół płata o zmodyfikowanej krawędzi natarcia. Michał Durka

Numeryczna symulacja opływu wokół płata o zmodyfikowanej krawędzi natarcia. Michał Durka Numeryczna symulacja opływu wokół płata o zmodyfikowanej krawędzi natarcia Michał Durka Politechnika Poznańska Inspiracja Inspiracją mojej pracy był artykuł w Świecie Nauki opisujący znakomite charakterystyki

Bardziej szczegółowo

WYKŁAD 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH

WYKŁAD 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH WYKŁA 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH PRZEPŁYW HAGENA-POISEUILLE A (LAMINARNY RUCH W PROSTOLINIOWEJ RURZE O PRZEKROJU KOŁOWYM) Prędkość w rurze wyraża się wzorem: G p w R r, Gp const 4 dp dz

Bardziej szczegółowo

40 dla płyt wolnopodpartych, jednokierunkowo zbrojonych. 50 dla płyt zamocowanych i ciągłych oraz dwukierunkowo zbrojonych. w = = q.

40 dla płyt wolnopodpartych, jednokierunkowo zbrojonych. 50 dla płyt zamocowanych i ciągłych oraz dwukierunkowo zbrojonych. w = = q. Płt dwukierunkowo zbrojone l Płt zazwczaj są oparte na czterech krawędziach. Jeśli ma to przjmujem, że płta wmaga zbrojenia w lmin dwóch kierunkach (krzżowe zbrojenia). Płt krzżowo zbrojone mogą bć jedno

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 17751 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Rozważm treść następujacego

Bardziej szczegółowo

ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego

ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego 34 3.Przepływ spalin przez kocioł oraz odprowadzenie spalin do atmosfery ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego T0

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY MAJA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 ( 4) 2 8 4 jest

Bardziej szczegółowo

Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I

Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I Aerodynamika I Ściśliwy opływ profilu transoniczny przepływ wokół RAE-8 M = 0.73, Re = 6.5 10 6, α = 3.19 Ściśliwe przepływy potencjalne Teoria pełnego potencjału Wprowadźmy potencjał prędkości (zakładamy

Bardziej szczegółowo

ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA

ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA POLITECHNIKA RZESZOWSKA im. IGNACEGO ŁUKASIEWICZA Al. Powstańców Warszawy 8, 35-959 Rzeszów, Tel: 854-31-1,

Bardziej szczegółowo

ZASADY ZACHOWANIA W FIZYCE

ZASADY ZACHOWANIA W FIZYCE ZASADY ZACHOWAIA: ZASADY ZACHOWAIA W FIZYCE Energii Pędu Moentu pędu Ładunku Liczb barionowej ZASADA ZACHOWAIA EERGII Praca sił zewnętrznej W = ΔE calk Ziana energii całkowitej Jeżeli W= to ΔE calk = ZASADA

Bardziej szczegółowo

Parametry układu pompowego oraz jego bilans energetyczny

Parametry układu pompowego oraz jego bilans energetyczny Parametry układu pompowego oraz jego bilans energetyczny Układ pompowy Pompa może w zasadzie pracować tylko w połączeniu z przewodami i niezbędną armaturą, tworząc razem układ pompowy. W układzie tym pompa

Bardziej szczegółowo

Obciążenia środowiskowe: śnieg i wiatr wg PN-EN i PN-EN

Obciążenia środowiskowe: śnieg i wiatr wg PN-EN i PN-EN Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Obciążenia środowiskowe: śnieg i wg PN-EN 1991-1-3 i PN-EN 1991-1-4 Jerzy Bobiński Gdańsk, wersja 0.32 (2014) Obciążenie śniegiem Obciążenie

Bardziej szczegółowo

OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH

OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH ĆWICZENIE II OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą określania oporów przepływu w przewodach. 2. LITERATURA 1. Informacje z wykładów i ćwiczeń

Bardziej szczegółowo

OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH

OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH ĆWICZENIE II OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą określania oporów przepływu w przewodach. 2. LITERATURA 1. Informacje z wykładów i ćwiczęń

Bardziej szczegółowo

Instrukcja stanowiskowa

Instrukcja stanowiskowa POLITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petrochemii Instytut Inżynierii Mechanicznej w Płocku Zakład Aparatury Przemysłowej LABORATORIUM WYMIANY CIEPŁA I MASY Instrukcja stanowiskowa Temat:

Bardziej szczegółowo

Przepływy laminarne - zadania

Przepływy laminarne - zadania Zadanie 1 Warstwa cieczy o wysokości = 3mm i lepkości v = 1,5 10 m /s płynie równomiernie pod działaniem siły ciężkości po płaszczyźnie nachylonej do poziomu pod kątem α = 15. Wyznaczyć: a) Rozkład prędkości.

Bardziej szczegółowo

Laboratorium. Hydrostatyczne Układy Napędowe

Laboratorium. Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 6 KWIETNIA 0 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) Liczbę 5 7 zaokr aglam do liczb,6.

Bardziej szczegółowo

ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią

ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią ĆWICZENIE 8 i 9 Zginanie poprzeczne z wkładową częścią z z QzS J b z Dskusja wzoru na naprężenia stczne. Uśrednione naprężenie stczne, J bz Qz x S z jest funkcją dwóch zmiennch: x- położenia przekroju

Bardziej szczegółowo

J. Szantyr Wykład nr 17 Przepływy w kanałach otwartych

J. Szantyr Wykład nr 17 Przepływy w kanałach otwartych J. Szantyr Wykład nr 7 Przepływy w kanałac otwartyc Przepływy w kanałac otwartyc najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy cieczy

Bardziej szczegółowo

Zadania na IV etap Ligi Matematyczni-Fizycznej klasa II

Zadania na IV etap Ligi Matematyczni-Fizycznej klasa II Zadania na IV etap Ligi Matematczni-Fizcznej klasa II Zadanie. Oblicz długość przeciwprostokątnej w trójkącie prostokątnm równoramiennm, którego obwód jest równ cm. Zadanie. W trójkącie prostokątnm wsokość

Bardziej szczegółowo

POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji

POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji POLITECHNIKA CZĘSTOCHOWSKA Instytut Maszyn Cieplnych Optymalizacja Procesów Cieplnych Ćwiczenie nr 3 Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji Częstochowa 2002 Wstęp. Ze względu

Bardziej szczegółowo

Związek między ruchem harmonicznym a ruchem jednostajnym po okręgu

Związek między ruchem harmonicznym a ruchem jednostajnym po okręgu Związek międz ruchem harmonicznm a ruchem jednosajnm po okręgu Rozważm rzu Q i R punku P na osie i : Q cos v r R sin R Q P δ Q cos ( δ ) R sin ( δ ) Jeżeli punk P porusza się ruchem jednosajnm po okręgu,

Bardziej szczegółowo

WPŁYW POWŁOKI POWIERZCHNI WEWNĘTRZNEJ RUR PRZEWODOWYCH NA EKSPLOATACJĘ RUROCIĄGU. Przygotował: Dr inż. Marian Mikoś

WPŁYW POWŁOKI POWIERZCHNI WEWNĘTRZNEJ RUR PRZEWODOWYCH NA EKSPLOATACJĘ RUROCIĄGU. Przygotował: Dr inż. Marian Mikoś WPŁYW POWŁOKI POWIERZCHNI WEWNĘTRZNEJ RUR PRZEWODOWYCH NA EKSPLOATACJĘ RUROCIĄGU Przygotował: Dr inż. Marian Mikoś Kocierz, 3-5 wrzesień 008 Wstęp Przedmiotem opracowania jest wykazanie, w jakim stopniu

Bardziej szczegółowo

WARIANTOWANIE ROZWIĄZAŃ ZBIORNIKÓW PODZIEMNYCH STOSOWANYCH W GOSPODARSTWACH ROLNO HODOWLANYCH

WARIANTOWANIE ROZWIĄZAŃ ZBIORNIKÓW PODZIEMNYCH STOSOWANYCH W GOSPODARSTWACH ROLNO HODOWLANYCH WRINTOWNIE ROZWIĄZŃ ZIORNIKÓW POZIEMNYH STOSOWNYH W GOSPORSTWH ROLNO HOOWLNYH nna ŻKOWIZ Wdział udownictwa i Inżnierii Środowiska, Politechnika iałostocka, ul. Wiejska 45, 15-351 iałstok Streszczenie:

Bardziej szczegółowo

Ekstrema funkcji dwóch zmiennych

Ekstrema funkcji dwóch zmiennych Wkład z matematki inżnierskiej Ekstrema funkcji dwóch zmiennch JJ, IMiF UTP 18 JJ (JJ, IMiF UTP) EKSTREMA 18 1 / 47 Ekstrema lokalne DEFINICJA. Załóżm, że funkcja f (, ) jest określona w pewnm otoczeniu

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera

Bardziej szczegółowo

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia. rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era

Bardziej szczegółowo

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA Młodzieżowe Uniwerstet Matematczne Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu połecznego REGUŁA GULDINA dr Bronisław Pabich Rzeszów marca 1 Projekt realizowan przez Uniwerstet

Bardziej szczegółowo

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają

Bardziej szczegółowo

Występują dwa zasadnicze rodzaje skraplania: skraplanie kroplowe oraz skraplanie błonkowe.

Występują dwa zasadnicze rodzaje skraplania: skraplanie kroplowe oraz skraplanie błonkowe. Wymiana ciepła podczas skraplania (kondensacji) 1. Wstęp Do skraplania dochodzi wtedy, gdy para zostaje ochłodzona do temperatury niższej od temperatury nasycenia (skraplania, wrzenia). Ma to najczęściej

Bardziej szczegółowo

2. Zapoczątkowanie kawitacji. - formy przejściowe. - spadek sprawności maszyn przepływowych

2. Zapoczątkowanie kawitacji. - formy przejściowe. - spadek sprawności maszyn przepływowych J. A. Szantyr Wykład 22: Kawitacja Podstawy fizyczne Konsekwencje hydrodynamiczne 1. Definicja kawitacji 2. Zapoczątkowanie kawitacji 3. Formy kawitacji - kawitacja laminarna - kawitacja pęcherzykowa -

Bardziej szczegółowo

Metoda pasm skończonych płyty dwuprzęsłowe

Metoda pasm skończonych płyty dwuprzęsłowe etoda pasm skończonch płt dwuprzęsłowe Dla płt przedstawionej na rsunku należ: 1. Dla obciążenia ciężarem własnm q oraz obciążeniami p 1 i p obliczć ugięcia w punktach A i B oraz moment, i w punktach A,B

Bardziej szczegółowo

Zadania do rozdziału 10.

Zadania do rozdziału 10. Zadania do rozdziału 0. Zad.0.. Jaką wsokość musi mieć pionowe zwierciadło ab osoba o wzroście.80 m mogła się w nim zobaczć cała. Załóżm, że ocz znajdują się 0 cm poniżej czubka głow. Ab prawidłowo rozwiązać

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4 ZADANIA - ZESTAW 4 Zadanie 4. 0-0,4 c 0 0, 0, Wznacz c. Wznacz rozkład brzegowe. Cz, są niezależne? (odp. c = 0,3 Zadanie 4.- 0-0,4 0,3 0 0, 0, Wznaczć macierz kowariancji i korelacji. Cz, są skorelowane?

Bardziej szczegółowo

Celem ćwiczenia jest eksperymentalne określenie rozkładu ciśnienia na powierzchni walca kołowego oraz obliczenie jego współczynnika oporu.

Celem ćwiczenia jest eksperymentalne określenie rozkładu ciśnienia na powierzchni walca kołowego oraz obliczenie jego współczynnika oporu. OPŁYW WALCA KOŁOWEGO 1. Cel ćwiczenia Celem ćwiczenia jest eksperymentalne określenie rozkładu ciśnienia na powierzchni walca kołowego oraz obliczenie jego współczynnika oporu. Wyznaczenie rozkładu ciśnienia

Bardziej szczegółowo

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości LABORATORIUM MECHANIKI PŁYNÓW Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości dr inż. Jerzy Wiejacha ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA, WYDZ. BMiP, PŁOCK

Bardziej szczegółowo

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia. Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr

Bardziej szczegółowo

Dwurównaniowe domknięcie turbulentnego strumienia ciepła

Dwurównaniowe domknięcie turbulentnego strumienia ciepła Instytut Maszyn Przepływowych PAN Ośrodek Termomechaniki Płynów Zakład Przepływów z Reakcjami Chemicznymi Dwurównaniowe domknięcie turbulentnego strumienia ciepła Implementacja modelu: k 2 v' f ' 2 Michał

Bardziej szczegółowo

SZEREG CZASOWY Y zjawisko badane w różnych okresach lub momentach czasu. Dynamika zjawiska to zmiana zjawiska w czasie. Przykład. Y średni kurs akcji

SZEREG CZASOWY Y zjawisko badane w różnych okresach lub momentach czasu. Dynamika zjawiska to zmiana zjawiska w czasie. Przykład. Y średni kurs akcji SZEREG CZASOWY Y zjawisko badane w różnch okresach lub momentach czasu. Dnamika zjawiska to zmiana zjawiska w czasie. Przkład. Y średni kurs akcji firm OPTMUS na giełdzie Okres: notowania od 1.03.2010

Bardziej szczegółowo

a, b funkcji liniowej y ax + b

a, b funkcji liniowej y ax + b . FUNKCJA LINIOWA zadania Zad... Napisz wzór funkcji liniowej, której wkres przechodzi przez punkt A (, ) i przecina oś OY w punkcie B (0,). Zad... Dan jest wzór funkcji liniowej: A) B) C) D) Na podstawie

Bardziej szczegółowo

Wykład Analiza jakościowa równań różniczkowych

Wykład Analiza jakościowa równań różniczkowych Na podstawie książki J. Rusinka, Równania różniczkowe i różnicowe w zarządzaniu, Oficna Wdawnicza WSM, Warszawa 2005. 21 maja 2012 Definicja Stabilność Niech = F (x, ) będzie równaniem różniczkowm. Rozwiązanie

Bardziej szczegółowo

Polska gola! czyli. Fizyk komputerowy gra w piłkę. Sławomir Kulesza

Polska gola! czyli. Fizyk komputerowy gra w piłkę. Sławomir Kulesza Polska gola! czyli Fizyk komputerowy gra w piłkę Sławomir Kulesza Plan prezentacji Fizyka ruchu ciała a w ośrodkuo Rzucamy jak Artur Siódmiak Kopiemy jak Roberto Carlos Serwujemy jak Stephane Antiga Plan

Bardziej szczegółowo

Instrukcja obsługi System klamki STS Informacje o dokumencie. Zawartość

Instrukcja obsługi System klamki STS Informacje o dokumencie. Zawartość 1. Informacje o dokumencie 1.1 Funkcja Niniejsza instrukcja obsługi dostarcza niezbędnch informacji dotczącch montażu, uruchomienia, niezawodnej eksploatacji i demontażu urządzenia. Instrukcja obsługi

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Ćwiczenie 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa,

Bardziej szczegółowo

BEZWYMIAROWA POSTAĆ RÓWNANIA NAVIERA-STOKESA

BEZWYMIAROWA POSTAĆ RÓWNANIA NAVIERA-STOKESA BEZWYMIAROWA POSTAĆ RÓWNANIA NAVIERA-STOKESA Równania Naviera-Stokesa (zakładamy, że -ga lepkość 0 ) zapisane w postaci υ 1 ( υ ) υ 1 p υ ( υ) f t 3 to oczywiście równanie opisujące bilans wielkości posiadających

Bardziej szczegółowo

Metoda Elementów Skończonych

Metoda Elementów Skończonych Projekt Metoda Elementów Skończonych w programie COMSOL Multiphysics 3.4 Wykonali: Dziamski Dawid Krajcarz Jan BMiZ, MiBM, TPM, VII, 2012-2013 Prowadzący: dr hab. inż. Tomasz Stręk Spis treści 1. Analiza

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Metoda Elementów Skończonych-Projekt Prowadzący: Dr hab. Tomasz Stręk prof. nadzw. Wykonali : Grzegorz Paprzycki Grzegorz Krawiec Wydział: BMiZ Kierunek: MiBM Specjalność: KMiU Spis

Bardziej szczegółowo

matematyka Matura próbna

matematyka Matura próbna Gazeta Edukacja Sprawdź, cz zdasz! Egzamin maturaln matematka MTEMTYK zas prac: minut Matura próbna Maturzsto! Po raz pierwsz napiszesz obowiązkową maturę z matematki na poziomie podstawowm Rozwiąż zadania

Bardziej szczegółowo

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym . Rodzaj poiaru.. Poiar bezpośredni (prost) W przpadku poiaru pojednczej wielkości przrząde wskalowan w jej jednostkach wartość niedokładności ± określa graniczn błąd przrządu analogowego lub cfrowego

Bardziej szczegółowo

Równania różniczkowe

Równania różniczkowe Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz

Bardziej szczegółowo

Modelowanie zjawisk przepływowocieplnych. i wewnętrznie ożebrowanych. Karol Majewski Sławomir Grądziel

Modelowanie zjawisk przepływowocieplnych. i wewnętrznie ożebrowanych. Karol Majewski Sławomir Grądziel Modelowanie zjawisk przepływowocieplnych w rurach gładkich i wewnętrznie ożebrowanych Karol Majewski Sławomir Grądziel Plan prezentacji Wprowadzenie Wstęp do obliczeń Obliczenia numeryczne Modelowanie

Bardziej szczegółowo

ĆWICZENIE I WYZNACZENIE ROZKŁADU PRĘDKOŚCI STRUGI W KANALE

ĆWICZENIE I WYZNACZENIE ROZKŁADU PRĘDKOŚCI STRUGI W KANALE ĆWICZENIE I WYZNACZENIE ROZKŁADU PRĘDKOŚCI STRUGI W KANALE 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą pomiaru prędkości płynu przy pomocy rurki Prandtla oraz określenie rozkładu prędkości

Bardziej szczegółowo

Pochodna funkcji wykład 5

Pochodna funkcji wykład 5 Pochodna funkcji wkład 5 dr Mariusz Grządziel 8 listopada 2010 Funkcja logistczna 40 Rozważm funkcję logistczną = f 0 (t) = 1+5e 0,5t Funkcja f może bć wkorzstana np. do modelowania wzrostu mas ziaren

Bardziej szczegółowo

Przedziały ufności i testy parametrów. Przedziały ufności dla średniej odpowiedzi. Interwały prognoz (dla przyszłych obserwacji)

Przedziały ufności i testy parametrów. Przedziały ufności dla średniej odpowiedzi. Interwały prognoz (dla przyszłych obserwacji) Wkład 1: Prosta regresja liniowa Statstczn model regresji liniowej Dane dla prostej regresji liniowej Przedział ufności i test parametrów Przedział ufności dla średniej odpowiedzi Interwał prognoz (dla

Bardziej szczegółowo

Awarie. 4 awarie do wyboru objawy, możliwe przyczyny, sposoby usunięcia. (źle dobrana pompa nie jest awarią)

Awarie. 4 awarie do wyboru objawy, możliwe przyczyny, sposoby usunięcia. (źle dobrana pompa nie jest awarią) Awarie 4 awarie do wyboru objawy możliwe przyczyny sposoby usunięcia (źle dobrana pompa nie jest awarią) Natężenie przepływu DANE OBLICZENIA WYNIKI Qś r d M k q j m d 3 Mk- ilość mieszkańców równoważnych

Bardziej szczegółowo

J. Szantyr Wykład nr 26 Przepływy w przewodach zamkniętych II

J. Szantyr Wykład nr 26 Przepływy w przewodach zamkniętych II J. Szantyr Wykład nr 6 Przepływy w przewodach zamkniętych II W praktyce mamy do czynienia z mniej lub bardziej złożonymi rurociągami. Jeżeli strumień płynu nie ulega rozgałęzieniu, mówimy o rurociągu prostym.

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Metoda Elementów Skończonych

Metoda Elementów Skończonych Projekt Metoda Elementów Skończonych w programie COMSOL Multiphysics 3.4 Wykonali: Helak Bartłomiej Kruszewski Jacek Wydział, kierunek, specjalizacja, semestr, rok: BMiZ, MiBM, KMU, VII, 2011-2012 Prowadzący:

Bardziej szczegółowo

Przekładnie ślimakowe / Henryk Grzegorz Sabiniak. Warszawa, cop Spis treści

Przekładnie ślimakowe / Henryk Grzegorz Sabiniak. Warszawa, cop Spis treści Przekładnie ślimakowe / Henryk Grzegorz Sabiniak. Warszawa, cop. 2016 Spis treści Przedmowa XI 1. Podział przekładni ślimakowych 1 I. MODELOWANIE I OBLICZANIE ROZKŁADU OBCIĄŻENIA W ZAZĘBIENIACH ŚLIMAKOWYCH

Bardziej szczegółowo

Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wydział Budownictwa i Inżynierii Środowiska

Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wydział Budownictwa i Inżynierii Środowiska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wdział Budownictwa i Inżnierii Środowiska Analiza wpłwu roślinności na warunki przepłwu wod w międzwalu. Określenie krteriów ustalania miejsc przeprowadzania

Bardziej szczegółowo

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP. Podstawowe związki (równania równowagi, liniowe i nieliniowe związki geometrczne, związki fizczne, warunki brzegowe) w zapisie wskaźnikowm

Bardziej szczegółowo

V JURAJSKI TURNIEJ MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM FINAŁ 14 maja 2005 r.

V JURAJSKI TURNIEJ MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM FINAŁ 14 maja 2005 r. V JURAJSKI TURNIEJ MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM FINAŁ 4 maja 005 r. Przecztaj uważnie poniższą instrukcję: Test składa się z dwóch części. Pierwsza część zawiera 0 zadań wielokrotnego wboru. Tlko

Bardziej szczegółowo

Przenoszenie niepewności

Przenoszenie niepewności Przenoszenie niepewności Uwaga wstępna: pojęcia niepewność pomiarowa i błąd pomiarow są stosowane wmiennie. Załóżm, że wielkość jest funkcją wielkości,,, dla którch niepewności (,, ) są znane (wnikają

Bardziej szczegółowo

KONSTRUKCJE METALOWE II

KONSTRUKCJE METALOWE II 1 POLITECHNIKA POZNAŃSKA Wdział Budownictwa, Architektur i Inżnierii Środowiska Insttut Konstrukcji Budowlanch dr inż. Jacek Tasarek KONSTRUKCJE METALOWE II POZNAŃ, 004 1.ELEMENTY ZGINANE - BELKI 1.1.Wiadomości

Bardziej szczegółowo

Elementy algebry i analizy matematycznej II

Elementy algebry i analizy matematycznej II Element algebr i analiz matematcznej II Wkład 1. Ekstrema unkcji dwóch zmiennch Deinicja 1 Funkcja dwóch zmiennch, z = (, ), ma w punkcie z = (, ), maksimum lokalne, jeżeli istnieje takie otoczenie punktu

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

MECHANIKA PŁYNÓW Płyn

MECHANIKA PŁYNÓW Płyn MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać

Bardziej szczegółowo