. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz
|
|
- Elżbieta Michałowska
- 10 miesięcy temu
- Przeglądów:
Transkrypt
1 ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997
2 . Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej liczby Reynoldsa dla przepływu w rurze o przekroju kołowym.. Podstawy teoretyczne.. Hipoteza Newtona Przepływ laminarny (łac. lamina -łuska) stanowi szczególny rodzaj przepływu, w którym nie występuje w skali makroskopowej wymiana pędu pomiędzy poszczególnymi warstwami płynu. Występowanie naprężeń stycznych, przeciwdziałających wzajemnemu przemieszczaniu się warstw płynu o rożnych prędkościach związane jest z transportem pędu w skali molekularnej []. Wartość tych naprężeń można wyznaczyć za pomocą hipotezy Newtona: τ µ V = n () gdzie: τ-naprężenie styczne,µ- współczynnik lepkości dynamicznej, n-współrzędna normalna do płaszczyzny w której występuje naprężenie. Wzór wyrażający hipotezę Newtona można wyprowadzić w oparciu o kinetyczną teorię gazów... iczba Reynoldsa iczba Reynoldsa jest jedną z tzw. liczb kryterialnych wyrażających podobieństwo ruchu płynów. Mogą być one uzyskane na drodze analizy wymiarowej, ubezwymiarowienia równań ruchu cieczy lepkiej (równania Naviera-Stokesa), lub tzw. analizy cząstkowej zaproponowanej przez Rayleigha [3]. iczba Reynoldsa wyraża stosunek siły bezwładności : V F ρ B (..) do siły tarcia wewnętrznego: V F µ (.3.) V ρv FB Re:= = (.4.) ν V F µ
3 gdzie: ν=µ/ρ -kinematyczny współczynnik lepkości. W związku z fizyczną interpretacją liczby Reynoldsa widać, że może być ona uważana za pewien wskaźnik rodzaju przepływu. Jeżeli liczba Reynoldsa jest dostatecznie niska, to siły tarcia wewnętrznego są na tyle duże w porównaniu z siłami bezwładności, że drobne zaburzenia są tłumione. Ruch płynu jest zatem stateczny Przy wzroście liczby Reynoldsa ilość energii przechodzącej od przepływu głównego do pobocznego (pulsacyjnego) zwiększa się. Przy pewnej wartości liczby Reynoldsa ilość tej energii przekracza ilość rozpraszaną przez siły lepkości. Przepływ traci stateczność i struktura przepływu staje się turbulentna (patrz niżej). Istnieje wiele czynników mających wpływ na przejście od przepływu laminarnego do turbulentnego takich jak: chropowatość ścianek, kształt wlotu do przewodu, drgania przewodu, pulsacje ciśnienia w strumieniu dopływającym. Stąd pojawiła się konieczność wprowadzenia pojęcia dolnej i górnej krytycznej liczby Reynoldsa. Pod pojęciem dolnej krytycznej liczby Reynoldsa rozumiemy taką wartość Re poniżej której nie stwierdza się występowania ruchu turbulentnego. Na podstawie doświadczeń przyjmuje się, że wartość ta wynosi: Re kr I = 300 Górną krytyczną liczbą Reynoldsa nazywa się taką jej wartość powyżej której nie udaje się zaobserwować ruchu laminarnego. Wartość jej wynosi: Re kr II = Podstawowe pojęcia dotyczące ruchu turbulentnego Jak widać z poprzedniego punktu ruch turbulentny charakteryzuje się występowaniem pulsacji prędkości (tzw. prędkości pobocznych) o charakterze losowym. W związku z tym pomiędzy poszczególnymi warstwami płynu następuje wymiana pędu i masy nie tylko na poziomie molekularnym lecz i makroskopowym (molarnym). Wynikają stąd naprężenia styczne kilka rzędów wielkości większe niż w przypadku przepływu laminarnego. Ponieważ przepływ turbulentny jest zawsze przepływem nieustalonym, zatem wygodnie jest opisać jego własności przy użyciu wielkości statystycznych. Chwilowa wartość wektora prędkości definiowana jest sumą wektora prędkości głównej, stałej w czasie i wektora prędkości pobocznej (pulsacji): V ( x, y, z, t) : = V ( x, y, z) + v ( x, y, z, t) (.5.) Przy czym wartość średnia dla składowej na kierunku x jest równa: t + t 0 Vx: = Vx( x, y, z, ) d t τ τ (.6.) t0 Podobnie definiuje się wartości średnie dla pozostałych składowych. 3
4 Inną ważną wielkością definiującą przepływ turbulentny jest intensywność (poziom) turbulencji definiowana jak niżej: gdzie: i x,y,z 3 0 I:= vi d V 3 t τ (.6.) x i= t + t t0 Istnieją również inne wielkości opisujące przepływ turbulentny których nie będziemy tu opisywać (patrz np.: [], []). 3. Stanowisko pomiarowe Stanowisko pomiarowe składa się z rury szklanej o średnicy wewnętrznej D do której doprowadzamy ciecz barwiącą ze zbiorniczka, wodomierza Q 5 Rys... Schemat stanowiska pomiarowego 4. Przebieg ćwiczenia. Otworzyć zawór 4 doprowadzający barwnik.. Ostrożnie otwierając zawór 5 zwiększać wydatek wody dopływającej do rury. Prędkość przy której rozpocznie się rozpraszanie barwnika po całej objętości płynącego strumienia uważać będziemy za prędkość krytyczną i dla tej wartości wyznaczać będziemy krytyczną liczbę Reynoldsa. 3. Dla prędkości krytycznej należy zmierzyć stoperem co najmniej pięć wartości czasu w których licznik wskazał przepływ dm 3 wody. 4. Zamknąć zawory 4 i Cykl pomiarowy..3 powtórzyć trzykrotnie. 6. Zmierzyć temperaturę wody 7. Odczytać lepkość kinematyczną wody z wykresu na rysunku (..) 4
5 5. Opracowanie wyników pomiarów. Wyniki pomiarów czasu dla każdego cyklu należy uśrednić. Dla każdej serii należy obliczyć krytyczną liczbę Reynoldsa: Re V v kr I = 4 πνd t gdzie: V v =0.00 m 3 3. Obliczyć średnią wartość dolnej krytycznej liczby Reynoldsa. (.7.).0E-6 υ [m /s].6e-6.e-6 8.0E-7 4.0E t [ oc] Rys... Współczynnik lepkości kinematycznej w funkcji temperatury wody 6. iteratura uzupełniająca. BennetC. O., Myers J. E. Przenoszenie pędu, ciepła i masy, PWN Warszawa 967 (str. 4..);. Prosnak W. J. Mechanika Płynów, Tom I PWN Warszawa 970 (str , 5..6); 5
6 3. Zierep J. Kryteria podobieństwa i zasady modelowania w mechanice płynów PWN 978 (str. 4..4); 6
PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:
Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO . Cel ćwiczenia Doświadczalne wyznaczenie rozkładu ciśnienia piezometrycznego w zwęŝce Venturiego i porównanie go z
Laboratorium komputerowe z wybranych zagadnień mechaniki płynów
ANALIZA PRZEKAZYWANIA CIEPŁA I FORMOWANIA SIĘ PROFILU TEMPERATURY DLA NIEŚCIŚLIWEGO, LEPKIEGO PRZEPŁYWU LAMINARNEGO W PRZEWODZIE ZAMKNIĘTYM Cel ćwiczenia Celem ćwiczenia będzie obserwacja procesu formowania
J. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne
J. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i turbulentnego, odkrył Osborne Reynolds (1842 1912) w swoim znanym eksperymencie
WYKŁAD 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH
WYKŁA 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH PRZEPŁYW HAGENA-POISEUILLE A (LAMINARNY RUCH W PROSTOLINIOWEJ RURZE O PRZEKROJU KOŁOWYM) Prędkość w rurze wyraża się wzorem: G p w R r, Gp const 4 dp dz
Laboratorium komputerowe z wybranych zagadnień mechaniki płynów
FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez
J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1
J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 Warstwa przyścienna jest to część obszaru przepływu bezpośrednio sąsiadująca z powierzchnią opływanego ciała. W warstwie przyściennej znaczącą rolę
J. Szantyr Wykład nr 20 Warstwy przyścienne i ślady 2
J. Szantyr Wykład nr 0 Warstwy przyścienne i ślady W turbulentnej warstwie przyściennej można wydzielić kilka stref różniących się dominującymi mechanizmami kształtującymi przepływ. Ogólnie warstwę można
WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO 1. Cel ćwiczenia Doświadczalne wyznaczenie zaleŝności współczynnika oporu linioweo przepływu
WYDZIAŁ LABORATORIUM FIZYCZNE
1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze
WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA
ĆWICZENIE 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości Cel ćwiczenia: Wyznaczenie współczynnika lepkości gliceryny metodą Stokesa, zapoznanie się z własnościami cieczy lepkiej. Literatura
Instrukcja stanowiskowa
POLITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petrochemii Instytut Inżynierii Mechanicznej w Płocku Zakład Aparatury Przemysłowej LABORATORIUM WYMIANY CIEPŁA I MASY Instrukcja stanowiskowa Temat:
WPŁYW POWŁOKI POWIERZCHNI WEWNĘTRZNEJ RUR PRZEWODOWYCH NA EKSPLOATACJĘ RUROCIĄGU. Przygotował: Dr inż. Marian Mikoś
WPŁYW POWŁOKI POWIERZCHNI WEWNĘTRZNEJ RUR PRZEWODOWYCH NA EKSPLOATACJĘ RUROCIĄGU Przygotował: Dr inż. Marian Mikoś Kocierz, 3-5 wrzesień 008 Wstęp Przedmiotem opracowania jest wykazanie, w jakim stopniu
Straty energii podczas przepływu wody przez rurociąg
1. Wprowadzenie Ć w i c z e n i e 11 Straty energii podczas przepływu wody przez rurociąg Celem ćwiczenia jest praktyczne wyznaczenie współczynników strat liniowych i miejscowych podczas przepływu wody
ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA
ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA POLITECHNIKA RZESZOWSKA im. IGNACEGO ŁUKASIEWICZA Al. Powstańców Warszawy 8, 35-959 Rzeszów, Tel: 854-31-1,
Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich
Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką zajmuje: Gęstość wyrażana jest w jednostkach układu SI. Gęstość cieczy
POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21
POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21 Ćwiczenie nr 5. POMIARY NATĘŻENIA PRZEPŁYWU GAZÓW METODĄ ZWĘŻOWĄ 1. Cel ćwiczenia
Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości
LABORATORIUM MECHANIKI PŁYNÓW Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości dr inż. Jerzy Wiejacha ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA, WYDZ. BMiP, PŁOCK
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała
MECHANIKA PŁYNÓW Płyn
MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać
WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA
Ćwiczenie 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa,
Zajęcia laboratoryjne
Zajęcia laboratoryjne Napęd Hydrauliczny Instrukcja do ćwiczenia nr 3 Metody ograniczenia strat mocy w układach hydraulicznych Opracowanie: Z. Kudźma, P. Osiński, U. Radziwanowska, J. Rutański, M. Stosiak
Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki.
Spis treści 1 Podstawowe definicje 11 Równanie ciągłości 12 Równanie Bernoulliego 13 Lepkość 131 Definicje 2 Roztwory wodne makrocząsteczek biologicznych 3 Rodzaje przepływów 4 Wyznaczania lepkości i oznaczanie
AKADEMIA GÓRNICZO HUTNICZA INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH: TECHNIKA PROCESÓW SPALANIA
AKADEMIA GÓRNICZO HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ INŻYNIERII METALI I INFORMATYKI PRZEMYSŁOWEJ KATEDRA TECHNIKI CIEPLNEJ I OCHRONY ŚRODOWISKA INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH:
REAKCJA HYDRODYNAMICZNA STRUMIENIA NA NIERUCHOMĄ PRZESZKODĘ.
REAKCJA HYDRODYNAMICZNA STRUMIENIA NA NIERUCHOMĄ PRZESZKODĘ. Reakcją hydrodynamiczną nazywa się siłę, z jaką strumień cieczy działa na przeszkodę /zaporę / ustawioną w jego linii działania. W technicznych
LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół
Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów
Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe
WYKŁAD 8 RÓWNANIE NAVIERA-STOKESA 1/17
WYKŁAD 8 RÓWNANIE NAVIERA-STOKESA /7 Zaczniemy od wyprowadzenia równania ruchu dla płynu newtonowskiego. Wcześniej wyprowadziliśmy z -ej Zasady Dynamiki ogólne równanie ruchu, którego postać indeksowa
Modele matematyczne procesów, podobieństwo i zmiana skali
Modele matematyczne procesów, podobieństwo i zmiana skali 20 kwietnia 2015 Zadanie 1 konstrukcji balonu o zadanej sile oporu w ruchu. Obiekt do konstrukcji (Rysunek 1) opisany jest następującą F = Φ(d,
Ćwiczenie 3: Wyznaczanie gęstości pozornej i porowatości złoża, przepływ gazu przez złoże suche, opory przepływu.
1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,
Wyznaczanie gęstości i lepkości cieczy
Wyznaczanie gęstości i lepkości cieczy A. Wyznaczanie gęstości cieczy Obowiązkowa znajomość zagadnień Definicje gęstości bezwzględnej (od czego zależy), względnej, objętości właściwej, ciężaru objętościowego.
BEZWYMIAROWA POSTAĆ RÓWNANIA NAVIERA-STOKESA
BEZWYMIAROWA POSTAĆ RÓWNANIA NAVIERA-STOKESA Równania Naviera-Stokesa (zakładamy, że -ga lepkość 0 ) zapisane w postaci υ 1 ( υ ) υ 1 p υ ( υ) f t 3 to oczywiście równanie opisujące bilans wielkości posiadających
Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów.
Ćwiczenie : Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów. Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką
1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome
1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,
Dwurównaniowe domknięcie turbulentnego strumienia ciepła
Instytut Maszyn Przepływowych PAN Ośrodek Termomechaniki Płynów Zakład Przepływów z Reakcjami Chemicznymi Dwurównaniowe domknięcie turbulentnego strumienia ciepła Implementacja modelu: k 2 v' f ' 2 Michał
Niestacjonarne Wszystkie Katedra Inżynierii Produkcji Dr Medard Makrenek. Inny / Techniczny Obowiązkowy Polski Semestr trzeci. Semestr zimowy Brak Tak
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 013/014 Mechanika Płynów i Wymiana Ciepła Fluid Mechanics and Heat Transfer A.
Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej
Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej - - Wstęp teoretyczny Jednym ze sposobów wymiany ciepła jest przewodzenie.
MECHANIKA PŁYNÓW LABORATORIUM
MECHANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 6 Wyznaczanie współczynnika wydatku przelewu Celem ćwiczenia jest wyznaczenie wartości współczynnika wydatku dla różnyc rodzajów przelewów oraz sporządzenie ic
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/17-2019/20 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Mechanika płynów Kod przedmiotu/ modułu* Wydział (nazwa jednostki
BADANIE WYMIENNIKA CIEPŁA TYPU RURA W RURZE
BDNIE WYMIENNIK CIEPŁ TYPU RUR W RURZE. Cel ćwiczenia Celem ćwiczenia jest zapoznanie z konstrukcją, metodyką obliczeń cieplnych oraz poznanie procesu przenikania ciepła w rurowych wymiennikach ciepła..
Parametry układu pompowego oraz jego bilans energetyczny
Parametry układu pompowego oraz jego bilans energetyczny Układ pompowy Pompa może w zasadzie pracować tylko w połączeniu z przewodami i niezbędną armaturą, tworząc razem układ pompowy. W układzie tym pompa
Podstawowe narzędzia do pomiaru prędkości przepływu metodami ciśnieniowymi
Ć w i c z e n i e 5a Podstawowe narzędzia do pomiaru prędkości przepływu metodami ciśnieniowymi 1. Wprowadzenie Celem ćwiczenia jest zapoznanie się z przyrządami stosowanymi do pomiarów prędkości w przepływie
III r. EiP (Technologia Chemiczna)
AKADEMIA GÓRNICZO HUTNICZA WYDZIAŁ ENERGETYKI I PALIW III r. EiP (Technologia Chemiczna) INŻYNIERIA CHEMICZNA I PROCESOWA (przenoszenie pędu) Prof. dr hab. Leszek CZEPIRSKI Kontakt: A4, p. 424 Tel. 12
KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: 1. Ma podstawową wiedzę i umiejętności z zakresu matematyki, fizyki, mechaniki i termodynamiki.
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Mechanika płynów 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: pierwszego stopnia 4. ROK/ SEMESTR STUDIÓW: rok II / semestr 3 5. LICZBA PUNKTÓW ECTS: 5
Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego
Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego 1. Temat ćwiczenia :,,Wyznaczanie współczynnika przenikania ciepła 2. Cel ćwiczenia : Określenie globalnego współczynnika przenikania ciepła k
Z-ETI-0605 Mechanika Płynów Fluid Mechanics. Katedra Inżynierii Produkcji Dr hab. inż. Artur Bartosik, prof. PŚk
Załącznik nr 7 do Zarządzenia Rektora nr../ z dnia.... 0r. KARTA MODUŁU / KARTA PRZEDMIOTU Z-ETI-0605 Mechanika Płynów Fluid Mechanics Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje
ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego
34 3.Przepływ spalin przez kocioł oraz odprowadzenie spalin do atmosfery ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego T0
Wyznaczenie współczynnika restytucji
1 Ćwiczenie 19 Wyznaczenie współczynnika restytucji 19.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika restytucji dla różnych materiałów oraz sprawdzenie słuszności praw obowiązujących
Rys.1. Zwężki znormalizowane: a) kryza, b) dysza, c) dysza Venturiego [2].
WYZNACZANIE WSPÓŁCZYNNIKA PRZEPŁYWU W ZWĘŻKACH POMIAROWYCH DLA GAZÓW 1. Wprowadzenie Najbardziej rozpowszechnioną metodą pomiaru natężenia przepływu jest użycie elementów dławiących płyn. Stanowią one
Jan A. Szantyr tel
Katedra Energetyki i Aparatury Przemysłowej Zakład Mechaniki Płynów, Turbin Wodnych i Pomp J. Szantyr Wykład 1 Rozrywkowe wprowadzenie do Mechaniki Płynów Jan A. Szantyr jas@pg.gda.pl tel. 58-347-2507
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU WISKOZYMETRU KAPILARNEGO I. WSTĘP TEORETYCZNY Ciecze pod względem struktury
MECHANIKA PŁYNÓW LABORATORIUM
MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych
J. Szantyr Wykład nr 17 Przepływy w kanałach otwartych
J. Szantyr Wykład nr 7 Przepływy w kanałac otwartyc Przepływy w kanałac otwartyc najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy cieczy
POMIAR STRUMIENIA PRZEPŁYWU PŁYNÓW I OPORÓW PRZEPŁYWU
POMIAR STRUMIENIA PRZEPŁYWU PŁYNÓW I OPORÓW PRZEPŁYWU CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą pomiaru prędkości płynu przy pomocy rurki Prandtla oraz określanie oporów przepływu w przewodach
POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji
POLITECHNIKA CZĘSTOCHOWSKA Instytut Maszyn Cieplnych Optymalizacja Procesów Cieplnych Ćwiczenie nr 3 Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji Częstochowa 2002 Wstęp. Ze względu
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer 3 Pomiar współczynnika oporu lokalnego 1 Wprowadzenie Stanowisko umożliwia wykonanie szeregu eksperymentów związanych z pomiarami oporów przepływu w różnych elementach rzeczywistych układów
18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa
Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów
W zaleŝności od charakteru i ilości cząstek wyróŝniamy: a. opadanie cząstek ziarnistych, b. opadanie cząstek kłaczkowatych.
BADANIE PROCESU SEDYMENTACJI Wstęp teoretyczny. Sedymentacja, to proces opadania cząstek ciała stałego w cieczy, w wyniku działania siły grawitacji lub sił bezwładności. Zaistnienie róŝnicy gęstości ciała
Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda.
Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda. Zagadnienia: Oddziaływania międzycząsteczkowe. Ciecze idealne i rzeczywiste. Zjawisko lepkości. Równanie
1.10 Pomiar współczynnika lepkości cieczy metodą Poiseuille a(m15)
66 Mechanika 1.10 Pomiar współczynnika lepkości cieczy metodą Poiseuille a(m15) Celem ćwiczenia jest wyznaczenie współczynnika lepkości wody. Współczynnik ten wyznaczany jest z prawa Poiseuille a na podstawie
SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie
DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje
PRZEPŁYW CIECZY W KORYCIE VENTURIEGO
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 9 PRZEPŁYW CIECZY W KORYCIE VENTURIEGO . Cel ćwiczenia Sporządzenie carakterystyki koryta Venturiego o przepływie rwącym i wyznaczenie średniej wartości współczynnika
WYZNACZANIE WSPÓŁCZYNNIKA WNIKANIA CIEPŁA PODCZAS KONWEKCJI WYMUSZONEJ GAZU W RURZE
Ćwiczenie 1: WYZNACZANIE WSPÓŁCZYNNIKA WNIKANIA CIEPŁA PODCZAS KONWEKCJI WYMUSZONEJ GAZU W RURZE 1. CEL ĆWICZENIA Celem ćwiczenia jest eksperymentalne wyznaczenie współczynnika wnikania ciepła podczas
Spis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ]
Mechanika płynów Płyn każda substancja, która może płynąć, tj. dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje oraz może swobodnie się przemieszczać (przepływać), np. przepompowywana
STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY)
STTYK I DYNMIK PŁYNÓW (CIECZE I GZY) Ciecz idealna: brak sprężystości postaci (czyli brak naprężeń ścinających) Ciecz rzeczywista małe naprężenia ścinające - lepkość F s F n Nawet najmniejsza siła F s
Pomiar rozkładu ciśnień na modelu samochodu
Miernictwo C-P 1 Pomiar rozkładu ciśnień na modelu samochodu Polonez (Część instrukcji dotyczącą aerodynamiki samochodu opracowano na podstawie książki J. Piechny Podstawy aerodynamiki pojazdów, Wyd. Komunikacji
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ
POLITECHNIKA BIAŁOSTOCKA Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: POWIERZCHNIA SWOBODNA CIECZY W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ Ćwiczenie
Politechnika Poznańska
Poznań. 05.01.2012r Politechnika Poznańska Projekt ukazujący możliwości zastosowania programu COMSOL Multiphysics Wydział Budowy Maszyn i Zarządzania Kierunek Mechanika i Budowa Maszyn Specjalizacji Konstrukcja
Semestr zimowy Brak Tak
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 01/013 Z-ZIP-1006 Mechanika Płynów i Wymiana Ciepła Fluid Mechanics and Heat Transfer
STRATY ENERGII. (1) 1. Wprowadzenie.
STRATY ENERGII. 1. Wprowadzenie. W czasie przepływu płynu rzeczywistego przez układy hydrauliczne lub pneumatyczne następuje strata energii płynu. Straty te dzielimy na liniowe i miejscowe. Straty liniowe
WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ
INSYU INFORMAYKI SOSOWANEJ POLIECHNIKI ŁÓDZKIEJ Ćwiczenie Nr2 WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ 1.WPROWADZENIE. Wymiana ciepła pomiędzy układami termodynamicznymi może być realizowana na
WYMIANA CIEPŁA i WYMIENNIKI CIEPŁA
WYMIANA CIEPŁA i WYMIENNIKI CIEPŁA Prof. M. Kamiński Gdańsk 2015 PLAN Znaczenie procesowe wymiany ciepła i zasady ogólne Pojęcia i definicje podstawowe Ruch ciepła na drodze przewodzenia Ruch ciepła na
WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 11. Pomiar przepływu (zwężka)
Cel ćwiczenia: Poznanie zasady pomiarów natężenia przepływu metodą zwężkową. Poznanie istoty przedmiotu normalizacji metod zwężkowych. Program ćwiczenia: 1. Przeczytać instrukcję do ćwiczenia. Zapoznać
Przepływy laminarne - zadania
Zadanie 1 Warstwa cieczy o wysokości = 3mm i lepkości v = 1,5 10 m /s płynie równomiernie pod działaniem siły ciężkości po płaszczyźnie nachylonej do poziomu pod kątem α = 15. Wyznaczyć: a) Rozkład prędkości.
Płyny newtonowskie (1.1.1) RYS. 1.1
Miniskrypt: Płyny newtonowskie Analizujemy cienką warstwę płynu zawartą pomiędzy dwoma równoległymi płaszczyznami, które są odległe o siebie o Y (rys. 1.1). W warunkach ustalonych następuje ścinanie w
Badanie lepkości cieczy
Ćwiczenie M16 Badanie lepkości cieczy M16.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami niutonowskiej cieczy lepkiej, wyznaczenie współczynnika lepkości metodą Stokesa (metodą opadającej
Człowiek najlepsza inwestycja FENIKS
Człowiek najlepsza inwestycja ENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych
Występują dwa zasadnicze rodzaje skraplania: skraplanie kroplowe oraz skraplanie błonkowe.
Wymiana ciepła podczas skraplania (kondensacji) 1. Wstęp Do skraplania dochodzi wtedy, gdy para zostaje ochłodzona do temperatury niższej od temperatury nasycenia (skraplania, wrzenia). Ma to najczęściej
Ćwiczenie laboratoryjne Parcie wody na stopę fundamentu
Ćwiczenie laboratoryjne Parcie na stopę fundamentu. Cel ćwiczenia i wprowadzenie Celem ćwiczenia jest wyznaczenie parcia na stopę fundamentu. Natężenie przepływu w ośrodku porowatym zależy od współczynnika
Zasady zachowania, równanie Naviera-Stokesa. Mariusz Adamski
Zasady zachowania, równanie Naviera-Stokesa Mariusz Adamski 1. Zasady zachowania. Znaczna część fizyki, a w szczególności fizyki klasycznej, opiera się na sformułowaniach wypływających z zasad zachowania.
WARUNKI HYDRAULICZNE PRZEPŁYWU WODY W PRZEPŁAWKACH BLISKICH NATURZE
Uniwersytet Rolniczy w Krakowie, Wydział Inżynierii Środowiska i Geodezji Katedra Inżynierii Wodnej i Geotechniki Leszek Książek WARUNKI HYDRAULICZNE PRZEPŁYWU WODY W PRZEPŁAWKACH BLISKICH NATURZE Kraków,
Numeryczna symulacja rozpływu płynu w węźle
231 Prace Instytutu Mechaniki Górotworu PAN Tom 7, nr 3-4, (2005), s. 231-236 Instytut Mechaniki Górotworu PAN Numeryczna symulacja rozpływu płynu w węźle JERZY CYGAN Instytut Mechaniki Górotworu PAN,
Ermeto Original Rury / Łuki rurowe
Ermeto Original Rury / Łuki rurowe R2 Parametry rur EO 1. Gatunki stali, własności mechaniczne, wykonanie Rury stalowe EO Rodzaj stali Wytrzymałość na Granica Wydłużenie przy zerwaniu rozciąganie Rm plastyczności
Ć W I C Z E N I E N R M-2
INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność
Politechnika Poznańska
Politechnika Poznańska Metoda Elementów Skończonych-Projekt Prowadzący: Dr hab. Tomasz Stręk prof. nadzw. Wykonali : Grzegorz Paprzycki Grzegorz Krawiec Wydział: BMiZ Kierunek: MiBM Specjalność: KMiU Spis
Podczas wykonywania analizy w programie COMSOL, wykorzystywane jest poniższe równanie: 1.2. Dane wejściowe.
Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Grupa M3 Metoda Elementów Skończonych Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonali: Marcin Rybiński Grzegorz
HYDRAULIKA KOLUMNY WYPEŁNIONEJ
Ćwiczenie 5: HYDRAULIKA KOLUMNY WYPEŁNIONEJ 1. CEL ĆWICZENIA Celem ćwiczenia jest wyznaczenie oporów przepływu gazu przez wypełnienie zraszane cieczą oraz określenie granicy zachłystywania aparatu wypełnionego.
Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika
Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,
Transport masy w ośrodkach porowatych
grudzień 2013 Dyspersja... dyspersja jest pojęciem niesłychanie uniwersalnym. Możemy zrekapitulować: dyspersja to w ogólnym znaczeniu rozproszenie, rozrzut, rozcieńczenie. Możemy nazywać dyspersją roztwór
Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL
Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość
Pomiar natęŝeń przepływu gazów metodą zwęŝkową
Temat ćwiczenia: Pomiar natęŝeń przepływu gazów metodą zwęŝkową Cel ćwiczenia: Poznanie zasady pomiarów natęŝenia przepływu metodą zwęŝkową. Poznanie istoty przedmiotu normalizacji metod zwęŝkowych. Program
LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH
LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH Temat: Badanie cyklonu ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA WYDZIAŁ BMiP 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie
Aparatura Chemiczna i Biotechnologiczna Projekt: Filtr bębnowy próżniowy
Aparatura Chemiczna i Biotechnologiczna Projekt: Filtr bębnowy próżniowy Opracowanie: mgr inż. Anna Dettlaff Obowiązkowa zawartość projektu:. Strona tytułowa 2. Tabela z punktami 3. Dane wyjściowe do zadania
1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie zależności współczynnika strat liniowych λ w funkcji liczby Reynolsa i porównanie uzyskanych wyników
ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI LABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR 3 WYZNACZANIE WSPÓŁCZYNNIKA STRAT LINIOWYCH λ opracował: Piotr Strzelczyk Rzeszów 1999 1 1. Cel ćwiczenia Celem ćwiczenia
Zadanie 1. Zadanie 2.
Zadanie 1. Określić nadciśnienie powietrza panujące w rurociągu R za pomocą U-rurki, w której znajduje się woda. Różnica poziomów wody w U-rurce wynosi h = 100 cm. Zadanie 2. Określić podciśnienie i ciśnienie
DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia
ODDZIAŁYWANIA DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia 1. Organizacja pracy na lekcjach fizyki w klasie I- ej. Zapoznanie z wymaganiami na poszczególne oceny. Fizyka jako nauka przyrodnicza.