Ćwiczenia nr 4. TEMATYKA: Rzutowanie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ćwiczenia nr 4. TEMATYKA: Rzutowanie"

Transkrypt

1 TEMATYKA: Rzutowanie Ćwiczenia nr 4 DEFINICJE: Rzut na prostą: rzutem na prostą l (zwaną rzutnią) w kierunku rzutowania k (k l) nazywamy przekształcenie płaszczyzny przyporządkowujące: a) Punktom prostej l te same punkty, b) Dowolnemu punktowi P l punkt P l taki, że prosta PP jest równoległa do prostej k. Rys. 4. Rzut na płaszczyznę: w geometrii odwzorowanie przestrzeni euklidesowej trójwymiarowej na daną powierzchnię zwaną rzutnią, które każdemu punktowi x przestrzeni przypisuje punkt przecięcia się z rzutnią pewnej prostej z danej rodziny prostych rzutujących przechodzącej przez punkt x. Rys. 4.

2 Rzut perspektywiczny Rzut równoległy Rys. 4.3 Rzuty prostokątne Rys. 4.4

3 Rzut izometryczny (aksonometria) Rys. 4. Rzut ukośny Rys

4 Aksonometria kawalerska wojskowa izometryczna Rys. 4.7 Rzut perspektywiczny jednopunktowy Rys

5 Rys. 4.9 Rzut perspektywiczny dwupunktowy Rys. 4.

6 ZADANIA:. Przeprowadzić rzutowanie prostokątne bryły o wierzchołkach A(; ; 9), B(; ; ), C(; ; 3), D(; ; 7), E(; ; 9), F(; ; ), G(; ; 3), H(; ; 7) na płaszczyzny tworzone przez osie kartezjańskiego układu współrzędnych. Wyznaczyć współrzędne punktów po przekształceniu dla każdej rzutni. Wykonać odpowiednie rysunki (widok bryły na trzech rzutniach). Rys. 4. 6

7 . Przeprowadzić rzutowanie ukośne bryły (Rys. 4.) o wierzchołkach A(; ; 9), B(; ; ), C(; ; 3), D(; ; 7), E(; ; 9), F(; ; ), G(; ; 3), H(; ; 7) na płaszczyznę ZY. Wyznaczyć współrzędne punktów po przekształceniu. Wykonać odpowiednie rysunki (widok bryły na rzutni). Przyjąć wektor rzutowania u = x = d [ y = d ], gdzie d odległość punktu od płaszczyzny ZY. z = d 3. Przeprowadzić rzutowanie perspektywiczne jednopunktowe prostokąta o wierzchołkach A(; ; -), B(; 3; -), C(; 3; -), D(; ; -) na płaszczyznę XY. Wyznaczyć współrzędne punktów po przekształceniu. Wykonać odpowiednie rysunki (widok prostokąta A B C D ) środek rzutowania S(; ; -). Rys. 4. 7

8 ROZWIĄZANIA ZADAŃ:. Przeprowadzić rzutowanie prostokątne bryły o wierzchołkach A(; ; 9), B(; ; ), C(; ; 3), D(; ; 7), E(; ; 9), F(; ; ), G(; ; 3), H(; ; 7) na płaszczyzny tworzone przez osie kartezjańskiego układu współrzędnych. Wyznaczyć współrzędne punktów po przekształceniu dla każdej rzutni. Wykonać odpowiednie rysunki (widok bryły na trzech rzutniach). Obliczenia wykonujemy przy pomocy współrzędnych jednorodnych w kartezjańskim układzie współrzędnych 3D. A = [ ] B = [ 9 ] C = [ ] D = [ ] 3 7 E = [ ] F = [ ] G = [ ] H = [ ] Rzutowanie to inaczej translacja o wektor od punktu przesuwanego do punktu należącego do rzutni. W trakcie rzutowania prostokątnego poszczególnych punktów na płaszczyzny wyznaczone przez odpowiednie osie układu współrzędnych tworzymy następujące macierze transformacji. Dla płaszczyzny XY (z = ): M XY = [ ] Dla płaszczyzny YZ (x = ): M YZ = [ ] Dla płaszczyzny XZ (y = ): M XZ = [ ] 8

9 Wyznaczenie współrzędnych punktów rzutowanych na poszczególne płaszczyzny wyznaczone przez odpowiednie osie układu współrzędnych: Płaszczyzna XY: A ] = [ B C 3 D 7 E ] = [ 9 ] F G 3 Rys. 4.3 H 7 9

10 Płaszczyzna YZ: A ] = [ B C 3 3 D 7 7 E 9 9 F ] = [ ] Rys. 4.4 G 3 3 H 7 7

11 Płaszczyzna XZ: A ] = [ B C ] = [ 3 3 D 7 7 ] E ] = [ 9 ] 9 F Rys. 4. G 3 3 H 7 7

12 Rys. 4.6

13 . Przeprowadzić rzutowanie ukośne bryły (Rys. 4.) o wierzchołkach A(; ; 9), B(; ; ), C(; ; 3), D(; ; 7), E(; ; 9), F(; ; ), G(; ; 3), H(; ; 7) na płaszczyznę ZY. Wyznaczyć współrzędne punktów po przekształceniu. Wykonać odpowiednie rysunki (widok bryły na rzutni). Przyjąć wektor rzutowania u = x = d [ y = d ], gdzie d odległość punktu od płaszczyzny ZY. z = d Obliczenia wykonujemy przy pomocy współrzędnych jednorodnych w kartezjańskim układzie współrzędnych 3D. A = [ ] B = [ 9 ] C = [ ] D = [ ] 3 7 E = [ ] F = [ ] G = [ ] H = [ ] Rzutowanie to inaczej translacja o wektor od punktu przesuwanego do punktu należącego do rzutni. W trakcie rzutowania prostokątnego poszczególnych punktów na płaszczyznę wyznaczoną przez odpowiednie osie układu współrzędnych tworzymy następujące macierze transformacji. Dla płaszczyzny YZ (d = ): x y M ABCD = [ z Dla płaszczyzny YZ (d = ): x y M EFGH = [ ] = [ ] z 3

14 Współrzędne punktów rzutowanych: ( ) A ] = [ ( ) B 7 C 7 3 D 7 7 E 7 = [ ] [ 9 3 F 7 = [ ] [ G 7 = [ ] [ 3 H 7 = [ ] [ 7 4

15 Rys. 4.7 Rys. 4.8

16 3. Przeprowadzić rzutowanie perspektywiczne jednopunktowe prostokąta o wierzchołkach A(; ; -), B(; 3; -), C(; 3; -), D(; ; -) na płaszczyznę XY. Wyznaczyć współrzędne punktów po przekształceniu. Wykonać odpowiednie rysunki (widok prostokąta A B C D ) środek rzutowania S(; ; -). Obliczenia wykonujemy przy pomocy współrzędnych jednorodnych w kartezjańskim układzie współrzędnych 3D. 3 3 A = [ ] B = [ ] C = [ ] D = [ ] Rzutowanie to inaczej skalowanie o współczynniku skali s. W trakcie rzutowania perspektywicznego poszczególnych punktów na płaszczyznę wyznaczoną przez odpowiednie osie układu współrzędnych tworzymy następującą macierz transformacji. s x s M ABCD = [ y ] s z Wyznaczenie współczynników skali: s x = s y = s x = s y = z S, gdzie i = A lub B lub C lub D z S z i ( ) = =. s z =, ponieważ rzut jest wykonywany na płaszczyznę XY (z = ).. M ABCD = [ ] 6

17 Współrzędne punktów rzutowanych:. A.. B.. C.. D ( ) ( ) + ] = [ + + ( ) ( ) ] = [ ] Rys

Trójwymiarowa grafika komputerowa rzutowanie

Trójwymiarowa grafika komputerowa rzutowanie Trójwymiarowa grafika komputerowa rzutowanie Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej Rzutowanie w przestrzeni 3D etapy procesu rzutowania określenie rodzaju rzutu określenie

Bardziej szczegółowo

i = [ 0] j = [ 1] k = [ 0]

i = [ 0] j = [ 1] k = [ 0] Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym

Bardziej szczegółowo

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna

Bardziej szczegółowo

płaskie rzuty geometryczne

płaskie rzuty geometryczne płaskie rzuty geometryczne równoległe perspektywiczne aksonometryczne izometryczne dimetryczne ukośne (trimetryczne) kawalerskie wojskowe prostokątne gabinetowe Rzuty aksonometryczne z y Rzut aksonometryczny

Bardziej szczegółowo

Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów.

Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów. RZUTOWANIE AKSONOMETRYCZNE Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów. W metodzie aksonometrycznej rzutnią jest płaszczyzna dowolnie ustawiona względem trzech osi,, układu prostokątnego

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Rzutowanie Równoległe Perspektywiczne Rzutowanie równoległe Rzutowanie równoległe jest powszechnie używane w rysunku technicznym - umożliwienie

Bardziej szczegółowo

Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne

Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne 46 III. Przekształcenia w przestrzeni trójwymiarowej Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne Złożone obiekty trójwymiarowe można uważać,

Bardziej szczegółowo

Grafika komputerowa Wykład 4 Geometria przestrzenna

Grafika komputerowa Wykład 4 Geometria przestrzenna Grafika komputerowa Wykład 4 Geometria przestrzenna Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 Geometria 3D - podstawowe

Bardziej szczegółowo

WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA. AdamŚwięcicki

WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA. AdamŚwięcicki WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA AdamŚwięcicki KONSTRUKCJA PROSTEJ PRZECHODZĄCEJ PRZEZ DWA PUNKTY a B B A A KONSTRUKCJA ODCINKA B B A A wariant I KONSTRUKCJA

Bardziej szczegółowo

Geometria wykreślna. 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch.

Geometria wykreślna. 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch. Geometria wykreślna 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek

Bardziej szczegółowo

Wstęp do grafiki inżynierskiej

Wstęp do grafiki inżynierskiej Akademia Górniczo-Hutnicza Wstęp do grafiki inżynierskiej Rzuty prostokątne Prokop ŚRODA Marcin KOT Wydawnictwo Naukowe AKAPIT Recenzenci: prof. dr hab. inż. Wiesław Rakowski dr hab. inż. Jerzy Zych Rozdziały

Bardziej szczegółowo

ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII

ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII WOJSKOWA AKADEMIA TECHNICZNA Wydział Nowych Technologii i Chemii KATEDRA ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII Temat: Grafika inżynierska Podstawy Inżynierii Wytwarzania T 1: elementy przestrzeni rzuty

Bardziej szczegółowo

Spis treści. Słowo wstępne 7

Spis treści. Słowo wstępne 7 Geometria wykreślna : podstawowe metody odwzorowań stosowane w projektowaniu inżynierskim : podręcznik dla studentów Wydziału Inżynierii Lądowej / Renata A. Górska. Kraków, 2015 Spis treści Słowo wstępne

Bardziej szczegółowo

Przekształcenia geometryczne w grafice komputerowej. Marek Badura

Przekształcenia geometryczne w grafice komputerowej. Marek Badura Przekształcenia geometryczne w grafice komputerowej Marek Badura PRZEKSZTAŁCENIA GEOMETRYCZNE W GRAFICE KOMPUTEROWEJ Przedstawimy podstawowe przekształcenia geometryczne na płaszczyźnie R 2 (przestrzeń

Bardziej szczegółowo

Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki

Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu Mirosław Głowacki Obraz realistyczny Pojęcie obrazu realistycznego jest rozumiane w różny sposób Nie zawsze obraz realistyczny

Bardziej szczegółowo

Geometria wykreślna 7. Aksonometria

Geometria wykreślna 7. Aksonometria Geometria wykreślna 7. Aksonometria dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I SANDRO DEL PRETE,, The quadrature of the

Bardziej szczegółowo

Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki

Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu Mirosław Głowacki Zagadnienia Jak rozumiemy fotorealizm w grafice komputerowej Historyczny rozwój kart graficznych Przekształcenia

Bardziej szczegółowo

Prosta i płaszczyzna w przestrzeni

Prosta i płaszczyzna w przestrzeni Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 9. Aksonometria

Grafika inżynierska geometria wykreślna. 9. Aksonometria Grafika inżynierska geometria wykreślna 9. Aksonometria dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr I 9. Aksonometria

Bardziej szczegółowo

Rzutowanie. dr Radosław Matusik. radmat

Rzutowanie. dr Radosław Matusik.  radmat www.math.uni.lodz.pl/ radmat Warunki zaliczenia przedmiotu Na ćwiczeniach przez cały semestr będą realizowane dwa projekty w Unity (3D i 2D). Do uzyskania 3 z ćwiczeń wystarczy poprawnie zrealizować oba

Bardziej szczegółowo

gdzie (4.20) (4.21) 4.3. Rzut równoległy

gdzie (4.20) (4.21) 4.3. Rzut równoległy 4.3. Rzut równoległy 75 gdzie (4.20) Punkt zbiegu, określony wzorami (4.19) (4.20), leży na prostej przechodzącej przez środek rzutowania i równoległej do wektora u. Zauważmy, że gdy wektor u jest równoległy

Bardziej szczegółowo

aksonometrie trójosiowe odmierzalne odwzorowania na płaszczyźnie

aksonometrie trójosiowe odmierzalne odwzorowania na płaszczyźnie aksonometrie trójosiowe odmierzalne odwzorowania na płaszczyźnie Przykładowy rzut (od lewej) izometryczny, dimetryczny ukośny i dimetryczny prostokątny Podział aksonometrii ze względu na kierunek rzutowania:

Bardziej szczegółowo

Π 1 O Π 3 Π Rzutowanie prostokątne Wiadomości wstępne

Π 1 O Π 3 Π Rzutowanie prostokątne Wiadomości wstępne 2. Rzutowanie prostokątne 2.1. Wiadomości wstępne Rzutowanie prostokątne jest najczęściej stosowaną metodą rzutowania w rysunku technicznym. Reguły nim rządzące zaprezentowane są na rysunkach 2.1 i 2.2.

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel.

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. GRAFIKA KOMPUTEROWA podstawy matematyczne dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. (12) 617 46 37 Plan wykładu 1/4 ZACZNIEMY OD PRZYKŁADOWYCH PROCEDUR i PRZYKŁADÓW

Bardziej szczegółowo

METODA RZUTÓW MONGE A (II CZ.)

METODA RZUTÓW MONGE A (II CZ.) RZUT PUNKTU NA TRZECIĄ RZUTNIĘ METODA RZUTÓW MONGE A (II CZ.) Dodanie trzeciej rzutni pozwala na dostrzeżenie ważnej, ogólnej zależności. Jeżeli trzecia rzutnia została postawiona na drugiej - pionowej,

Bardziej szczegółowo

RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE

RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE MOJE DANE dr inż. Sebastian Olesiak Katedra Geomechaniki, Budownictwa i Geotechniki Pokój 309, pawilon A-1 (poddasze) e-mail: olesiak@agh.edu.pl

Bardziej szczegółowo

Ćwiczenie 9. Rzutowanie i wymiarowanie Strona 1 z 5

Ćwiczenie 9. Rzutowanie i wymiarowanie Strona 1 z 5 Ćwiczenie 9. Rzutowanie i wymiarowanie Strona 1 z 5 Problem I. Model UD Dana jest bryła, której rzut izometryczny przedstawiono na rysunku 1. (W celu zwiększenia poglądowości na rysunku 2. przedstawiono

Bardziej szczegółowo

Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki

Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu Mirosław Głowacki Zagadnienia Jak rozumiemy fotorealizm w grafice komputerowej Historyczny rozwój kart graficznych Przekształcenia

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 6.

Ekoenergetyka Matematyka 1. Wykład 6. Ekoenergetyka Matematyka. Wykład 6. RÓWNANIA PŁASZCZYZN Fakt (równanie normalne płaszczyzny) Równanie płaszczyzny przechodzącej przez punkt P0 ( x0, y0, z0) o wektorze wodzącym r [ x, y, z ] i prostopadłej

Bardziej szczegółowo

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury Geometria wykreślna 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 3.

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

RZUTOWANIE PROSTOKĄTNE

RZUTOWANIE PROSTOKĄTNE RZUTOWANIE PROSTOKĄTNE wg PN-EN ISO 5456-2 rzutowanie prostokątne (przedstawienie prostokątne) stanowi odwzorowanie geometrycznej postaci konstrukcji w postaci rysunków dwuwymiarowych. Jest to taki rodzaj

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa.

Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. Grafika inżynierska geometria wykreślna 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie,

Bardziej szczegółowo

DLA KLAS 3 GIMNAZJUM

DLA KLAS 3 GIMNAZJUM DLA KLAS 3 GIMNAZJUM ROLA RYSUNKU W TECHNICE Rysunek techniczny - wykonany zgodnie z przepisami i obowiązującymi zasadami - stał się językiem, którym porozumiewają się inżynierowie i technicy wszystkich

Bardziej szczegółowo

Odwzorowanie rysunkowe przedmiotów w rzutach

Odwzorowanie rysunkowe przedmiotów w rzutach Odwzorowanie rysunkowe przedmiotów w rzutach Rzutem nazywamy rysunkowe odwzorowanie przedmiotu lub bryły geometrycznej na płaszczyźnie rzutów, zwanej rzutnią, którą jest płaszczyzna rysunku. Rzut każdej

Bardziej szczegółowo

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5 Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

Transformacje obiektów 3D

Transformacje obiektów 3D Synteza i obróbka obrazu Transformacje obiektów 3D Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Lokalny układ współrzędnych Tworząc model obiektu, zapisujemy

Bardziej szczegółowo

3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie

3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie Widoczność A. W rzutowaniu europejskim zakłada się, że przedmiot obserwowany znajduje się między obserwatorem a rzutnią, a w amerykańskim rzutnia rozdziela przedmiot o oko obserwatora. B. Kierunek patrzenia

Bardziej szczegółowo

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E''

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E'' GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2012/2013 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

w jednym kwadrat ziemia powietrze równoboczny pięciobok

w jednym kwadrat ziemia powietrze równoboczny pięciobok Wielościany Definicja 1: Wielościanem nazywamy zbiór skończonej ilości wielokątów płaskich spełniających następujące warunki: 1. każde dwa wielokąty mają bok lub wierzchołek wspólny albo nie mają żadnego

Bardziej szczegółowo

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,

Bardziej szczegółowo

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w

Bardziej szczegółowo

Geometria wykreślna. Dr inż. Renata Górska

Geometria wykreślna. Dr inż. Renata Górska Dr inż. Renata Górska rgorska@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej L-5 Katedra Metod Obliczeniowych w Mechanice L-52 Projekty (sala 404 WIL): dr inż. Renata Górska dr

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 07/08 Kierunek studiów: Budownictwo Forma sudiów:

Bardziej szczegółowo

DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji,

DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji, TEMATYKA: Współliniowość Współpłaszczyznowość Ćwiczenia nr DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji, Podstawowe aksjomaty (zdanie, którego

Bardziej szczegółowo

Geometria w R 3. Iloczyn skalarny wektorów

Geometria w R 3. Iloczyn skalarny wektorów Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =

Bardziej szczegółowo

Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013

Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013 Zad.3 Jakub Trojgo i Jakub Wieczorek 14 grudnia 2013 W pierwszej części naszej pracy będziemy chcieli zbadać ciągłość funkcji f(x, y) w przypadku gdy płaszczyzna wyposażona jest w jedną z topologii: a)

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2019/2020

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2019/2020 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 209/2020 Kierunek studiów: Budownictwo Forma sudiów:

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2018/2019

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2018/2019 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 08/09 Kierunek studiów: Budownictwo Forma sudiów:

Bardziej szczegółowo

PUNKT PROSTA. Przy rysowaniu rzutów prostej zaczynamy od rzutowania punktów przebicia rzutni prostą (śladów). Następnie łączymy rzuty na π 1 i π 2.

PUNKT PROSTA. Przy rysowaniu rzutów prostej zaczynamy od rzutowania punktów przebicia rzutni prostą (śladów). Następnie łączymy rzuty na π 1 i π 2. WYKŁAD 1 Wprowadzenie. Różne sposoby przedstawiania przedmiotu. Podstawy teorii zapisu konstrukcji w grafice inżynierskiej. Zasady rzutu prostokątnego. PUNKT Punkt w odwzorowaniach Monge a rzutujemy prostopadle

Bardziej szczegółowo

Geometria Lista 0 Zadanie 1

Geometria Lista 0 Zadanie 1 Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio

Bardziej szczegółowo

RYSUNEK TECHNICZNY I GRAFIKA INśYNIERSKA

RYSUNEK TECHNICZNY I GRAFIKA INśYNIERSKA RYSUNEK TECHNICZNY I GRAFIKA INśYNIERSKA WYKŁAD 2 dr inŝ. Beata Sadowska 1. Zasady rzutowania elementów i obiektów budowlanych 2. Rzuty budynku 3. Wymiarowanie rysunków architektoniczno-budowlanych Normy

Bardziej szczegółowo

Zanim wykonasz jakikolwiek przedmiot, musisz go najpierw narysować. Sam rysunek nie wystarczy do wykonania tego przedmiotu. Musisz podać na rysunku

Zanim wykonasz jakikolwiek przedmiot, musisz go najpierw narysować. Sam rysunek nie wystarczy do wykonania tego przedmiotu. Musisz podać na rysunku Zanim wykonasz jakikolwiek przedmiot, musisz go najpierw narysować. Sam rysunek nie wystarczy do wykonania tego przedmiotu. Musisz podać na rysunku jego wymiary (długość, szerokość, grubość). Wymiary te

Bardziej szczegółowo

2 Przygotował: mgr inż. Maciej Lasota

2 Przygotował: mgr inż. Maciej Lasota Laboratorium nr 2 1/6 Grafika Komputerowa 3D Instrukcja laboratoryjna Temat: Manipulowanie przestrzenią 2 Przygotował: mgr inż. Maciej Lasota 1) Manipulowanie przestrzenią Istnieją dwa typy układów współrzędnych:

Bardziej szczegółowo

Krystalochemia białek 2016/2017

Krystalochemia białek 2016/2017 Zestaw zadań 4. Grupy punktowe. Składanie elementów symetrii. Translacyjne elementy symetrii grupy punktowe, składanie elementów symetrii, translacyjne elementy symetrii: osie śrubowe, płaszczyzny ślizgowe

Bardziej szczegółowo

Skrypt 24. Geometria analityczna: Opracowanie L5

Skrypt 24. Geometria analityczna: Opracowanie L5 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 24 Geometria analityczna:

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 4. Wielościany. Budowa. Przekroje.

Grafika inżynierska geometria wykreślna. 4. Wielościany. Budowa. Przekroje. Grafika inżynierska geometria wykreślna 4. Wielościany. Budowa. Przekroje. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr

Bardziej szczegółowo

Rok akademicki 2005/2006

Rok akademicki 2005/2006 GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2005/2006 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

Definicja obrotu: Definicja elementów obrotu:

Definicja obrotu: Definicja elementów obrotu: 5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

Grafika Komputerowa Wykład 4. Synteza grafiki 3D. mgr inż. Michał Chwesiuk 1/30

Grafika Komputerowa Wykład 4. Synteza grafiki 3D. mgr inż. Michał Chwesiuk 1/30 Wykład 4 mgr inż. 1/30 Synteza grafiki polega na stworzeniu obrazu w oparciu o jego opis. Synteza obrazu w grafice komputerowej polega na wykorzystaniu algorytmów komputerowych do uzyskania obrazu cyfrowego

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

Rok I studia stacjonarne Tematy ćwiczeń z Grafiki inżynierskiej Rok akademicki 2013/2014

Rok I studia stacjonarne Tematy ćwiczeń z Grafiki inżynierskiej Rok akademicki 2013/2014 Rok I studia stacjonarne Tematy ćwiczeń z Grafiki inżynierskiej Rok akademicki 2013/2014 Ćwiczenie nr 1 Temat: Rzutowanie prostokątne punktu, odcinka, wycinka płaszczyzny i prostej bryły przestrzennej.

Bardziej szczegółowo

Geometria analityczna - przykłady

Geometria analityczna - przykłady Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

GRK 2. dr Wojciech Palubicki

GRK 2. dr Wojciech Palubicki GRK dr Wojciech Palubicki Macierz wektor produkt jako Transformacja T: R n R m T Ԧx = A Ԧx Przemieszczanie wierzchołków - Transformacje Skalowanie Rotacja Translacja -y -y Macierz rotacji M wobec punktu

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 11. Rzut cechowany.

Grafika inżynierska geometria wykreślna. 11. Rzut cechowany. Grafika inżynierska geometria wykreślna 11. Rzut cechowany. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 11. Rzut cechowany.

Bardziej szczegółowo

Kryteria oceniania z matematyki Klasa III poziom podstawowy

Kryteria oceniania z matematyki Klasa III poziom podstawowy Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa

Bardziej szczegółowo

R n jako przestrzeń afiniczna

R n jako przestrzeń afiniczna R n jako przestrzeń afiniczna Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 11. wykład z algebry liniowej Warszawa, grudzień 2014 Mirosław Sobolewski (UW) Warszawa, grudzień 2014 1

Bardziej szczegółowo

ORIENTACJA ZEWNĘTRZNA ZDJĘCIA Z WYKORZYSTANIEM GEOMETRYCZNYCH CECH OBIEKTÓW

ORIENTACJA ZEWNĘTRZNA ZDJĘCIA Z WYKORZYSTANIEM GEOMETRYCZNYCH CECH OBIEKTÓW Polskie Towarzystwo Fotogrametrii i Teledetekcji oraz Katedra Fotogrametrii i Teledetekcji Wydziału Geodezji i Gospodarki Przestrzennej Uniwersytetu Warmińsko-Mazurskiego w Olsztynie Archiwum Fotogrametrii,

Bardziej szczegółowo

KMO2D. Kolizje między-obiektowe w 2D

KMO2D. Kolizje między-obiektowe w 2D KMO2D Kolizje między-obiektowe w 2D I. Wstęp 3 lata temu na temat kolizji nie miałem żadnego pojęcia. Przyszedł jednak czas, gdy postanowiłem napisać pierwszą porządną grę i pojawił się, wtedy problem.

Bardziej szczegółowo

Geometria wykreślna. 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Geometria wykreślna. 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury Geometria wykreślna 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr

Bardziej szczegółowo

Geometria. Hiperbola

Geometria. Hiperbola Geometria. Hiperbola Definicja 1 Dano dwa punkty na płaszczyźnie: F 1 i F 2 oraz taką liczbę d, że F 1 F 2 > d > 0. Zbiór punktów płaszczyzny będących rozwiązaniami równania: XF 1 XF 2 = ±d. nazywamy hiperbolą.

Bardziej szczegółowo

Orientacja zewnętrzna pojedynczego zdjęcia

Orientacja zewnętrzna pojedynczego zdjęcia Orientacja zewnętrzna pojedynczego zdjęcia Proces opracowania fotogrametrycznego zdjęcia obejmuje: 1. Rekonstrukcję kształtu wiązki promieni rzutujących (orientacja wewnętrzna ck, x, y punktu głównego)

Bardziej szczegółowo

Andrzej Marciniak GRAFIKA KOMPUTEROWA. Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu

Andrzej Marciniak GRAFIKA KOMPUTEROWA. Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu Andrzej Marciniak GRAFIKA KOMPUTEROWA Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu Wykłady są przeznaczone wyłącznie do indywidualnego użytku przez studentów

Bardziej szczegółowo

Imię i NAZWISKO:... Grupa proj.: GP... KOLOKWIUM K1 X 1. Geometria Wykreślna 2018/19. z plaszczyznami skarp o podanych warstwicach.

Imię i NAZWISKO:... Grupa proj.: GP... KOLOKWIUM K1 X 1. Geometria Wykreślna 2018/19. z plaszczyznami skarp o podanych warstwicach. A1 Zad. 1. Podaj definicję rzutu przestrzeni 3D na płaszczyznę D Zad.. Wymień wszystkie znane sposoby definicji płaszczyzny w przestrzeni 3D Zad. 3. Podaj definicję rzutu cechowanego Zad. 4. Co daje założenie

Bardziej szczegółowo

Równania prostych i krzywych; współrzędne punktu

Równania prostych i krzywych; współrzędne punktu Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej

Bardziej szczegółowo

RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE PROSTOKĄTNE

RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE PROSTOKĄTNE RYSUNEK TECHNICZNY BUDOWLANY MOJE DANE dr inż. Sebastian Olesiak Katedra Geomechaniki, Budownictwa i Geotechniki Pokój 309, pawilon A-1 (poddasze) e-mail: olesiak@agh.edu.pl WWW http://home.agh.edu.pl/olesiak

Bardziej szczegółowo

Informatyka I Lab 06, r.a. 2011/2012 prow. Sławomir Czarnecki. Zadania na laboratorium nr. 6

Informatyka I Lab 06, r.a. 2011/2012 prow. Sławomir Czarnecki. Zadania na laboratorium nr. 6 Informatyka I Lab 6, r.a. / prow. Sławomir Czarnecki Zadania na laboratorium nr. 6 Po utworzeniu nowego projektu, dołącz bibliotekę bibs.h.. Największy wspólny dzielnik liczb naturalnych a, b oznaczamy

Bardziej szczegółowo

GEOMETRIA WYKREŚLNA ZADANIA TESTOWE

GEOMETRIA WYKREŚLNA ZADANIA TESTOWE Bożena Kotarska-Lewandowska GEOMETRIA WYKREŚLNA ZADANIA TESTOWE Katedra Mechaniki Budowli i Mostów Wydział Inżynierii Lądowej i Środowiska Politechniki Gdańskiej Gdańsk 2011 SPIS TREŚCI Spis treści...

Bardziej szczegółowo

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach: Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Wydział Matematyki Stosowanej Zestaw zadań nr 10 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus maja 018r. 1 Działania na wektorach Zadanie 1. Oblicz długość wektorów: Geometria

Bardziej szczegółowo

WYKŁAD I RZUT RÓWNOLEGŁY NEZMIENNIKI RZUTU RÓWNOLEGŁEGO RZUT PROSTOKĄTNY AKSONOMETRIA RYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA

WYKŁAD I RZUT RÓWNOLEGŁY NEZMIENNIKI RZUTU RÓWNOLEGŁEGO RZUT PROSTOKĄTNY AKSONOMETRIA RYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA RYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA WYKŁAD I RZUT RÓWNOLEGŁY NEZMIENNIKI RZUTU RÓWNOLEGŁEGO RZUT PROSTOKĄTNY AKSONOMETRIA DR INŻ. ELŻBIETA RUDCZYK-MALIJEWSKA Wydział Budownictwa i Inżynierii Środowiska

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

Zajęcia techniczne kl. I - Gimnazjum w Tęgoborzy

Zajęcia techniczne kl. I - Gimnazjum w Tęgoborzy Temat 14 : Podstawowe wiadomości o rysunku technicznym. Prezentacja Pismo techniczne.pps 1. - język porozumiewawczy między inżynierem a konstruktorem. Jest znormalizowany, tzn. istnieją normy (przepisy)

Bardziej szczegółowo

RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE

RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE SERIA GEOMATYKA RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE SKRYPT DLA STUDENTÓW STUDIÓW NIESTACJONARNYCH KIERUNKÓW BUDOWNICTWO I INŻYNIERIA ŚRODOWISKA dr inż. arch. DOMINIKA WRÓBLEWSKA ISBN 978-83-934609-9-1

Bardziej szczegółowo

Obliczenie punktu przecięcia półprostej i płaszczyzny w przestrzeni 3-D wymaga rozwiązania równania liniowego.

Obliczenie punktu przecięcia półprostej i płaszczyzny w przestrzeni 3-D wymaga rozwiązania równania liniowego. RÓWNANIA, PRAWA, WZORY Obliczenie punktu przecięcia półprostej i płaszczyzny w przestrzeni 3-D wymaga rozwiązania równania liniowego. Znalezienie punktu przecięcia powierzchni kwadryki i półprostej wymaga

Bardziej szczegółowo

Odległośc w układzie współrzędnych. Środek odcinka.

Odległośc w układzie współrzędnych. Środek odcinka. GEOMETRIA ANALITYCZNA ZADANIA. Odległośc w układzie współrzędnych. Środek odcinka. Zad. 1 Wyznacz odległość między punktami A i B (długość odcinka AB) jeżeli: d = Zad. 2 a) A=(5,-3) B=(-2,3) b) A=(-2,2)

Bardziej szczegółowo

Rzuty, przekroje i inne przeboje

Rzuty, przekroje i inne przeboje Rzuty, przekroje i inne przeboje WYK - Grafika inżynierska Piotr Ciskowski, Sebastian Sobczyk Wrocław, 2015-2016 Rzuty prostokątne Rzuty prostokątne pokazują przedmiot z kilku stron 1. przedmiot ustawiamy

Bardziej szczegółowo

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a Działania na zbiorach i ich własności Informatyka Stosowana 1. W dowolnym zbiorze X określamy działanie : a b = b. Pokazać, że jest to działanie łączne. 2. W zbiorze Z określamy działanie : a b = a 2 +

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA. Poziom podstawowy

GEOMETRIA ANALITYCZNA. Poziom podstawowy GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej

Bardziej szczegółowo

E-E-0862-s1. Geometria i grafika inżynierska. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

E-E-0862-s1. Geometria i grafika inżynierska. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu E-E-0862-s1 Nazwa modułu Geometria i grafika inżynierska Nazwa modułu w języku angielskim

Bardziej szczegółowo

Opis krzywych w przestrzeni 3D. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH

Opis krzywych w przestrzeni 3D. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH Opis krzywych w przestrzeni 3D Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH Krzywe Beziera W przypadku tych krzywych wektory styczne w punkach końcowych są określane bezpośrednio

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Kierunek studiów: Budownictwo Forma

Bardziej szczegółowo

Kolejne zadanie polega na narysowaniu linii k leżącej na płaszczyźnie danej za pomocą prostej i punktu α(l,c).

Kolejne zadanie polega na narysowaniu linii k leżącej na płaszczyźnie danej za pomocą prostej i punktu α(l,c). Konstrukcje podstawowe 1. Konstrukcja elementu przynależnego (KEP) 1.1. przynależność punktu do prostej (typowe zadania to wykreślenie punktu leżącego na prostej A m oraz wykreślenia prostej przechodzącej

Bardziej szczegółowo